| /* |
| * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. |
| * Copyright (c) 2004 Infinicon Corporation. All rights reserved. |
| * Copyright (c) 2004 Intel Corporation. All rights reserved. |
| * Copyright (c) 2004 Topspin Corporation. All rights reserved. |
| * Copyright (c) 2004 Voltaire Corporation. All rights reserved. |
| * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. |
| * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/err.h> |
| #include <linux/export.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/in.h> |
| #include <linux/in6.h> |
| #include <net/addrconf.h> |
| #include <linux/security.h> |
| |
| #include <rdma/ib_verbs.h> |
| #include <rdma/ib_cache.h> |
| #include <rdma/ib_addr.h> |
| #include <rdma/rw.h> |
| |
| #include "core_priv.h" |
| |
| static const char * const ib_events[] = { |
| [IB_EVENT_CQ_ERR] = "CQ error", |
| [IB_EVENT_QP_FATAL] = "QP fatal error", |
| [IB_EVENT_QP_REQ_ERR] = "QP request error", |
| [IB_EVENT_QP_ACCESS_ERR] = "QP access error", |
| [IB_EVENT_COMM_EST] = "communication established", |
| [IB_EVENT_SQ_DRAINED] = "send queue drained", |
| [IB_EVENT_PATH_MIG] = "path migration successful", |
| [IB_EVENT_PATH_MIG_ERR] = "path migration error", |
| [IB_EVENT_DEVICE_FATAL] = "device fatal error", |
| [IB_EVENT_PORT_ACTIVE] = "port active", |
| [IB_EVENT_PORT_ERR] = "port error", |
| [IB_EVENT_LID_CHANGE] = "LID change", |
| [IB_EVENT_PKEY_CHANGE] = "P_key change", |
| [IB_EVENT_SM_CHANGE] = "SM change", |
| [IB_EVENT_SRQ_ERR] = "SRQ error", |
| [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", |
| [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", |
| [IB_EVENT_CLIENT_REREGISTER] = "client reregister", |
| [IB_EVENT_GID_CHANGE] = "GID changed", |
| }; |
| |
| const char *__attribute_const__ ib_event_msg(enum ib_event_type event) |
| { |
| size_t index = event; |
| |
| return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? |
| ib_events[index] : "unrecognized event"; |
| } |
| EXPORT_SYMBOL(ib_event_msg); |
| |
| static const char * const wc_statuses[] = { |
| [IB_WC_SUCCESS] = "success", |
| [IB_WC_LOC_LEN_ERR] = "local length error", |
| [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", |
| [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", |
| [IB_WC_LOC_PROT_ERR] = "local protection error", |
| [IB_WC_WR_FLUSH_ERR] = "WR flushed", |
| [IB_WC_MW_BIND_ERR] = "memory management operation error", |
| [IB_WC_BAD_RESP_ERR] = "bad response error", |
| [IB_WC_LOC_ACCESS_ERR] = "local access error", |
| [IB_WC_REM_INV_REQ_ERR] = "invalid request error", |
| [IB_WC_REM_ACCESS_ERR] = "remote access error", |
| [IB_WC_REM_OP_ERR] = "remote operation error", |
| [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", |
| [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", |
| [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", |
| [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", |
| [IB_WC_REM_ABORT_ERR] = "operation aborted", |
| [IB_WC_INV_EECN_ERR] = "invalid EE context number", |
| [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", |
| [IB_WC_FATAL_ERR] = "fatal error", |
| [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", |
| [IB_WC_GENERAL_ERR] = "general error", |
| }; |
| |
| const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) |
| { |
| size_t index = status; |
| |
| return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? |
| wc_statuses[index] : "unrecognized status"; |
| } |
| EXPORT_SYMBOL(ib_wc_status_msg); |
| |
| __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) |
| { |
| switch (rate) { |
