blob: a5c4b19d71a29f9844b7cc3192bac1f6cb03a6e3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018 Intel Corporation */
#include <linux/pci.h>
#include <linux/delay.h>
#include "igc_mac.h"
#include "igc_hw.h"
/**
* igc_disable_pcie_master - Disables PCI-express master access
* @hw: pointer to the HW structure
*
* Returns 0 (0) if successful, else returns -10
* (-IGC_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
* the master requests to be disabled.
*
* Disables PCI-Express master access and verifies there are no pending
* requests.
*/
s32 igc_disable_pcie_master(struct igc_hw *hw)
{
s32 timeout = MASTER_DISABLE_TIMEOUT;
s32 ret_val = 0;
u32 ctrl;
ctrl = rd32(IGC_CTRL);
ctrl |= IGC_CTRL_GIO_MASTER_DISABLE;
wr32(IGC_CTRL, ctrl);
while (timeout) {
if (!(rd32(IGC_STATUS) &
IGC_STATUS_GIO_MASTER_ENABLE))
break;
usleep_range(2000, 3000);
timeout--;
}
if (!timeout) {
hw_dbg("Master requests are pending.\n");
ret_val = -IGC_ERR_MASTER_REQUESTS_PENDING;
goto out;
}
out:
return ret_val;
}
/**
* igc_init_rx_addrs - Initialize receive addresses
* @hw: pointer to the HW structure
* @rar_count: receive address registers
*
* Setup the receive address registers by setting the base receive address
* register to the devices MAC address and clearing all the other receive
* address registers to 0.
*/
void igc_init_rx_addrs(struct igc_hw *hw, u16 rar_count)
{
u8 mac_addr[ETH_ALEN] = {0};
u32 i;
/* Setup the receive address */
hw_dbg("Programming MAC Address into RAR[0]\n");
hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
/* Zero out the other (rar_entry_count - 1) receive addresses */
hw_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
for (i = 1; i < rar_count; i++)
hw->mac.ops.rar_set(hw, mac_addr, i);
}
/**
* igc_set_fc_watermarks - Set flow control high/low watermarks
* @hw: pointer to the HW structure
*
* Sets the flow control high/low threshold (watermark) registers. If
* flow control XON frame transmission is enabled, then set XON frame
* transmission as well.
*/
static s32 igc_set_fc_watermarks(struct igc_hw *hw)
{
u32 fcrtl = 0, fcrth = 0;
/* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames is not enabled, then these
* registers will be set to 0.
*/
if (hw->fc.current_mode & igc_fc_tx_pause) {
/* We need to set up the Receive Threshold high and low water
* marks as well as (optionally) enabling the transmission of
* XON frames.
*/
fcrtl = hw->fc.low_water;
if (hw->fc.send_xon)
fcrtl |= IGC_FCRTL_XONE;
fcrth = hw->fc.high_water;
}
wr32(IGC_FCRTL, fcrtl);
wr32(IGC_FCRTH, fcrth);
return 0;
}
/**
* igc_setup_link - Setup flow control and link settings
* @hw: pointer to the HW structure
*
* Determines which flow control settings to use, then configures flow
* control. Calls the appropriate media-specific link configuration
* function. Assuming the adapter has a valid link partner, a valid link
* should be established. Assumes the hardware has previously been reset
* and the transmitter and receiver are not enabled.
*/
s32 igc_setup_link(struct igc_hw *hw)
{
s32 ret_val = 0;
/* In the case of the phy reset being blocked, we already have a link.
* We do not need to set it up again.
*/
if (igc_check_reset_block(hw))
goto out;
/* If requested flow control is set to default, set flow control
* to the both 'rx' and 'tx' pause frames.
*/
if (hw->fc.requested_mode == igc_fc_default)
hw->fc.requested_mode = igc_fc_full;
/* We want to save off the original Flow Control configuration just
* in case we get disconnected and then reconnected into a different
* hub or switch with different Flow Control capabilities.
