| /* |
| * Architecture specific (i386/x86_64) functions for kexec based crash dumps. |
| * |
| * Created by: Hariprasad Nellitheertha (hari@in.ibm.com) |
| * |
| * Copyright (C) IBM Corporation, 2004. All rights reserved. |
| * Copyright (C) Red Hat Inc., 2014. All rights reserved. |
| * Authors: |
| * Vivek Goyal <vgoyal@redhat.com> |
| * |
| */ |
| |
| #define pr_fmt(fmt) "kexec: " fmt |
| |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/smp.h> |
| #include <linux/reboot.h> |
| #include <linux/kexec.h> |
| #include <linux/delay.h> |
| #include <linux/elf.h> |
| #include <linux/elfcore.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| |
| #include <asm/processor.h> |
| #include <asm/hardirq.h> |
| #include <asm/nmi.h> |
| #include <asm/hw_irq.h> |
| #include <asm/apic.h> |
| #include <asm/hpet.h> |
| #include <linux/kdebug.h> |
| #include <asm/cpu.h> |
| #include <asm/reboot.h> |
| #include <asm/virtext.h> |
| |
| /* Alignment required for elf header segment */ |
| #define ELF_CORE_HEADER_ALIGN 4096 |
| |
| /* This primarily represents number of split ranges due to exclusion */ |
| #define CRASH_MAX_RANGES 16 |
| |
| struct crash_mem_range { |
| u64 start, end; |
| }; |
| |
| struct crash_mem { |
| unsigned int nr_ranges; |
| struct crash_mem_range ranges[CRASH_MAX_RANGES]; |
| }; |
| |
| /* Misc data about ram ranges needed to prepare elf headers */ |
| struct crash_elf_data { |
| struct kimage *image; |
| /* |
| * Total number of ram ranges we have after various adjustments for |
| * GART, crash reserved region etc. |
| */ |
| unsigned int max_nr_ranges; |
| unsigned long gart_start, gart_end; |
| |
| /* Pointer to elf header */ |
| void *ehdr; |
| /* Pointer to next phdr */ |
| void *bufp; |
| struct crash_mem mem; |
| }; |
| |
| /* Used while preparing memory map entries for second kernel */ |
| struct crash_memmap_data { |
| struct boot_params *params; |
| /* Type of memory */ |
| unsigned int type; |
| }; |
| |
| int in_crash_kexec; |
| |
| /* |
| * This is used to VMCLEAR all VMCSs loaded on the |
| * processor. And when loading kvm_intel module, the |
| * callback function pointer will be assigned. |
| * |
| * protected by rcu. |
| */ |
| crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL; |
| EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss); |
| unsigned long crash_zero_bytes; |
| |
| static inline void cpu_crash_vmclear_loaded_vmcss(void) |
| { |
| crash_vmclear_fn *do_vmclear_operation = NULL; |
| |
| rcu_read_lock(); |
| do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss); |
| if (do_vmclear_operation) |
| do_vmclear_operation(); |
| rcu_read_unlock(); |
| } |
| |
| #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC) |
| |
| static void kdump_nmi_callback(int cpu, struct pt_regs *regs) |
| { |
| #ifdef CONFIG_X86_32 |
| struct pt_regs fixed_regs; |
| |
| if (!user_mode_vm(regs)) { |
| crash_fixup_ss_esp(&fixed_regs, regs); |
| regs = &fixed_regs; |
| } |
| #endif |
| crash_save_cpu(regs, cpu); |
| |
| /* |
| * VMCLEAR VMCSs loaded on all cpus if needed. |
| */ |
| cpu_crash_vmclear_loaded_vmcss(); |
| |
| /* Disable VMX or SVM if needed. |
| * |
| * We need to disable virtualization on all CPUs. |
| * Having VMX or SVM enabled on any CPU may break rebooting |
| * after the kdump kernel has finished its task. |
| */ |
| cpu_emergency_vmxoff(); |
| cpu_emergency_svm_disable(); |
| |
| disable_local_APIC(); |
| } |
| |
| static void kdump_nmi_shootdown_cpus(void) |
| { |
| in_crash_kexec = 1; |
| nmi_shootdown_cpus(kdump_nmi_callback); |
| |
| disable_local_APIC(); |
| } |
| |
| #else |
| static void kdump_nmi_shootdown_cpus(void) |
| { |
| /* There are no cpus to shootdown */ |
| } |
| #endif |
| |
| void native_machine_crash_shutdown(struct pt_regs *regs) |
| { |
| /* This function is only called after the system |