| case IB_RATE_2_5_GBPS: return 1; |
| case IB_RATE_5_GBPS: return 2; |
| case IB_RATE_10_GBPS: return 4; |
| case IB_RATE_20_GBPS: return 8; |
| case IB_RATE_30_GBPS: return 12; |
| case IB_RATE_40_GBPS: return 16; |
| case IB_RATE_60_GBPS: return 24; |
| case IB_RATE_80_GBPS: return 32; |
| case IB_RATE_120_GBPS: return 48; |
| default: return -1; |
| } |
| } |
| EXPORT_SYMBOL(ib_rate_to_mult); |
| |
| __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) |
| { |
| switch (mult) { |
| case 1: return IB_RATE_2_5_GBPS; |
| case 2: return IB_RATE_5_GBPS; |
| case 4: return IB_RATE_10_GBPS; |
| case 8: return IB_RATE_20_GBPS; |
| case 12: return IB_RATE_30_GBPS; |
| case 16: return IB_RATE_40_GBPS; |
| case 24: return IB_RATE_60_GBPS; |
| case 32: return IB_RATE_80_GBPS; |
| case 48: return IB_RATE_120_GBPS; |
| default: return IB_RATE_PORT_CURRENT; |
| } |
| } |
| EXPORT_SYMBOL(mult_to_ib_rate); |
| |
| __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) |
| { |
| switch (rate) { |
| case IB_RATE_2_5_GBPS: return 2500; |
| case IB_RATE_5_GBPS: return 5000; |
| case IB_RATE_10_GBPS: return 10000; |
| case IB_RATE_20_GBPS: return 20000; |
| case IB_RATE_30_GBPS: return 30000; |
| case IB_RATE_40_GBPS: return 40000; |
| case IB_RATE_60_GBPS: return 60000; |
| case IB_RATE_80_GBPS: return 80000; |
| case IB_RATE_120_GBPS: return 120000; |
| case IB_RATE_14_GBPS: return 14062; |
| case IB_RATE_56_GBPS: return 56250; |
| case IB_RATE_112_GBPS: return 112500; |
| case IB_RATE_168_GBPS: return 168750; |
| case IB_RATE_25_GBPS: return 25781; |
| case IB_RATE_100_GBPS: return 103125; |
| case IB_RATE_200_GBPS: return 206250; |
| case IB_RATE_300_GBPS: return 309375; |
| default: return -1; |
| } |
| } |
| EXPORT_SYMBOL(ib_rate_to_mbps); |
| |
| __attribute_const__ enum rdma_transport_type |
| rdma_node_get_transport(enum rdma_node_type node_type) |
| { |
| switch (node_type) { |
| case RDMA_NODE_IB_CA: |
| case RDMA_NODE_IB_SWITCH: |
| case RDMA_NODE_IB_ROUTER: |
| return RDMA_TRANSPORT_IB; |
| case RDMA_NODE_RNIC: |
| return RDMA_TRANSPORT_IWARP; |
| case RDMA_NODE_USNIC: |
| return RDMA_TRANSPORT_USNIC; |
| case RDMA_NODE_USNIC_UDP: |
| return RDMA_TRANSPORT_USNIC_UDP; |
| default: |
| BUG(); |
| return 0; |
| } |
| } |
| EXPORT_SYMBOL(rdma_node_get_transport); |
| |
| enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num) |
| { |
| if (device->get_link_layer) |
| return device->get_link_layer(device, port_num); |
| |
| switch (rdma_node_get_transport(device->node_type)) { |
| case RDMA_TRANSPORT_IB: |
| return IB_LINK_LAYER_INFINIBAND; |
| case RDMA_TRANSPORT_IWARP: |
| case RDMA_TRANSPORT_USNIC: |
| case RDMA_TRANSPORT_USNIC_UDP: |
| return IB_LINK_LAYER_ETHERNET; |
| default: |
| return IB_LINK_LAYER_UNSPECIFIED; |
| } |
| } |
| EXPORT_SYMBOL(rdma_port_get_link_layer); |
| |
| /* Protection domains */ |
| |
| /** |
| * ib_alloc_pd - Allocates an unused protection domain. |
| * @device: The device on which to allocate the protection domain. |
| * |
| * A protection domain object provides an association between QPs, shared |
| * receive queues, address handles, memory regions, and memory windows. |
| * |
| * Every PD has a local_dma_lkey which can be used as the lkey value for local |
| * memory operations. |
| */ |
| struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, |
| const char *caller) |
| { |
| struct ib_pd *pd; |
| int mr_access_flags = 0; |
| |
| pd = device->alloc_pd(device, NULL, NULL); |
| if (IS_ERR(pd)) |
| return pd; |
| |
| pd->device = device; |
| pd->uobject = NULL; |
| pd->__internal_mr = NULL; |