*/
hw->fc.current_mode = hw->fc.requested_mode;
hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
/* Call the necessary media_type subroutine to configure the link. */
ret_val = hw->mac.ops.setup_physical_interface(hw);
if (ret_val)
goto out;
/* Initialize the flow control address, type, and PAUSE timer
* registers to their default values. This is done even if flow
* control is disabled, because it does not hurt anything to
* initialize these registers.
*/
hw_dbg("Initializing the Flow Control address, type and timer regs\n");
wr32(IGC_FCT, FLOW_CONTROL_TYPE);
wr32(IGC_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
wr32(IGC_FCAL, FLOW_CONTROL_ADDRESS_LOW);
wr32(IGC_FCTTV, hw->fc.pause_time);
ret_val = igc_set_fc_watermarks(hw);
out:
return ret_val;
}
/**
* igc_force_mac_fc - Force the MAC's flow control settings
* @hw: pointer to the HW structure
*
* Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
* device control register to reflect the adapter settings. TFCE and RFCE
* need to be explicitly set by software when a copper PHY is used because
* autonegotiation is managed by the PHY rather than the MAC. Software must
* also configure these bits when link is forced on a fiber connection.
*/
s32 igc_force_mac_fc(struct igc_hw *hw)
{
s32 ret_val = 0;
u32 ctrl;
ctrl = rd32(IGC_CTRL);
/* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY
* auto-neg), we have to manually enable/disable transmit an
* receive flow control.
*
* The "Case" statement below enables/disable flow control
* according to the "hw->fc.current_mode" parameter.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause
* frames but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* but we do not receive pause frames).
* 3: Both Rx and TX flow control (symmetric) is enabled.
* other: No other values should be possible at this point.
*/
hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
switch (hw->fc.current_mode) {
case igc_fc_none:
ctrl &= (~(IGC_CTRL_TFCE | IGC_CTRL_RFCE));
break;
case igc_fc_rx_pause:
ctrl &= (~IGC_CTRL_TFCE);
ctrl |= IGC_CTRL_RFCE;
break;
case igc_fc_tx_pause:
ctrl &= (~IGC_CTRL_RFCE);
ctrl |= IGC_CTRL_TFCE;
break;
case igc_fc_full:
ctrl |= (IGC_CTRL_TFCE | IGC_CTRL_RFCE);
break;
default:
hw_dbg("Flow control param set incorrectly\n");
ret_val = -IGC_ERR_CONFIG;
goto out;
}
wr32(IGC_CTRL, ctrl);
out:
return ret_val;
}
/**
* igc_clear_hw_cntrs_base - Clear base hardware counters
* @hw: pointer to the HW structure
*
* Clears the base hardware counters by reading the counter registers.
*/
void igc_clear_hw_cntrs_base(struct igc_hw *hw)
{
rd32(IGC_CRCERRS);
rd32(IGC_MPC);
rd32(IGC_SCC);
rd32(IGC_ECOL);
rd32(IGC_MCC);
rd32(IGC_LATECOL);
rd32(IGC_COLC);
rd32(IGC_RERC);
rd32(IGC_DC);
rd32(IGC_RLEC);
rd32(IGC_XONRXC);
rd32(IGC_XONTXC);
rd32(IGC_XOFFRXC);
rd32(IGC_XOFFTXC);
rd32(IGC_FCRUC);
rd32(IGC_GPRC);
rd32(IGC_BPRC);
rd32(IGC_MPRC);
rd32(IGC_GPTC);
rd32(IGC_GORCL);
rd32(IGC_GORCH);
rd32(IGC_GOTCL);
rd32(IGC_GOTCH);
rd32(IGC_RNBC);
rd32(IGC_RUC);
rd32(IGC_RFC);
rd32(IGC_ROC);
rd32(IGC_RJC);
rd32(IGC_TORL);
rd32(IGC_TORH);
rd32(IGC_TOTL);
rd32(IGC_TOTH);
rd32(IGC_TPR);
rd32(IGC_TPT);
rd32(IGC_MPTC);
rd32(IGC_BPTC);
rd32(IGC_PRC64);
rd32(IGC_PRC127);
rd32(IGC_PRC255);
rd32(IGC_PRC511);
rd32(IGC_PRC1023);
rd32(IGC_PRC1522);
rd32(IGC_PTC64);
