blob: 848baa6e3bbf5d3f19242d128e19a52e67de3f80 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* ADMV8818 driver
*
* Copyright 2021 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/iio/iio.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/notifier.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>
#include <linux/units.h>
/* ADMV8818 Register Map */
#define ADMV8818_REG_SPI_CONFIG_A 0x0
#define ADMV8818_REG_SPI_CONFIG_B 0x1
#define ADMV8818_REG_CHIPTYPE 0x3
#define ADMV8818_REG_PRODUCT_ID_L 0x4
#define ADMV8818_REG_PRODUCT_ID_H 0x5
#define ADMV8818_REG_FAST_LATCH_POINTER 0x10
#define ADMV8818_REG_FAST_LATCH_STOP 0x11
#define ADMV8818_REG_FAST_LATCH_START 0x12
#define ADMV8818_REG_FAST_LATCH_DIRECTION 0x13
#define ADMV8818_REG_FAST_LATCH_STATE 0x14
#define ADMV8818_REG_WR0_SW 0x20
#define ADMV8818_REG_WR0_FILTER 0x21
#define ADMV8818_REG_WR1_SW 0x22
#define ADMV8818_REG_WR1_FILTER 0x23
#define ADMV8818_REG_WR2_SW 0x24
#define ADMV8818_REG_WR2_FILTER 0x25
#define ADMV8818_REG_WR3_SW 0x26
#define ADMV8818_REG_WR3_FILTER 0x27
#define ADMV8818_REG_WR4_SW 0x28
#define ADMV8818_REG_WR4_FILTER 0x29
#define ADMV8818_REG_LUT0_SW 0x100
#define ADMV8818_REG_LUT0_FILTER 0x101
#define ADMV8818_REG_LUT127_SW 0x1FE
#define ADMV8818_REG_LUT127_FILTER 0x1FF
/* ADMV8818_REG_SPI_CONFIG_A Map */
#define ADMV8818_SOFTRESET_N_MSK BIT(7)
#define ADMV8818_LSB_FIRST_N_MSK BIT(6)
#define ADMV8818_ENDIAN_N_MSK BIT(5)
#define ADMV8818_SDOACTIVE_N_MSK BIT(4)
#define ADMV8818_SDOACTIVE_MSK BIT(3)
#define ADMV8818_ENDIAN_MSK BIT(2)
#define ADMV8818_LSBFIRST_MSK BIT(1)
#define ADMV8818_SOFTRESET_MSK BIT(0)
/* ADMV8818_REG_SPI_CONFIG_B Map */
#define ADMV8818_SINGLE_INSTRUCTION_MSK BIT(7)
#define ADMV8818_CSB_STALL_MSK BIT(6)
#define ADMV8818_MASTER_SLAVE_RB_MSK BIT(5)
#define ADMV8818_MASTER_SLAVE_TRANSFER_MSK BIT(0)
/* ADMV8818_REG_WR0_SW Map */
#define ADMV8818_SW_IN_SET_WR0_MSK BIT(7)
#define ADMV8818_SW_OUT_SET_WR0_MSK BIT(6)
#define ADMV8818_SW_IN_WR0_MSK GENMASK(5, 3)
#define ADMV8818_SW_OUT_WR0_MSK GENMASK(2, 0)
/* ADMV8818_REG_WR0_FILTER Map */
#define ADMV8818_HPF_WR0_MSK GENMASK(7, 4)
#define ADMV8818_LPF_WR0_MSK GENMASK(3, 0)
enum {
ADMV8818_BW_FREQ,
ADMV8818_CENTER_FREQ
};
enum {
ADMV8818_AUTO_MODE,
ADMV8818_MANUAL_MODE,
ADMV8818_BYPASS_MODE,
};
struct admv8818_state {
struct spi_device *spi;
struct regmap *regmap;
struct clk *clkin;
struct notifier_block nb;
/* Protect against concurrent accesses to the device and data content*/
struct mutex lock;
unsigned int filter_mode;
u64 cf_hz;
};
static const unsigned long long freq_range_hpf[4][2] = {
{1750000000ULL, 3550000000ULL},
{3400000000ULL, 7250000000ULL},
{6600000000, 12000000000},
{12500000000, 19900000000}
};
static const unsigned long long freq_range_lpf[4][2] = {
{2050000000ULL, 3850000000ULL},
{3350000000ULL, 7250000000ULL},
{7000000000, 13000000000},
{12550000000, 18500000000}
};
static const struct regmap_config admv8818_regmap_config = {
.reg_bits = 16,
.val_bits = 8,
.read_flag_mask = 0x80,
.max_register = 0x1FF,
};
static const char * const admv8818_modes[] = {