| atomic_set(&pd->usecnt, 0); |
| pd->flags = flags; |
| |
| if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) |
| pd->local_dma_lkey = device->local_dma_lkey; |
| else |
| mr_access_flags |= IB_ACCESS_LOCAL_WRITE; |
| |
| if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { |
| pr_warn("%s: enabling unsafe global rkey\n", caller); |
| mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; |
| } |
| |
| if (mr_access_flags) { |
| struct ib_mr *mr; |
| |
| mr = pd->device->get_dma_mr(pd, mr_access_flags); |
| if (IS_ERR(mr)) { |
| ib_dealloc_pd(pd); |
| return ERR_CAST(mr); |
| } |
| |
| mr->device = pd->device; |
| mr->pd = pd; |
| mr->uobject = NULL; |
| mr->need_inval = false; |
| |
| pd->__internal_mr = mr; |
| |
| if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) |
| pd->local_dma_lkey = pd->__internal_mr->lkey; |
| |
| if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) |
| pd->unsafe_global_rkey = pd->__internal_mr->rkey; |
| } |
| |
| return pd; |
| } |
| EXPORT_SYMBOL(__ib_alloc_pd); |
| |
| /** |
| * ib_dealloc_pd - Deallocates a protection domain. |
| * @pd: The protection domain to deallocate. |
| * |
| * It is an error to call this function while any resources in the pd still |
| * exist. The caller is responsible to synchronously destroy them and |
| * guarantee no new allocations will happen. |
| */ |
| void ib_dealloc_pd(struct ib_pd *pd) |
| { |
| int ret; |
| |
| if (pd->__internal_mr) { |
| ret = pd->device->dereg_mr(pd->__internal_mr); |
| WARN_ON(ret); |
| pd->__internal_mr = NULL; |
| } |
| |
| /* uverbs manipulates usecnt with proper locking, while the kabi |
| requires the caller to guarantee we can't race here. */ |
| WARN_ON(atomic_read(&pd->usecnt)); |
| |
| /* Making delalloc_pd a void return is a WIP, no driver should return |
| an error here. */ |
| ret = pd->device->dealloc_pd(pd); |
| WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd"); |
| } |
| EXPORT_SYMBOL(ib_dealloc_pd); |
| |
| /* Address handles */ |
| |
| struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr) |
| { |
| struct ib_ah *ah; |
| |
| ah = pd->device->create_ah(pd, ah_attr, NULL); |
| |
| if (!IS_ERR(ah)) { |
| ah->device = pd->device; |
| ah->pd = pd; |
| ah->uobject = NULL; |
| ah->type = ah_attr->type; |
| atomic_inc(&pd->usecnt); |
| } |
| |
| return ah; |
| } |
| EXPORT_SYMBOL(rdma_create_ah); |
| |
| int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) |
| { |
| const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; |
| struct iphdr ip4h_checked; |
| const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; |
| |
| /* If it's IPv6, the version must be 6, otherwise, the first |
| * 20 bytes (before the IPv4 header) are garbled. |
| */ |
| if (ip6h->version != 6) |
| return (ip4h->version == 4) ? 4 : 0; |
| /* version may be 6 or 4 because the first 20 bytes could be garbled */ |
| |
| /* RoCE v2 requires no options, thus header length |
| * must be 5 words |
| */ |
| if (ip4h->ihl != 5) |
| return 6; |
| |
| /* Verify checksum. |
| * We can't write on scattered buffers so we need to copy to |
| * temp buffer. |
| */ |
| memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); |
| ip4h_checked.check = 0; |
| ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); |
| /* if IPv4 header checksum is OK, believe it */ |
| if (ip4h->check == ip4h_checked.check) |
| return 4; |
| return 6; |
| } |
| EXPORT_SYMBOL(ib_get_rdma_header_version); |
| |
| static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, |
| u8 port_num, |
| const struct ib_grh *grh) |
| { |
| int grh_version; |
| |