rd32(IGC_PTC127);
rd32(IGC_PTC255);
rd32(IGC_PTC511);
rd32(IGC_PTC1023);
rd32(IGC_PTC1522);
rd32(IGC_ALGNERRC);
rd32(IGC_RXERRC);
rd32(IGC_TNCRS);
rd32(IGC_HTDPMC);
rd32(IGC_TSCTC);
rd32(IGC_MGTPRC);
rd32(IGC_MGTPDC);
rd32(IGC_MGTPTC);
rd32(IGC_IAC);
rd32(IGC_RPTHC);
rd32(IGC_TLPIC);
rd32(IGC_RLPIC);
rd32(IGC_HGPTC);
rd32(IGC_RXDMTC);
rd32(IGC_HGORCL);
rd32(IGC_HGORCH);
rd32(IGC_HGOTCL);
rd32(IGC_HGOTCH);
rd32(IGC_LENERRS);
}
/**
* igc_rar_set - Set receive address register
* @hw: pointer to the HW structure
* @addr: pointer to the receive address
* @index: receive address array register
*
* Sets the receive address array register at index to the address passed
* in by addr.
*/
void igc_rar_set(struct igc_hw *hw, u8 *addr, u32 index)
{
u32 rar_low, rar_high;
/* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
rar_low = ((u32)addr[0] |
((u32)addr[1] << 8) |
((u32)addr[2] << 16) | ((u32)addr[3] << 24));
rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
/* If MAC address zero, no need to set the AV bit */
if (rar_low || rar_high)
rar_high |= IGC_RAH_AV;
/* Some bridges will combine consecutive 32-bit writes into
* a single burst write, which will malfunction on some parts.
* The flushes avoid this.
*/
wr32(IGC_RAL(index), rar_low);
wrfl();
wr32(IGC_RAH(index), rar_high);
wrfl();
}
/**
* igc_check_for_copper_link - Check for link (Copper)
* @hw: pointer to the HW structure
*
* Checks to see of the link status of the hardware has changed. If a
* change in link status has been detected, then we read the PHY registers
* to get the current speed/duplex if link exists.
*/
s32 igc_check_for_copper_link(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
bool link = false;
s32 ret_val;
/* We only want to go out to the PHY registers to see if Auto-Neg
* has completed and/or if our link status has changed. The
* get_link_status flag is set upon receiving a Link Status
* Change or Rx Sequence Error interrupt.
*/
if (!mac->get_link_status) {
ret_val = 0;
goto out;
}
/* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
*/
ret_val = igc_phy_has_link(hw, 1, 0, &link);
if (ret_val)
goto out;
if (!link)
goto out; /* No link detected */
mac->get_link_status = false;
/* Check if there was DownShift, must be checked
* immediately after link-up
*/
igc_check_downshift(hw);
/* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
if (!mac->autoneg) {
ret_val = -IGC_ERR_CONFIG;
goto out;
}
/* Auto-Neg is enabled. Auto Speed Detection takes care
* of MAC speed/duplex configuration. So we only need to
* configure Collision Distance in the MAC.
*/
igc_config_collision_dist(hw);
/* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control
* settings because we may have had to re-autoneg with a
* different link partner.
*/
ret_val = igc_config_fc_after_link_up(hw);
if (ret_val)
hw_dbg("Error configuring flow control\n");
out:
/* Now that we are aware of our link settings, we can set the LTR
* thresholds.
*/
ret_val = igc_set_ltr_i225(hw, link);
return ret_val;
}
/**
* igc_config_collision_dist - Configure collision distance
* @hw: pointer to the HW structure
*
* Configures the collision distance to the default value and is used
* during link setup. Currently no func pointer exists and all
* implementations are handled in the generic version of this function.
