| // SPDX-License-Identifier: GPL-2.0 |
| /* Maximum size of each resync request */ |
| #define RESYNC_BLOCK_SIZE (64*1024) |
| #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) |
| |
| /* |
| * Number of guaranteed raid bios in case of extreme VM load: |
| */ |
| #define NR_RAID_BIOS 256 |
| |
| /* when we get a read error on a read-only array, we redirect to another |
| * device without failing the first device, or trying to over-write to |
| * correct the read error. To keep track of bad blocks on a per-bio |
| * level, we store IO_BLOCKED in the appropriate 'bios' pointer |
| */ |
| #define IO_BLOCKED ((struct bio *)1) |
| /* When we successfully write to a known bad-block, we need to remove the |
| * bad-block marking which must be done from process context. So we record |
| * the success by setting devs[n].bio to IO_MADE_GOOD |
| */ |
| #define IO_MADE_GOOD ((struct bio *)2) |
| |
| #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) |
| #define MAX_PLUG_BIO 32 |
| |
| /* for managing resync I/O pages */ |
| struct resync_pages { |
| void *raid_bio; |
| struct page *pages[RESYNC_PAGES]; |
| }; |
| |
| struct raid1_plug_cb { |
| struct blk_plug_cb cb; |
| struct bio_list pending; |
| unsigned int count; |
| }; |
| |
| static void rbio_pool_free(void *rbio, void *data) |
| { |
| kfree(rbio); |
| } |
| |
| static inline int resync_alloc_pages(struct resync_pages *rp, |
| gfp_t gfp_flags) |
| { |
| int i; |
| |
| for (i = 0; i < RESYNC_PAGES; i++) { |
| rp->pages[i] = alloc_page(gfp_flags); |
| if (!rp->pages[i]) |
| goto out_free; |
| } |
| |
| return 0; |
| |
| out_free: |
| while (--i >= 0) |
| put_page(rp->pages[i]); |
| return -ENOMEM; |
| } |
| |
| static inline void resync_free_pages(struct resync_pages *rp) |
| { |
| int i; |
| |
| for (i = 0; i < RESYNC_PAGES; i++) |
| put_page(rp->pages[i]); |
| } |
| |
| static inline void resync_get_all_pages(struct resync_pages *rp) |
| { |
| int i; |
| |
| for (i = 0; i < RESYNC_PAGES; i++) |
| get_page(rp->pages[i]); |
| } |
| |
| static inline struct page *resync_fetch_page(struct resync_pages *rp, |
| unsigned idx) |
| { |
| if (WARN_ON_ONCE(idx >= RESYNC_PAGES)) |
| return NULL; |
| return rp->pages[idx]; |
| } |
| |
| /* |
| * 'strct resync_pages' stores actual pages used for doing the resync |
| * IO, and it is per-bio, so make .bi_private points to it. |
| */ |
| static inline struct resync_pages *get_resync_pages(struct bio *bio) |
| { |
| return bio->bi_private; |
| } |
| |
| /* generally called after bio_reset() for reseting bvec */ |
| static void md_bio_reset_resync_pages(struct bio *bio, struct resync_pages *rp, |
| int size) |
| { |
| int idx = 0; |
| |
| /* initialize bvec table again */ |
| do { |
| struct page *page = resync_fetch_page(rp, idx); |
| int len = min_t(int, size, PAGE_SIZE); |
| |
| if (WARN_ON(!bio_add_page(bio, page, len, 0))) { |
| bio->bi_status = BLK_STS_RESOURCE; |
| bio_endio(bio); |
| return; |
| } |
| |
| size -= len; |
| } while (idx++ < RESYNC_PAGES && size > 0); |
| } |
| |
| |
| static inline void raid1_submit_write(struct bio *bio) |
| { |
| struct md_rdev *rdev = (void *)bio->bi_bdev; |
| |
| bio->bi_next = NULL; |
| bio_set_dev(bio, rdev->bdev); |
| if (test_bit(Faulty, &rdev->flags)) |
| bio_io_error(bio); |
| else if (unlikely(bio_op(bio) == REQ_OP_DISCARD && |
| !bdev_max_discard_sectors(bio->bi_bdev))) |
| /* Just ignore it */ |
| bio_endio(bio); |
| else |
| submit_bio_noacct(bio); |
| } |
| |
| static inline bool raid1_add_bio_to_plug(struct mddev *mddev, struct bio *bio, |
| blk_plug_cb_fn unplug, int copies) |
| { |
| struct raid1_plug_cb *plug = NULL; |
| struct blk_plug_cb *cb; |
| |
| /* |
| * If bitmap is not enabled, it's safe to submit the io directly, and |
| * this can get optimal performance. |
| */ |
| if (!md_bitmap_enabled(mddev->bitmap)) { |
| raid1_submit_write(bio); |
| return true; |
| } |
| |
| cb = blk_check_plugged(unplug, mddev, sizeof(*plug)); |
| if (!cb) |
| return false; |
| |
| plug = container_of(cb, struct raid1_plug_cb, cb); |
| bio_list_add(&plug->pending, bio); |
| if (++plug->count / MAX_PLUG_BIO >= copies) { |
| list_del(&cb->list); |
| cb->callback(cb, false); |
| } |
| |
| |
| return true; |
| } |
| |
| /* |
| * current->bio_list will be set under submit_bio() context, in this case bitmap |
| * io will be added to the list and wait for current io submission to finish, |