[0] = "auto",
[1] = "manual",
[2] = "bypass"
};
static int __admv8818_hpf_select(struct admv8818_state *st, u64 freq)
{
unsigned int hpf_step = 0, hpf_band = 0, i, j;
u64 freq_step;
int ret;
if (freq < freq_range_hpf[0][0])
goto hpf_write;
if (freq > freq_range_hpf[3][1]) {
hpf_step = 15;
hpf_band = 4;
goto hpf_write;
}
for (i = 0; i < 4; i++) {
freq_step = div_u64((freq_range_hpf[i][1] -
freq_range_hpf[i][0]), 15);
if (freq > freq_range_hpf[i][0] &&
(freq < freq_range_hpf[i][1] + freq_step)) {
hpf_band = i + 1;
for (j = 1; j <= 16; j++) {
if (freq < (freq_range_hpf[i][0] + (freq_step * j))) {
hpf_step = j - 1;
break;
}
}
break;
}
}
/* Close HPF frequency gap between 12 and 12.5 GHz */
if (freq >= 12000 * HZ_PER_MHZ && freq <= 12500 * HZ_PER_MHZ) {
hpf_band = 3;
hpf_step = 15;
}
hpf_write:
ret = regmap_update_bits(st->regmap, ADMV8818_REG_WR0_SW,
ADMV8818_SW_IN_SET_WR0_MSK |
ADMV8818_SW_IN_WR0_MSK,
FIELD_PREP(ADMV8818_SW_IN_SET_WR0_MSK, 1) |
FIELD_PREP(ADMV8818_SW_IN_WR0_MSK, hpf_band));
if (ret)
return ret;
return regmap_update_bits(st->regmap, ADMV8818_REG_WR0_FILTER,
ADMV8818_HPF_WR0_MSK,
FIELD_PREP(ADMV8818_HPF_WR0_MSK, hpf_step));
}
static int admv8818_hpf_select(struct admv8818_state *st, u64 freq)
{
int ret;
mutex_lock(&st->lock);
ret = __admv8818_hpf_select(st, freq);
mutex_unlock(&st->lock);
return ret;
}
static int __admv8818_lpf_select(struct admv8818_state *st, u64 freq)
{
unsigned int lpf_step = 0, lpf_band = 0, i, j;
u64 freq_step;
int ret;
if (freq > freq_range_lpf[3][1])
goto lpf_write;
if (freq < freq_range_lpf[0][0]) {
lpf_band = 1;
goto lpf_write;
}
for (i = 0; i < 4; i++) {
if (freq > freq_range_lpf[i][0] && freq < freq_range_lpf[i][1]) {
lpf_band = i + 1;
freq_step = div_u64((freq_range_lpf[i][1] - freq_range_lpf[i][0]), 15);
for (j = 0; j <= 15; j++) {
if (freq < (freq_range_lpf[i][0] + (freq_step * j))) {
lpf_step = j;
break;
}
}
break;
}
}
lpf_write:
ret = regmap_update_bits(st->regmap, ADMV8818_REG_WR0_SW,
ADMV8818_SW_OUT_SET_WR0_MSK |
ADMV8818_SW_OUT_WR0_MSK,
FIELD_PREP(ADMV8818_SW_OUT_SET_WR0_MSK, 1) |
FIELD_PREP(ADMV8818_SW_OUT_WR0_MSK, lpf_band));
if (ret)
return ret;
return regmap_update_bits(st->regmap, ADMV8818_REG_WR0_FILTER,
ADMV8818_LPF_WR0_MSK,
FIELD_PREP(ADMV8818_LPF_WR0_MSK, lpf_step));
}
static int admv8818_lpf_select(struct admv8818_state *st, u64 freq)
{
int ret;
mutex_lock(&st->lock);
ret = __admv8818_lpf_select(st, freq);
mutex_unlock(&st->lock);
return ret;
}
static int admv8818_rfin_band_select(struct admv8818_state *st)
{
int ret;
st->cf_hz = clk_get_rate(st->clkin);
mutex_lock(&st->lock);
ret = __admv8818_hpf_select(st, st->cf_hz);
if (ret)
goto exit;
ret = __admv8818_lpf_select(st, st->cf_hz);
exit:
mutex_unlock(&st->lock);
return ret;
}
static int __admv8818_read_hpf_freq(struct admv8818_state *st, u64 *hpf_freq)
{
unsigned int data, hpf_band, hpf_state;
int ret;
ret = regmap_read(st->regmap, ADMV8818_REG_WR0_SW, &data);
if (ret)
return ret;
hpf_band = FIELD_GET(ADMV8818_SW_IN_WR0_MSK, data);
if (!hpf_band || hpf_band > 4) {
*hpf_freq = 0;
return ret;
}