*/
void igc_config_collision_dist(struct igc_hw *hw)
{
u32 tctl;
tctl = rd32(IGC_TCTL);
tctl &= ~IGC_TCTL_COLD;
tctl |= IGC_COLLISION_DISTANCE << IGC_COLD_SHIFT;
wr32(IGC_TCTL, tctl);
wrfl();
}
/**
* igc_config_fc_after_link_up - Configures flow control after link
* @hw: pointer to the HW structure
*
* Checks the status of auto-negotiation after link up to ensure that the
* speed and duplex were not forced. If the link needed to be forced, then
* flow control needs to be forced also. If auto-negotiation is enabled
* and did not fail, then we configure flow control based on our link
* partner.
*/
s32 igc_config_fc_after_link_up(struct igc_hw *hw)
{
u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
struct igc_mac_info *mac = &hw->mac;
u16 speed, duplex;
s32 ret_val = 0;
/* Check for the case where we have fiber media and auto-neg failed
* so we had to force link. In this case, we need to force the
* configuration of the MAC to match the "fc" parameter.
*/
if (mac->autoneg_failed)
ret_val = igc_force_mac_fc(hw);
if (ret_val) {
hw_dbg("Error forcing flow control settings\n");
goto out;
}
/* Check for the case where we have copper media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
if (mac->autoneg) {
/* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
&mii_status_reg);
if (ret_val)
goto out;
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
&mii_status_reg);
if (ret_val)
goto out;
if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
hw_dbg("Copper PHY and Auto Neg has not completed.\n");
goto out;
}
/* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement
* Register (Address 4) and the Auto_Negotiation Base
* Page Ability Register (Address 5) to determine how
* flow control was negotiated.
*/
ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
&mii_nway_adv_reg);
if (ret_val)
goto out;
ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
&mii_nway_lp_ability_reg);
if (ret_val)
goto out;
/* Two bits in the Auto Negotiation Advertisement Register
* (Address 4) and two bits in the Auto Negotiation Base
* Page Ability Register (Address 5) determine flow control
* for both the PHY and the link partner. The following
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
* 1999, describes these PAUSE resolution bits and how flow
* control is determined based upon these settings.
* NOTE: DC = Don't Care
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
*-------|---------|-------|---------|--------------------
* 0 | 0 | DC | DC | igc_fc_none
* 0 | 1 | 0 | DC | igc_fc_none
* 0 | 1 | 1 | 0 | igc_fc_none
* 0 | 1 | 1 | 1 | igc_fc_tx_pause
* 1 | 0 | 0 | DC | igc_fc_none
* 1 | DC | 1 | DC | igc_fc_full
* 1 | 1 | 0 | 0 | igc_fc_none
* 1 | 1 | 0 | 1 | igc_fc_rx_pause
*
* Are both PAUSE bits set to 1? If so, this implies
* Symmetric Flow Control is enabled at both ends. The
* ASM_DIR bits are irrelevant per the spec.
*
* For Symmetric Flow Control:
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | DC | 1 | DC | IGC_fc_full
*
*/
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
/* Now we need to check if the user selected RX ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise RX
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->fc.requested_mode == igc_fc_full) {
hw->fc.current_mode = igc_fc_full;
hw_dbg("Flow Control = FULL.\n");
} else {
hw->fc.current_mode = igc_fc_rx_pause;
hw_dbg("Flow Control = RX PAUSE frames only.\n");
}
}
/* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 0 | 1 | 1 | 1 | igc_fc_tx_pause
*/
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc.current_mode = igc_fc_tx_pause;
hw_dbg("Flow Control = TX PAUSE frames only.\n");
}
/* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | 1 | 0 | 1 | igc_fc_rx_pause
*/
else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc.current_mode = igc_fc_rx_pause;
hw_dbg("Flow Control = RX PAUSE frames only.\n");
}
/* Per the IEEE spec, at this point flow control should be
* disabled. However, we want to consider that we could
* be connected to a legacy switch that doesn't advertise
* desired flow control, but can be forced on the link
* partner. So if we advertised no flow control, that is
* what we will resolve to. If we advertised some kind of
* receive capability (Rx Pause Only or Full Flow Control)
* and the link partner advertised none, we will configure
* ourselves to enable Rx Flow Control only. We can do
* this safely for two reasons: If the link partner really
* didn't want flow control enabled, and we enable Rx, no
* harm done since we won't be receiving any PAUSE frames
* anyway. If the intent on the link partner was to have
* flow control enabled, then by us enabling RX only, we
* can at least receive pause frames and process them.