| * while current io submission must wait for bitmap io to be done. In order to |
| * avoid such deadlock, submit bitmap io asynchronously. |
| */ |
| static inline void raid1_prepare_flush_writes(struct bitmap *bitmap) |
| { |
| if (current->bio_list) |
| md_bitmap_unplug_async(bitmap); |
| else |
| md_bitmap_unplug(bitmap); |
| } |
| |
| /* |
| * Used by fix_read_error() to decay the per rdev read_errors. |
| * We halve the read error count for every hour that has elapsed |
| * since the last recorded read error. |
| */ |
| static inline void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) |
| { |
| long cur_time_mon; |
| unsigned long hours_since_last; |
| unsigned int read_errors = atomic_read(&rdev->read_errors); |
| |
| cur_time_mon = ktime_get_seconds(); |
| |
| if (rdev->last_read_error == 0) { |
| /* first time we've seen a read error */ |
| rdev->last_read_error = cur_time_mon; |
| return; |
| } |
| |
| hours_since_last = (long)(cur_time_mon - |
| rdev->last_read_error) / 3600; |
| |
| rdev->last_read_error = cur_time_mon; |
| |
| /* |
| * if hours_since_last is > the number of bits in read_errors |
| * just set read errors to 0. We do this to avoid |
| * overflowing the shift of read_errors by hours_since_last. |
| */ |
| if (hours_since_last >= 8 * sizeof(read_errors)) |
| atomic_set(&rdev->read_errors, 0); |
| else |
| atomic_set(&rdev->read_errors, read_errors >> hours_since_last); |
| } |
| |
| static inline bool exceed_read_errors(struct mddev *mddev, struct md_rdev *rdev) |
| { |
| int max_read_errors = atomic_read(&mddev->max_corr_read_errors); |
| int read_errors; |
| |
| check_decay_read_errors(mddev, rdev); |
| read_errors = atomic_inc_return(&rdev->read_errors); |
| if (read_errors > max_read_errors) { |
| pr_notice("md/"RAID_1_10_NAME":%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n", |
| mdname(mddev), rdev->bdev, read_errors, max_read_errors); |
| pr_notice("md/"RAID_1_10_NAME":%s: %pg: Failing raid device\n", |
| mdname(mddev), rdev->bdev); |
| md_error(mddev, rdev); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * raid1_check_read_range() - check a given read range for bad blocks, |
| * available read length is returned; |
| * @rdev: the rdev to read; |
| * @this_sector: read position; |
| * @len: read length; |
| * |
| * helper function for read_balance() |
| * |
| * 1) If there are no bad blocks in the range, @len is returned; |
| * 2) If the range are all bad blocks, 0 is returned; |
| * 3) If there are partial bad blocks: |
| * - If the bad block range starts after @this_sector, the length of first |
| * good region is returned; |
| * - If the bad block range starts before @this_sector, 0 is returned and |
| * the @len is updated to the offset into the region before we get to the |
| * good blocks; |
| */ |
| static inline int raid1_check_read_range(struct md_rdev *rdev, |
| sector_t this_sector, int *len) |
| { |
| sector_t first_bad; |
| int bad_sectors; |
| |
| /* no bad block overlap */ |
| if (!is_badblock(rdev, this_sector, *len, &first_bad, &bad_sectors)) |
| return *len; |
| |
| /* |
| * bad block range starts offset into our range so we can return the |
| * number of sectors before the bad blocks start. |
| */ |
| if (first_bad > this_sector) |
| return first_bad - this_sector; |
| |
| /* read range is fully consumed by bad blocks. */ |
| if (this_sector + *len <= first_bad + bad_sectors) |
| return 0; |
| |
| /* |
| * final case, bad block range starts before or at the start of our |
| * range but does not cover our entire range so we still return 0 but |
| * update the length with the number of sectors before we get to the |
| * good ones. |
| */ |
| *len = first_bad + bad_sectors - this_sector; |
| return 0; |
| } |
| |
| /* |
| * Check if read should choose the first rdev. |
| * |
| * Balance on the whole device if no resync is going on (recovery is ok) or |
| * below the resync window. Otherwise, take the first readable disk. |
| */ |
| static inline bool raid1_should_read_first(struct mddev *mddev, |
| sector_t this_sector, int len) |
| { |
| if ((mddev->recovery_cp < this_sector + len)) |
| return true; |
| |
| if (mddev_is_clustered(mddev) && |
| md_cluster_ops->area_resyncing(mddev, READ, this_sector, |
| this_sector + len)) |
| return true; |
| |
| return false; |
| } |