| * has panicked or is otherwise in a critical state. |
| * The minimum amount of code to allow a kexec'd kernel |
| * to run successfully needs to happen here. |
| * |
| * In practice this means shooting down the other cpus in |
| * an SMP system. |
| */ |
| /* The kernel is broken so disable interrupts */ |
| local_irq_disable(); |
| |
| kdump_nmi_shootdown_cpus(); |
| |
| /* |
| * VMCLEAR VMCSs loaded on this cpu if needed. |
| */ |
| cpu_crash_vmclear_loaded_vmcss(); |
| |
| /* Booting kdump kernel with VMX or SVM enabled won't work, |
| * because (among other limitations) we can't disable paging |
| * with the virt flags. |
| */ |
| cpu_emergency_vmxoff(); |
| cpu_emergency_svm_disable(); |
| |
| #ifdef CONFIG_X86_IO_APIC |
| /* Prevent crash_kexec() from deadlocking on ioapic_lock. */ |
| ioapic_zap_locks(); |
| disable_IO_APIC(); |
| #endif |
| lapic_shutdown(); |
| #ifdef CONFIG_HPET_TIMER |
| hpet_disable(); |
| #endif |
| crash_save_cpu(regs, safe_smp_processor_id()); |
| } |
| |
| #ifdef CONFIG_KEXEC_FILE |
| static int get_nr_ram_ranges_callback(unsigned long start_pfn, |
| unsigned long nr_pfn, void *arg) |
| { |
| int *nr_ranges = arg; |
| |
| (*nr_ranges)++; |
| return 0; |
| } |
| |
| static int get_gart_ranges_callback(u64 start, u64 end, void *arg) |
| { |
| struct crash_elf_data *ced = arg; |
| |
| ced->gart_start = start; |
| ced->gart_end = end; |
| |
| /* Not expecting more than 1 gart aperture */ |
| return 1; |
| } |
| |
| |
| /* Gather all the required information to prepare elf headers for ram regions */ |
| static void fill_up_crash_elf_data(struct crash_elf_data *ced, |
| struct kimage *image) |
| { |
| unsigned int nr_ranges = 0; |
| |
| ced->image = image; |
| |
| walk_system_ram_range(0, -1, &nr_ranges, |
| get_nr_ram_ranges_callback); |
| |
| ced->max_nr_ranges = nr_ranges; |
| |
| /* |
| * We don't create ELF headers for GART aperture as an attempt |
| * to dump this memory in second kernel leads to hang/crash. |
| * If gart aperture is present, one needs to exclude that region |
| * and that could lead to need of extra phdr. |
| */ |
| walk_iomem_res("GART", IORESOURCE_MEM, 0, -1, |
| ced, get_gart_ranges_callback); |
| |
| /* |
| * If we have gart region, excluding that could potentially split |
| * a memory range, resulting in extra header. Account for that. |
| */ |
| if (ced->gart_end) |
| ced->max_nr_ranges++; |
| |
| /* Exclusion of crash region could split memory ranges */ |
| ced->max_nr_ranges++; |
| |
| /* If crashk_low_res is not 0, another range split possible */ |
| if (crashk_low_res.end != 0) |
| ced->max_nr_ranges++; |
| } |
| |
| static int exclude_mem_range(struct crash_mem *mem, |
| unsigned long long mstart, unsigned long long mend) |
| { |
| int i, j; |
| unsigned long long start, end; |
| struct crash_mem_range temp_range = {0, 0}; |
| |
| for (i = 0; i < mem->nr_ranges; i++) { |
| start = mem->ranges[i].start; |
| end = mem->ranges[i].end; |
| |
| if (mstart > end || mend < start) |
| continue; |
| |
| /* Truncate any area outside of range */ |
| if (mstart < start) |
| mstart = start; |
| if (mend > end) |
| mend = end; |
| |
| /* Found completely overlapping range */ |
| if (mstart == start && mend == end) { |
| mem->ranges[i].start = 0; |
| mem->ranges[i].end = 0; |
| if (i < mem->nr_ranges - 1) { |
| /* Shift rest of the ranges to left */ |
| for (j = i; j < mem->nr_ranges - 1; j++) { |
| mem->ranges[j].start = |
| mem->ranges[j+1].start; |
| mem->ranges[j].end = |
| mem->ranges[j+1].end; |
| } |
| } |
| mem->nr_ranges--; |
| return 0; |
| } |
| |
| if (mstart > start && mend < end) { |
| /* Split original range */ |
| mem->ranges[i].end = mstart - 1; |
| temp_range.start = mend + 1; |
| temp_range.end = end; |
| } else if (mstart != start) |
| mem->ranges[i].end = mstart - 1; |