* This is a good idea because in most cases, since we are
* predominantly a server NIC, more times than not we will
* be asked to delay transmission of packets than asking
* our link partner to pause transmission of frames.
*/
else if ((hw->fc.requested_mode == igc_fc_none) ||
(hw->fc.requested_mode == igc_fc_tx_pause) ||
(hw->fc.strict_ieee)) {
hw->fc.current_mode = igc_fc_none;
hw_dbg("Flow Control = NONE.\n");
} else {
hw->fc.current_mode = igc_fc_rx_pause;
hw_dbg("Flow Control = RX PAUSE frames only.\n");
}
/* Now we need to do one last check... If we auto-
* negotiated to HALF DUPLEX, flow control should not be
* enabled per IEEE 802.3 spec.
*/
ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
if (ret_val) {
hw_dbg("Error getting link speed and duplex\n");
goto out;
}
if (duplex == HALF_DUPLEX)
hw->fc.current_mode = igc_fc_none;
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = igc_force_mac_fc(hw);
if (ret_val) {
hw_dbg("Error forcing flow control settings\n");
goto out;
}
}
out:
return ret_val;
}
/**
* igc_get_auto_rd_done - Check for auto read completion
* @hw: pointer to the HW structure
*
* Check EEPROM for Auto Read done bit.
*/
s32 igc_get_auto_rd_done(struct igc_hw *hw)
{
s32 ret_val = 0;
s32 i = 0;
while (i < AUTO_READ_DONE_TIMEOUT) {
if (rd32(IGC_EECD) & IGC_EECD_AUTO_RD)
break;
usleep_range(1000, 2000);
i++;
}
if (i == AUTO_READ_DONE_TIMEOUT) {
hw_dbg("Auto read by HW from NVM has not completed.\n");
ret_val = -IGC_ERR_RESET;
goto out;
}
out:
return ret_val;
}
/**
* igc_get_speed_and_duplex_copper - Retrieve current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
*
* Read the status register for the current speed/duplex and store the current
* speed and duplex for copper connections.
*/
s32 igc_get_speed_and_duplex_copper(struct igc_hw *hw, u16 *speed,
u16 *duplex)
{
u32 status;
status = rd32(IGC_STATUS);
if (status & IGC_STATUS_SPEED_1000) {
/* For I225, STATUS will indicate 1G speed in both 1 Gbps
* and 2.5 Gbps link modes. An additional bit is used
* to differentiate between 1 Gbps and 2.5 Gbps.
*/
if (hw->mac.type == igc_i225 &&
(status & IGC_STATUS_SPEED_2500)) {
*speed = SPEED_2500;
hw_dbg("2500 Mbs, ");
} else {
*speed = SPEED_1000;
hw_dbg("1000 Mbs, ");
}
} else if (status & IGC_STATUS_SPEED_100) {
*speed = SPEED_100;
hw_dbg("100 Mbs, ");
} else {
*speed = SPEED_10;
hw_dbg("10 Mbs, ");
}
if (status & IGC_STATUS_FD) {
*duplex = FULL_DUPLEX;
hw_dbg("Full Duplex\n");
} else {
*duplex = HALF_DUPLEX;
hw_dbg("Half Duplex\n");
}
return 0;
}
/**
* igc_put_hw_semaphore - Release hardware semaphore
* @hw: pointer to the HW structure
*
* Release hardware semaphore used to access the PHY or NVM
*/
void igc_put_hw_semaphore(struct igc_hw *hw)
{
u32 swsm;
swsm = rd32(IGC_SWSM);
swsm &= ~(IGC_SWSM_SMBI | IGC_SWSM_SWESMBI);
wr32(IGC_SWSM, swsm);
}
/**
* igc_enable_mng_pass_thru - Enable processing of ARP's
* @hw: pointer to the HW structure
*
* Verifies the hardware needs to leave interface enabled so that frames can
* be directed to and from the management interface.