ret = regmap_read(st->regmap, ADMV8818_REG_WR0_FILTER, &data);
if (ret)
return ret;
hpf_state = FIELD_GET(ADMV8818_HPF_WR0_MSK, data);
*hpf_freq = div_u64(freq_range_hpf[hpf_band - 1][1] - freq_range_hpf[hpf_band - 1][0], 15);
*hpf_freq = freq_range_hpf[hpf_band - 1][0] + (*hpf_freq * hpf_state);
return ret;
}
static int admv8818_read_hpf_freq(struct admv8818_state *st, u64 *hpf_freq)
{
int ret;
mutex_lock(&st->lock);
ret = __admv8818_read_hpf_freq(st, hpf_freq);
mutex_unlock(&st->lock);
return ret;
}
static int __admv8818_read_lpf_freq(struct admv8818_state *st, u64 *lpf_freq)
{
unsigned int data, lpf_band, lpf_state;
int ret;
ret = regmap_read(st->regmap, ADMV8818_REG_WR0_SW, &data);
if (ret)
return ret;
lpf_band = FIELD_GET(ADMV8818_SW_OUT_WR0_MSK, data);
if (!lpf_band || lpf_band > 4) {
*lpf_freq = 0;
return ret;
}
ret = regmap_read(st->regmap, ADMV8818_REG_WR0_FILTER, &data);
if (ret)
return ret;
lpf_state = FIELD_GET(ADMV8818_LPF_WR0_MSK, data);
*lpf_freq = div_u64(freq_range_lpf[lpf_band - 1][1] - freq_range_lpf[lpf_band - 1][0], 15);
*lpf_freq = freq_range_lpf[lpf_band - 1][0] + (*lpf_freq * lpf_state);
return ret;
}
static int admv8818_read_lpf_freq(struct admv8818_state *st, u64 *lpf_freq)
{
int ret;
mutex_lock(&st->lock);
ret = __admv8818_read_lpf_freq(st, lpf_freq);
mutex_unlock(&st->lock);
return ret;
}
static int admv8818_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long info)
{
struct admv8818_state *st = iio_priv(indio_dev);
u64 freq = ((u64)val2 << 32 | (u32)val);
switch (info) {
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
return admv8818_lpf_select(st, freq);
case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
return admv8818_hpf_select(st, freq);
default:
return -EINVAL;
}
}
static int admv8818_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long info)
{
struct admv8818_state *st = iio_priv(indio_dev);
int ret;
u64 freq;
switch (info) {
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
ret = admv8818_read_lpf_freq(st, &freq);
if (ret)
return ret;
*val = (u32)freq;
*val2 = (u32)(freq >> 32);
return IIO_VAL_INT_64;
case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
ret = admv8818_read_hpf_freq(st, &freq);
if (ret)
return ret;
*val = (u32)freq;
*val2 = (u32)(freq >> 32);
return IIO_VAL_INT_64;
default:
return -EINVAL;
}
}
static int admv8818_reg_access(struct iio_dev *indio_dev,
unsigned int reg,
unsigned int write_val,
unsigned int *read_val)
{
struct admv8818_state *st = iio_priv(indio_dev);
if (read_val)
return regmap_read(st->regmap, reg, read_val);
else
return regmap_write(st->regmap, reg, write_val);
}
static int admv8818_filter_bypass(struct admv8818_state *st)
{
int ret;
mutex_lock(&st->lock);
ret = regmap_update_bits(st->regmap, ADMV8818_REG_WR0_SW,
ADMV8818_SW_IN_SET_WR0_MSK |
ADMV8818_SW_IN_WR0_MSK |
ADMV8818_SW_OUT_SET_WR0_MSK |
ADMV8818_SW_OUT_WR0_MSK,
FIELD_PREP(ADMV8818_SW_IN_SET_WR0_MSK, 1) |
FIELD_PREP(ADMV8818_SW_IN_WR0_MSK, 0) |
FIELD_PREP(ADMV8818_SW_OUT_SET_WR0_MSK, 1) |
FIELD_PREP(ADMV8818_SW_OUT_WR0_MSK, 0));
if (ret)
goto exit;
ret = regmap_update_bits(st->regmap, ADMV8818_REG_WR0_FILTER,