| if (rdma_protocol_ib(device, port_num)) |
| return RDMA_NETWORK_IB; |
| |
| grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); |
| |
| if (grh_version == 4) |
| return RDMA_NETWORK_IPV4; |
| |
| if (grh->next_hdr == IPPROTO_UDP) |
| return RDMA_NETWORK_IPV6; |
| |
| return RDMA_NETWORK_ROCE_V1; |
| } |
| |
| struct find_gid_index_context { |
| u16 vlan_id; |
| enum ib_gid_type gid_type; |
| }; |
| |
| static bool find_gid_index(const union ib_gid *gid, |
| const struct ib_gid_attr *gid_attr, |
| void *context) |
| { |
| struct find_gid_index_context *ctx = |
| (struct find_gid_index_context *)context; |
| |
| if (ctx->gid_type != gid_attr->gid_type) |
| return false; |
| |
| if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) || |
| (is_vlan_dev(gid_attr->ndev) && |
| vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id)) |
| return false; |
| |
| return true; |
| } |
| |
| static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num, |
| u16 vlan_id, const union ib_gid *sgid, |
| enum ib_gid_type gid_type, |
| u16 *gid_index) |
| { |
| struct find_gid_index_context context = {.vlan_id = vlan_id, |
| .gid_type = gid_type}; |
| |
| return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index, |
| &context, gid_index); |
| } |
| |
| int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, |
| enum rdma_network_type net_type, |
| union ib_gid *sgid, union ib_gid *dgid) |
| { |
| struct sockaddr_in src_in; |
| struct sockaddr_in dst_in; |
| __be32 src_saddr, dst_saddr; |
| |
| if (!sgid || !dgid) |
| return -EINVAL; |
| |
| if (net_type == RDMA_NETWORK_IPV4) { |
| memcpy(&src_in.sin_addr.s_addr, |
| &hdr->roce4grh.saddr, 4); |
| memcpy(&dst_in.sin_addr.s_addr, |
| &hdr->roce4grh.daddr, 4); |
| src_saddr = src_in.sin_addr.s_addr; |
| dst_saddr = dst_in.sin_addr.s_addr; |
| ipv6_addr_set_v4mapped(src_saddr, |
| (struct in6_addr *)sgid); |
| ipv6_addr_set_v4mapped(dst_saddr, |
| (struct in6_addr *)dgid); |
| return 0; |
| } else if (net_type == RDMA_NETWORK_IPV6 || |
| net_type == RDMA_NETWORK_IB) { |
| *dgid = hdr->ibgrh.dgid; |
| *sgid = hdr->ibgrh.sgid; |
| return 0; |
| } else { |
| return -EINVAL; |
| } |
| } |
| EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); |
| |
| /* |
| * This function creates ah from the incoming packet. |
| * Incoming packet has dgid of the receiver node on which this code is |
| * getting executed and, sgid contains the GID of the sender. |
| * |
| * When resolving mac address of destination, the arrived dgid is used |
| * as sgid and, sgid is used as dgid because sgid contains destinations |
| * GID whom to respond to. |
| * |
| * This is why when calling rdma_addr_find_l2_eth_by_grh() function, the |
| * position of arguments dgid and sgid do not match the order of the |
| * parameters. |
| */ |
| int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, |
| const struct ib_wc *wc, const struct ib_grh *grh, |
| struct rdma_ah_attr *ah_attr) |
| { |
| u32 flow_class; |
| u16 gid_index; |
| int ret; |
| enum rdma_network_type net_type = RDMA_NETWORK_IB; |
| enum ib_gid_type gid_type = IB_GID_TYPE_IB; |
| int hoplimit = 0xff; |
| union ib_gid dgid; |
| union ib_gid sgid; |
| |
| memset(ah_attr, 0, sizeof *ah_attr); |
| ah_attr->type = rdma_ah_find_type(device, port_num); |
| if (rdma_cap_eth_ah(device, port_num)) { |
| if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) |
| net_type = wc->network_hdr_type; |
| else |
| net_type = ib_get_net_type_by_grh(device, port_num, grh); |
| gid_type = ib_network_to_gid_type(net_type); |
| } |
| ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, |