| else |
| mem->ranges[i].start = mend + 1; |
| break; |
| } |
| |
| /* If a split happend, add the split to array */ |
| if (!temp_range.end) |
| return 0; |
| |
| /* Split happened */ |
| if (i == CRASH_MAX_RANGES - 1) { |
| pr_err("Too many crash ranges after split\n"); |
| return -ENOMEM; |
| } |
| |
| /* Location where new range should go */ |
| j = i + 1; |
| if (j < mem->nr_ranges) { |
| /* Move over all ranges one slot towards the end */ |
| for (i = mem->nr_ranges - 1; i >= j; i--) |
| mem->ranges[i + 1] = mem->ranges[i]; |
| } |
| |
| mem->ranges[j].start = temp_range.start; |
| mem->ranges[j].end = temp_range.end; |
| mem->nr_ranges++; |
| return 0; |
| } |
| |
| /* |
| * Look for any unwanted ranges between mstart, mend and remove them. This |
| * might lead to split and split ranges are put in ced->mem.ranges[] array |
| */ |
| static int elf_header_exclude_ranges(struct crash_elf_data *ced, |
| unsigned long long mstart, unsigned long long mend) |
| { |
| struct crash_mem *cmem = &ced->mem; |
| int ret = 0; |
| |
| memset(cmem->ranges, 0, sizeof(cmem->ranges)); |
| |
| cmem->ranges[0].start = mstart; |
| cmem->ranges[0].end = mend; |
| cmem->nr_ranges = 1; |
| |
| /* Exclude crashkernel region */ |
| ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end); |
| if (ret) |
| return ret; |
| |
| ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end); |
| if (ret) |
| return ret; |
| |
| /* Exclude GART region */ |
| if (ced->gart_end) { |
| ret = exclude_mem_range(cmem, ced->gart_start, ced->gart_end); |
| if (ret) |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg) |
| { |
| struct crash_elf_data *ced = arg; |
| Elf64_Ehdr *ehdr; |
| Elf64_Phdr *phdr; |
| unsigned long mstart, mend; |
| struct kimage *image = ced->image; |
| struct crash_mem *cmem; |
| int ret, i; |
| |
| ehdr = ced->ehdr; |
| |
| /* Exclude unwanted mem ranges */ |
| ret = elf_header_exclude_ranges(ced, start, end); |
| if (ret) |
| return ret; |
| |
| /* Go through all the ranges in ced->mem.ranges[] and prepare phdr */ |
| cmem = &ced->mem; |
| |
| for (i = 0; i < cmem->nr_ranges; i++) { |
| mstart = cmem->ranges[i].start; |
| mend = cmem->ranges[i].end; |
| |
| phdr = ced->bufp; |
| ced->bufp += sizeof(Elf64_Phdr); |
| |
| phdr->p_type = PT_LOAD; |
| phdr->p_flags = PF_R|PF_W|PF_X; |
| phdr->p_offset = mstart; |
| |
| /* |
| * If a range matches backup region, adjust offset to backup |
| * segment. |
| */ |
| if (mstart == image->arch.backup_src_start && |
| (mend - mstart + 1) == image->arch.backup_src_sz) |
| phdr->p_offset = image->arch.backup_load_addr; |
| |
| phdr->p_paddr = mstart; |
| phdr->p_vaddr = (unsigned long long) __va(mstart); |
| phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; |
| phdr->p_align = 0; |
| ehdr->e_phnum++; |
| pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", |
| phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, |
| ehdr->e_phnum, phdr->p_offset); |
| } |
| |
| return ret; |
| } |
| |
| static int prepare_elf64_headers(struct crash_elf_data *ced, |
| void **addr, unsigned long *sz) |
| { |
| Elf64_Ehdr *ehdr; |
| Elf64_Phdr *phdr; |
| unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; |
| unsigned char *buf, *bufp; |
| unsigned int cpu; |
| unsigned long long notes_addr; |
| int ret; |
| |
| /* extra phdr for vmcoreinfo elf note */ |
| nr_phdr = nr_cpus + 1; |
| nr_phdr += ced->max_nr_ranges; |
| |
| /* |
| * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping |
| * area on x86_64 (ffffffff80000000 - ffffffffa0000000). |
| * I think this is required by tools like gdb. So same physical |
| * memory will be mapped in two elf headers. One will contain kernel |
| * text virtual addresses and other will have __va(physical) addresses. |
| */ |
| |
| nr_phdr++; |
| elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); |
| elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); |
| |
| buf = vzalloc(elf_sz); |
| if (!buf) |
| return -ENOMEM; |
| |
| bufp = buf; |
| ehdr = (Elf64_Ehdr *)bufp; |
| bufp += sizeof(Elf64_Ehdr); |
| memcpy(ehdr->e_ident, ELFMAG, SELFMAG); |
| ehdr->e_ident[EI_CLASS] = ELFCLASS64; |
| ehdr->e_ident[EI_DATA] = ELFDATA2LSB; |
| ehdr->e_ident[EI_VERSION] = EV_CURRENT; |
| ehdr->e_ident[EI_OSABI] = ELF_OSABI; |
| memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); |
| ehdr->e_type = ET_CORE; |
| ehdr->e_machine = ELF_ARCH; |
| ehdr->e_version = EV_CURRENT; |
| ehdr->e_phoff = sizeof(Elf64_Ehdr); |
| ehdr->e_ehsize = sizeof(Elf64_Ehdr); |
| ehdr->e_phentsize = sizeof(Elf64_Phdr); |
| |
| /* Prepare one phdr of type PT_NOTE for each present cpu */ |
| for_each_present_cpu(cpu) { |
| phdr = (Elf64_Phdr *)bufp; |
| bufp += sizeof(Elf64_Phdr); |
| phdr->p_type = PT_NOTE; |
| notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); |
| phdr->p_offset = phdr->p_paddr = notes_addr; |
| phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); |
| (ehdr->e_phnum)++; |
| } |
| |
| /* Prepare one PT_NOTE header for vmcoreinfo */ |
| phdr = (Elf64_Phdr *)bufp; |
| bufp += sizeof(Elf64_Phdr); |
| phdr->p_type = PT_NOTE; |
| phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); |
| phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note); |
| (ehdr->e_phnum)++; |
| |
| #ifdef CONFIG_X86_64 |
| /* Prepare PT_LOAD type program header for kernel text region */ |
| phdr = (Elf64_Phdr *)bufp; |
| bufp += sizeof(Elf64_Phdr); |
| phdr->p_type = PT_LOAD; |
| phdr->p_flags = PF_R|PF_W|PF_X; |
| phdr->p_vaddr = (Elf64_Addr)_text; |
| phdr->p_filesz = phdr->p_memsz = _end - _text; |
| phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); |
| (ehdr->e_phnum)++; |
| #endif |
| |
| /* Prepare PT_LOAD headers for system ram chunks. */ |
| ced->ehdr = ehdr; |
| ced->bufp = bufp; |
| ret = walk_system_ram_res(0, -1, ced, |
| prepare_elf64_ram_headers_callback); |
| if (ret < 0) |
| return ret; |
| |
| *addr = buf; |
| *sz = elf_sz; |
| return 0; |
| } |
| |
| /* Prepare elf headers. Return addr and size */ |
| static int prepare_elf_headers(struct kimage *image, void **addr, |
| unsigned long *sz) |
| { |
| struct crash_elf_data *ced; |
| int ret; |
| |
| ced = kzalloc(sizeof(*ced), GFP_KERNEL); |
| if (!ced) |
| return -ENOMEM; |
| |
| fill_up_crash_elf_data(ced, image); |
| |
| /* By default prepare 64bit headers */ |
| ret = prepare_elf64_headers(ced, addr, sz); |
| kfree(ced); |
| return ret; |
| } |
| |
| static int add_e820_entry(struct boot_params *params, struct e820entry *entry) |
| { |
| unsigned int nr_e820_entries; |
| |
| nr_e820_entries = params->e820_entries; |
| if (nr_e820_entries >= E820MAX) |
| return 1; |
| |
| memcpy(¶ms->e820_map[nr_e820_entries], entry, |
| sizeof(struct e820entry)); |
| params->e820_entries++; |
| return 0; |
| } |
| |
| static int memmap_entry_callback(u64 start, u64 end, void *arg) |
| { |
| struct crash_memmap_data *cmd = arg; |
| struct boot_params *params = cmd->params; |
| struct e820entry ei; |
| |
| ei.addr = start; |
| ei.size = end - start + 1; |
| ei.type = cmd->type; |
| add_e820_entry(params, &ei); |
| |
| return 0; |
| } |
| |
| static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem, |
| unsigned long long mstart, |
| unsigned long long mend) |
| { |
| unsigned long start, end; |
| int ret = 0; |
| |
| cmem->ranges[0].start = mstart; |
| cmem->ranges[0].end = mend; |
| cmem->nr_ranges = 1; |
| |
| /* Exclude Backup region */ |
| start = image->arch.backup_load_addr; |
| end = start + image->arch.backup_src_sz - 1; |
| ret = exclude_mem_range(cmem, start, end); |
| if (ret) |
| return ret; |
| |
| /* Exclude elf header region */ |
| start = image->arch.elf_load_addr; |