ADMV8818_HPF_WR0_MSK |
ADMV8818_LPF_WR0_MSK,
FIELD_PREP(ADMV8818_HPF_WR0_MSK, 0) |
FIELD_PREP(ADMV8818_LPF_WR0_MSK, 0));
exit:
mutex_unlock(&st->lock);
return ret;
}
static int admv8818_get_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct admv8818_state *st = iio_priv(indio_dev);
return st->filter_mode;
}
static int admv8818_set_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
unsigned int mode)
{
struct admv8818_state *st = iio_priv(indio_dev);
int ret = 0;
if (!st->clkin) {
if (mode == ADMV8818_MANUAL_MODE)
goto set_mode;
if (mode == ADMV8818_BYPASS_MODE) {
ret = admv8818_filter_bypass(st);
if (ret)
return ret;
goto set_mode;
}
return -EINVAL;
}
switch (mode) {
case ADMV8818_AUTO_MODE:
if (st->filter_mode == ADMV8818_AUTO_MODE)
return 0;
ret = clk_prepare_enable(st->clkin);
if (ret)
return ret;
ret = clk_notifier_register(st->clkin, &st->nb);
if (ret) {
clk_disable_unprepare(st->clkin);
return ret;
}
break;
case ADMV8818_MANUAL_MODE:
case ADMV8818_BYPASS_MODE:
if (st->filter_mode == ADMV8818_AUTO_MODE) {
clk_disable_unprepare(st->clkin);
ret = clk_notifier_unregister(st->clkin, &st->nb);
if (ret)
return ret;
}
if (mode == ADMV8818_BYPASS_MODE) {
ret = admv8818_filter_bypass(st);
if (ret)
return ret;
}
break;
default:
return -EINVAL;
}
set_mode:
st->filter_mode = mode;
return ret;
}
static const struct iio_info admv8818_info = {
.write_raw = admv8818_write_raw,
.read_raw = admv8818_read_raw,
.debugfs_reg_access = &admv8818_reg_access,
};
static const struct iio_enum admv8818_mode_enum = {
.items = admv8818_modes,
.num_items = ARRAY_SIZE(admv8818_modes),
.get = admv8818_get_mode,
.set = admv8818_set_mode,
};
static const struct iio_chan_spec_ext_info admv8818_ext_info[] = {
IIO_ENUM("filter_mode", IIO_SHARED_BY_ALL, &admv8818_mode_enum),
IIO_ENUM_AVAILABLE("filter_mode", IIO_SHARED_BY_ALL, &admv8818_mode_enum),
{ },
};
#define ADMV8818_CHAN(_channel) { \
.type = IIO_ALTVOLTAGE, \
.output = 1, \
.indexed = 1, \
.channel = _channel, \
.info_mask_separate = \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | \
BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY) \
}
#define ADMV8818_CHAN_BW_CF(_channel, _admv8818_ext_info) { \
.type = IIO_ALTVOLTAGE, \
.output = 1, \
.indexed = 1, \
.channel = _channel, \
.ext_info = _admv8818_ext_info, \
}
static const struct iio_chan_spec admv8818_channels[] = {
ADMV8818_CHAN(0),
ADMV8818_CHAN_BW_CF(0, admv8818_ext_info),
};
static int admv8818_freq_change(struct notifier_block *nb, unsigned long action, void *data)
{
struct admv8818_state *st = container_of(nb, struct admv8818_state, nb);
if (action == POST_RATE_CHANGE)
return notifier_from_errno(admv8818_rfin_band_select(st));
return NOTIFY_OK;
}
static void admv8818_clk_notifier_unreg(void *data)
{
struct admv8818_state *st = data;
if (st->filter_mode == 0)
clk_notifier_unregister(st->clkin, &st->nb);
}
static void admv8818_clk_disable(void *data)
{
struct admv8818_state *st = data;
if (st->filter_mode == 0)
clk_disable_unprepare(st->clkin);
}
static int admv8818_init(struct admv8818_state *st)
{
int ret;