| &sgid, &dgid); |
| if (ret) |
| return ret; |
| |
| if (rdma_protocol_roce(device, port_num)) { |
| int if_index = 0; |
| u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? |
| wc->vlan_id : 0xffff; |
| struct net_device *idev; |
| struct net_device *resolved_dev; |
| |
| if (!(wc->wc_flags & IB_WC_GRH)) |
| return -EPROTOTYPE; |
| |
| if (!device->get_netdev) |
| return -EOPNOTSUPP; |
| |
| idev = device->get_netdev(device, port_num); |
| if (!idev) |
| return -ENODEV; |
| |
| ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, |
| ah_attr->roce.dmac, |
| wc->wc_flags & IB_WC_WITH_VLAN ? |
| NULL : &vlan_id, |
| &if_index, &hoplimit); |
| if (ret) { |
| dev_put(idev); |
| return ret; |
| } |
| |
| resolved_dev = dev_get_by_index(&init_net, if_index); |
| rcu_read_lock(); |
| if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev, |
| resolved_dev)) |
| ret = -EHOSTUNREACH; |
| rcu_read_unlock(); |
| dev_put(idev); |
| dev_put(resolved_dev); |
| if (ret) |
| return ret; |
| |
| ret = get_sgid_index_from_eth(device, port_num, vlan_id, |
| &dgid, gid_type, &gid_index); |
| if (ret) |
| return ret; |
| } |
| |
| rdma_ah_set_dlid(ah_attr, wc->slid); |
| rdma_ah_set_sl(ah_attr, wc->sl); |
| rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); |
| rdma_ah_set_port_num(ah_attr, port_num); |
| |
| if (wc->wc_flags & IB_WC_GRH) { |
| if (!rdma_cap_eth_ah(device, port_num)) { |
| if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { |
| ret = ib_find_cached_gid_by_port(device, &dgid, |
| IB_GID_TYPE_IB, |
| port_num, NULL, |
| &gid_index); |
| if (ret) |
| return ret; |
| } else { |
| gid_index = 0; |
| } |
| } |
| |
| flow_class = be32_to_cpu(grh->version_tclass_flow); |
| rdma_ah_set_grh(ah_attr, &sgid, |
| flow_class & 0xFFFFF, |
| (u8)gid_index, hoplimit, |
| (flow_class >> 20) & 0xFF); |
| |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(ib_init_ah_from_wc); |
| |
| struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, |
| const struct ib_grh *grh, u8 port_num) |
| { |
| struct rdma_ah_attr ah_attr; |
| int ret; |
| |
| ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| return rdma_create_ah(pd, &ah_attr); |
| } |
| EXPORT_SYMBOL(ib_create_ah_from_wc); |
| |
| int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) |
| { |
| if (ah->type != ah_attr->type) |
| return -EINVAL; |
| |
| return ah->device->modify_ah ? |
| ah->device->modify_ah(ah, ah_attr) : |
| -ENOSYS; |
| } |
| EXPORT_SYMBOL(rdma_modify_ah); |
| |
| int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) |
| { |
| return ah->device->query_ah ? |
| ah->device->query_ah(ah, ah_attr) : |
| -ENOSYS; |
| } |
| EXPORT_SYMBOL(rdma_query_ah); |
| |
| int rdma_destroy_ah(struct ib_ah *ah) |
| { |
| struct ib_pd *pd; |
| int ret; |
| |
| pd = ah->pd; |
| ret = ah->device->destroy_ah(ah); |
| if (!ret) |
| atomic_dec(&pd->usecnt); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_destroy_ah); |
| |
| /* Shared receive queues */ |
| |
| struct ib_srq *ib_create_srq(struct ib_pd *pd, |
| struct ib_srq_init_attr *srq_init_attr) |
| { |
| struct ib_srq *srq; |
| |
| if (!pd->device->create_srq) |
| return ERR_PTR(-ENOSYS); |
| |
| srq = pd->device->create_srq(pd, srq_init_attr, NULL); |
| |
| if (!IS_ERR(srq)) { |
| srq->device = pd->device; |
| srq->pd = pd; |
| srq->uobject = NULL; |
| srq->event_handler = srq_init_attr->event_handler; |
| srq->srq_context = srq_init_attr->srq_context; |
| srq->srq_type = srq_init_attr->srq_type; |
| if (srq->srq_type == IB_SRQT_XRC) { |
| srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; |
| srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq; |
| atomic_inc(&srq->ext.xrc.xrcd->usecnt); |
| atomic_inc(&srq->ext.xrc.cq->usecnt); |
| } |
| atomic_inc(&pd->usecnt); |
| atomic_set(&srq->usecnt, 0); |
| } |
| |
| return srq; |
| } |
| EXPORT_SYMBOL(ib_create_srq); |
| |
| int ib_modify_srq(struct ib_srq *srq, |
| struct ib_srq_attr *srq_attr, |
| enum ib_srq_attr_mask srq_attr_mask) |
| { |
| return srq->device->modify_srq ? |
| srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) : |
| -ENOSYS; |
| } |
| EXPORT_SYMBOL(ib_modify_srq); |
| |
| int ib_query_srq(struct ib_srq *srq, |
| struct ib_srq_attr *srq_attr) |
| { |
| return srq->device->query_srq ? |
| srq->device->query_srq(srq, srq_attr) : -ENOSYS; |
| } |
| EXPORT_SYMBOL(ib_query_srq); |
| |
| int ib_destroy_srq(struct ib_srq *srq) |
| { |
| struct ib_pd *pd; |
| enum ib_srq_type srq_type; |
| struct ib_xrcd *uninitialized_var(xrcd); |
| struct ib_cq *uninitialized_var(cq); |
| int ret; |
| |
| if (atomic_read(&srq->usecnt)) |
| return -EBUSY; |
| |
| pd = srq->pd; |
| srq_type = srq->srq_type; |
| if (srq_type == IB_SRQT_XRC) { |
| xrcd = srq->ext.xrc.xrcd; |
| cq = srq->ext.xrc.cq; |
| } |
| |
| ret = srq->device->destroy_srq(srq); |
| if (!ret) { |
| atomic_dec(&pd->usecnt); |
| if (srq_type == IB_SRQT_XRC) { |
| atomic_dec(&xrcd->usecnt); |
| atomic_dec(&cq->usecnt); |
| } |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(ib_destroy_srq); |
| |
| /* Queue pairs */ |
| |
| static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) |
| { |
| struct ib_qp *qp = context; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&qp->device->event_handler_lock, flags); |
| list_for_each_entry(event->element.qp, &qp->open_list, open_list) |
| if (event->element.qp->event_handler) |
| event->element.qp->event_handler(event, event->element.qp->qp_context); |
| spin_unlock_irqrestore(&qp->device->event_handler_lock, flags); |
| } |
| |
| static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp) |
| { |
| mutex_lock(&xrcd->tgt_qp_mutex); |
| list_add(&qp->xrcd_list, &xrcd->tgt_qp_list); |
| mutex_unlock(&xrcd->tgt_qp_mutex); |
| } |
| |
| static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, |
| void (*event_handler)(struct ib_event *, void *), |
| void *qp_context) |
| { |
| struct ib_qp *qp; |
| unsigned long flags; |
| int err; |
| |
| qp = kzalloc(sizeof *qp, GFP_KERNEL); |
| if (!qp) |
| return ERR_PTR(-ENOMEM); |
| |
| qp->real_qp = real_qp; |
| err = ib_open_shared_qp_security(qp, real_qp->device); |
| if (err) { |
| kfree(qp); |
| return ERR_PTR(err); |
| } |
| |
| qp->real_qp = real_qp; |
| atomic_inc(&real_qp->usecnt); |
| qp->device = real_qp->device; |
| qp->event_handler = event_handler; |
| qp->qp_context = qp_context; |
| qp->qp_num = real_qp->qp_num; |
| qp->qp_type = real_qp->qp_type; |
| |
| spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); |
| list_add(&qp->open_list, &real_qp->open_list); |
| spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); |
| |
| return qp; |
| } |
| |
| struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, |
| struct ib_qp_open_attr *qp_open_attr) |
| { |
| struct ib_qp *qp, *real_qp; |
| |
| if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) |
| return ERR_PTR(-EINVAL); |
| |
| qp = ERR_PTR(-EINVAL); |
| mutex_lock(&xrcd->tgt_qp_mutex); |
| list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) { |
| if (real_qp->qp_num == qp_open_attr->qp_num) { |
| qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, |
| qp_open_attr->qp_context); |
| break; |
| } |
| } |
| mutex_unlock(&xrcd->tgt_qp_mutex); |
| return qp; |