| end = start + image->arch.elf_headers_sz - 1; |
| return exclude_mem_range(cmem, start, end); |
| } |
| |
| /* Prepare memory map for crash dump kernel */ |
| int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params) |
| { |
| int i, ret = 0; |
| unsigned long flags; |
| struct e820entry ei; |
| struct crash_memmap_data cmd; |
| struct crash_mem *cmem; |
| |
| cmem = vzalloc(sizeof(struct crash_mem)); |
| if (!cmem) |
| return -ENOMEM; |
| |
| memset(&cmd, 0, sizeof(struct crash_memmap_data)); |
| cmd.params = params; |
| |
| /* Add first 640K segment */ |
| ei.addr = image->arch.backup_src_start; |
| ei.size = image->arch.backup_src_sz; |
| ei.type = E820_RAM; |
| add_e820_entry(params, &ei); |
| |
| /* Add ACPI tables */ |
| cmd.type = E820_ACPI; |
| flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
| walk_iomem_res("ACPI Tables", flags, 0, -1, &cmd, |
| memmap_entry_callback); |
| |
| /* Add ACPI Non-volatile Storage */ |
| cmd.type = E820_NVS; |
| walk_iomem_res("ACPI Non-volatile Storage", flags, 0, -1, &cmd, |
| memmap_entry_callback); |
| |
| /* Add crashk_low_res region */ |
| if (crashk_low_res.end) { |
| ei.addr = crashk_low_res.start; |
| ei.size = crashk_low_res.end - crashk_low_res.start + 1; |
| ei.type = E820_RAM; |
| add_e820_entry(params, &ei); |
| } |
| |
| /* Exclude some ranges from crashk_res and add rest to memmap */ |
| ret = memmap_exclude_ranges(image, cmem, crashk_res.start, |
| crashk_res.end); |
| if (ret) |
| goto out; |
| |
| for (i = 0; i < cmem->nr_ranges; i++) { |
| ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1; |
| |
| /* If entry is less than a page, skip it */ |
| if (ei.size < PAGE_SIZE) |
| continue; |
| ei.addr = cmem->ranges[i].start; |
| ei.type = E820_RAM; |
| add_e820_entry(params, &ei); |
| } |
| |
| out: |
| vfree(cmem); |
| return ret; |
| } |
| |
| static int determine_backup_region(u64 start, u64 end, void *arg) |
| { |
| struct kimage *image = arg; |
| |
| image->arch.backup_src_start = start; |
| image->arch.backup_src_sz = end - start + 1; |
| |
| /* Expecting only one range for backup region */ |
| return 1; |
| } |
| |
| int crash_load_segments(struct kimage *image) |
| { |
| unsigned long src_start, src_sz, elf_sz; |
| void *elf_addr; |
| int ret; |
| |
| /* |
| * Determine and load a segment for backup area. First 640K RAM |
| * region is backup source |
| */ |
| |
| ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END, |
| image, determine_backup_region); |
| |
| /* Zero or postive return values are ok */ |
| if (ret < 0) |
| return ret; |
| |
| src_start = image->arch.backup_src_start; |
| src_sz = image->arch.backup_src_sz; |
| |
| /* Add backup segment. */ |
| if (src_sz) { |
| /* |
| * Ideally there is no source for backup segment. This is |
| * copied in purgatory after crash. Just add a zero filled |
| * segment for now to make sure checksum logic works fine. |
| */ |
| ret = kexec_add_buffer(image, (char *)&crash_zero_bytes, |
| sizeof(crash_zero_bytes), src_sz, |
| PAGE_SIZE, 0, -1, 0, |
| &image->arch.backup_load_addr); |
| if (ret) |
| return ret; |
| pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n", |
| image->arch.backup_load_addr, src_start, src_sz); |
| } |
| |
| /* Prepare elf headers and add a segment */ |
| ret = prepare_elf_headers(image, &elf_addr, &elf_sz); |
| if (ret) |
| return ret; |
| |
| image->arch.elf_headers = elf_addr; |
| image->arch.elf_headers_sz = elf_sz; |
| |
| ret = kexec_add_buffer(image, (char *)elf_addr, elf_sz, elf_sz, |
| ELF_CORE_HEADER_ALIGN, 0, -1, 0, |
| &image->arch.elf_load_addr); |
| if (ret) { |
| vfree((void *)image->arch.elf_headers); |
| return ret; |
| } |
| pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n", |
| image->arch.elf_load_addr, elf_sz, elf_sz); |
| |
| return ret; |
| } |
| #endif /* CONFIG_KEXEC_FILE */ |