struct spi_device *spi = st->spi;
unsigned int chip_id;
ret = regmap_update_bits(st->regmap, ADMV8818_REG_SPI_CONFIG_A,
ADMV8818_SOFTRESET_N_MSK |
ADMV8818_SOFTRESET_MSK,
FIELD_PREP(ADMV8818_SOFTRESET_N_MSK, 1) |
FIELD_PREP(ADMV8818_SOFTRESET_MSK, 1));
if (ret) {
dev_err(&spi->dev, "ADMV8818 Soft Reset failed.\n");
return ret;
}
ret = regmap_update_bits(st->regmap, ADMV8818_REG_SPI_CONFIG_A,
ADMV8818_SDOACTIVE_N_MSK |
ADMV8818_SDOACTIVE_MSK,
FIELD_PREP(ADMV8818_SDOACTIVE_N_MSK, 1) |
FIELD_PREP(ADMV8818_SDOACTIVE_MSK, 1));
if (ret) {
dev_err(&spi->dev, "ADMV8818 SDO Enable failed.\n");
return ret;
}
ret = regmap_read(st->regmap, ADMV8818_REG_CHIPTYPE, &chip_id);
if (ret) {
dev_err(&spi->dev, "ADMV8818 Chip ID read failed.\n");
return ret;
}
if (chip_id != 0x1) {
dev_err(&spi->dev, "ADMV8818 Invalid Chip ID.\n");
return -EINVAL;
}
ret = regmap_update_bits(st->regmap, ADMV8818_REG_SPI_CONFIG_B,
ADMV8818_SINGLE_INSTRUCTION_MSK,
FIELD_PREP(ADMV8818_SINGLE_INSTRUCTION_MSK, 1));
if (ret) {
dev_err(&spi->dev, "ADMV8818 Single Instruction failed.\n");
return ret;
}
if (st->clkin)
return admv8818_rfin_band_select(st);
else
return 0;
}
static int admv8818_clk_setup(struct admv8818_state *st)
{
struct spi_device *spi = st->spi;
int ret;
st->clkin = devm_clk_get_optional(&spi->dev, "rf_in");
if (IS_ERR(st->clkin))
return dev_err_probe(&spi->dev, PTR_ERR(st->clkin),
"failed to get the input clock\n");
else if (!st->clkin)
return 0;
ret = clk_prepare_enable(st->clkin);
if (ret)
return ret;
ret = devm_add_action_or_reset(&spi->dev, admv8818_clk_disable, st);
if (ret)
return ret;
st->nb.notifier_call = admv8818_freq_change;
ret = clk_notifier_register(st->clkin, &st->nb);
if (ret < 0)
return ret;
return devm_add_action_or_reset(&spi->dev, admv8818_clk_notifier_unreg, st);
}
static int admv8818_probe(struct spi_device *spi)
{
struct iio_dev *indio_dev;
struct regmap *regmap;
struct admv8818_state *st;
int ret;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
regmap = devm_regmap_init_spi(spi, &admv8818_regmap_config);
if (IS_ERR(regmap))
return PTR_ERR(regmap);
st = iio_priv(indio_dev);
st->regmap = regmap;
indio_dev->info = &admv8818_info;
indio_dev->name = "admv8818";
indio_dev->channels = admv8818_channels;
indio_dev->num_channels = ARRAY_SIZE(admv8818_channels);
st->spi = spi;
ret = admv8818_clk_setup(st);
if (ret)
return ret;
mutex_init(&st->lock);
ret = admv8818_init(st);
if (ret)
return ret;
return devm_iio_device_register(&spi->dev, indio_dev);
}
static const struct spi_device_id admv8818_id[] = {
{ "admv8818", 0 },
{}
};
MODULE_DEVICE_TABLE(spi, admv8818_id);
static const struct of_device_id admv8818_of_match[] = {
{ .compatible = "adi,admv8818" },
{}
};
MODULE_DEVICE_TABLE(of, admv8818_of_match);
static struct spi_driver admv8818_driver = {
.driver = {
.name = "admv8818",
.of_match_table = admv8818_of_match,
},
.probe = admv8818_probe,
.id_table = admv8818_id,
};
module_spi_driver(admv8818_driver);
MODULE_AUTHOR("Antoniu Miclaus <antoniu.miclaus@analog.com");
MODULE_DESCRIPTION("Analog Devices ADMV8818");
MODULE_LICENSE("GPL v2");