*/
bool igc_enable_mng_pass_thru(struct igc_hw *hw)
{
bool ret_val = false;
u32 fwsm, factps;
u32 manc;
if (!hw->mac.asf_firmware_present)
goto out;
manc = rd32(IGC_MANC);
if (!(manc & IGC_MANC_RCV_TCO_EN))
goto out;
if (hw->mac.arc_subsystem_valid) {
fwsm = rd32(IGC_FWSM);
factps = rd32(IGC_FACTPS);
if (!(factps & IGC_FACTPS_MNGCG) &&
((fwsm & IGC_FWSM_MODE_MASK) ==
(igc_mng_mode_pt << IGC_FWSM_MODE_SHIFT))) {
ret_val = true;
goto out;
}
} else {
if ((manc & IGC_MANC_SMBUS_EN) &&
!(manc & IGC_MANC_ASF_EN)) {
ret_val = true;
goto out;
}
}
out:
return ret_val;
}
/**
* igc_hash_mc_addr - Generate a multicast hash value
* @hw: pointer to the HW structure
* @mc_addr: pointer to a multicast address
*
* Generates a multicast address hash value which is used to determine
* the multicast filter table array address and new table value. See
* igc_mta_set()
**/
static u32 igc_hash_mc_addr(struct igc_hw *hw, u8 *mc_addr)
{
u32 hash_value, hash_mask;
u8 bit_shift = 0;
/* Register count multiplied by bits per register */
hash_mask = (hw->mac.mta_reg_count * 32) - 1;
/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
* where 0xFF would still fall within the hash mask.
*/
while (hash_mask >> bit_shift != 0xFF)
bit_shift++;
/* The portion of the address that is used for the hash table
* is determined by the mc_filter_type setting.
* The algorithm is such that there is a total of 8 bits of shifting.
* The bit_shift for a mc_filter_type of 0 represents the number of
* left-shifts where the MSB of mc_addr[5] would still fall within
* the hash_mask. Case 0 does this exactly. Since there are a total
* of 8 bits of shifting, then mc_addr[4] will shift right the
* remaining number of bits. Thus 8 - bit_shift. The rest of the
* cases are a variation of this algorithm...essentially raising the
* number of bits to shift mc_addr[5] left, while still keeping the
* 8-bit shifting total.
*
* For example, given the following Destination MAC Address and an
* MTA register count of 128 (thus a 4096-bit vector and 0xFFF mask),
* we can see that the bit_shift for case 0 is 4. These are the hash
* values resulting from each mc_filter_type...
* [0] [1] [2] [3] [4] [5]
* 01 AA 00 12 34 56
* LSB MSB
*
* case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
* case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
* case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
* case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
*/
switch (hw->mac.mc_filter_type) {
default:
case 0:
break;
case 1:
bit_shift += 1;
break;
case 2:
bit_shift += 2;
break;
case 3:
bit_shift += 4;
break;
}
hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
(((u16)mc_addr[5]) << bit_shift)));
return hash_value;
}
/**
* igc_update_mc_addr_list - Update Multicast addresses
* @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program
*
* Updates entire Multicast Table Array.
* The caller must have a packed mc_addr_list of multicast addresses.
**/
void igc_update_mc_addr_list(struct igc_hw *hw,
u8 *mc_addr_list, u32 mc_addr_count)
{
u32 hash_value, hash_bit, hash_reg;
int i;
/* clear mta_shadow */
memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
/* update mta_shadow from mc_addr_list */
for (i = 0; (u32)i < mc_addr_count; i++) {
hash_value = igc_hash_mc_addr(hw, mc_addr_list);
hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
hash_bit = hash_value & 0x1F;
hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
mc_addr_list += ETH_ALEN;
}
/* replace the entire MTA table */
for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
array_wr32(IGC_MTA, i, hw->mac.mta_shadow[i]);
wrfl();
}