| } |
| EXPORT_SYMBOL(ib_open_qp); |
| |
| static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp, |
| struct ib_qp_init_attr *qp_init_attr) |
| { |
| struct ib_qp *real_qp = qp; |
| |
| qp->event_handler = __ib_shared_qp_event_handler; |
| qp->qp_context = qp; |
| qp->pd = NULL; |
| qp->send_cq = qp->recv_cq = NULL; |
| qp->srq = NULL; |
| qp->xrcd = qp_init_attr->xrcd; |
| atomic_inc(&qp_init_attr->xrcd->usecnt); |
| INIT_LIST_HEAD(&qp->open_list); |
| |
| qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, |
| qp_init_attr->qp_context); |
| if (!IS_ERR(qp)) |
| __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp); |
| else |
| real_qp->device->destroy_qp(real_qp); |
| return qp; |
| } |
| |
| struct ib_qp *ib_create_qp(struct ib_pd *pd, |
| struct ib_qp_init_attr *qp_init_attr) |
| { |
| struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; |
| struct ib_qp *qp; |
| int ret; |
| |
| if (qp_init_attr->rwq_ind_tbl && |
| (qp_init_attr->recv_cq || |
| qp_init_attr->srq || qp_init_attr->cap.max_recv_wr || |
| qp_init_attr->cap.max_recv_sge)) |
| return ERR_PTR(-EINVAL); |
| |
| /* |
| * If the callers is using the RDMA API calculate the resources |
| * needed for the RDMA READ/WRITE operations. |
| * |
| * Note that these callers need to pass in a port number. |
| */ |
| if (qp_init_attr->cap.max_rdma_ctxs) |
| rdma_rw_init_qp(device, qp_init_attr); |
| |
| qp = device->create_qp(pd, qp_init_attr, NULL); |
| if (IS_ERR(qp)) |
| return qp; |
| |
| ret = ib_create_qp_security(qp, device); |
| if (ret) { |
| ib_destroy_qp(qp); |
| return ERR_PTR(ret); |
| } |
| |
| qp->device = device; |
| qp->real_qp = qp; |
| qp->uobject = NULL; |
| qp->qp_type = qp_init_attr->qp_type; |
| qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl; |
| |
| atomic_set(&qp->usecnt, 0); |
| qp->mrs_used = 0; |
| spin_lock_init(&qp->mr_lock); |
| INIT_LIST_HEAD(&qp->rdma_mrs); |
| INIT_LIST_HEAD(&qp->sig_mrs); |
| |
| if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) |
| return ib_create_xrc_qp(qp, qp_init_attr); |
| |
| qp->event_handler = qp_init_attr->event_handler; |
| qp->qp_context = qp_init_attr->qp_context; |
| if (qp_init_attr->qp_type == IB_QPT_XRC_INI) { |
| qp->recv_cq = NULL; |
| qp->srq = NULL; |
| } else { |
| qp->recv_cq = qp_init_attr->recv_cq; |
| if (qp_init_attr->recv_cq) |
| atomic_inc(&qp_init_attr->recv_cq->usecnt); |
| qp->srq = qp_init_attr->srq; |
| if (qp->srq) |
| atomic_inc(&qp_init_attr->srq->usecnt); |
| } |
| |
| qp->pd = pd; |
| qp->send_cq = qp_init_attr->send_cq; |
| qp->xrcd = NULL; |
| |
| atomic_inc(&pd->usecnt); |
| if (qp_init_attr->send_cq) |
| atomic_inc(&qp_init_attr->send_cq->usecnt); |
| if (qp_init_attr->rwq_ind_tbl) |
| atomic_inc(&qp->rwq_ind_tbl->usecnt); |
| |
| if (qp_init_attr->cap.max_rdma_ctxs) { |
| ret = rdma_rw_init_mrs(qp, qp_init_attr); |
| if (ret) { |
| pr_err("failed to init MR pool ret= %d\n", ret); |
| ib_destroy_qp(qp); |
| return ERR_PTR(ret); |
| } |
| } |
| |
| /* |
| * Note: all hw drivers guarantee that max_send_sge is lower than |
| * the device RDMA WRITE SGE limit but not all hw drivers ensure that |
| * max_send_sge <= max_sge_rd. |
| */ |
| qp->max_write_sge = qp_init_attr->cap.max_send_sge; |
| qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, |
| device->attrs.max_sge_rd); |
| |
| return qp; |
| } |
| EXPORT_SYMBOL(ib_create_qp); |
| |
| static const struct { |
| int valid; |
| enum ib_qp_attr_mask req_param[IB_QPT_MAX]; |
| enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; |
| } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { |
| [IB_QPS_RESET] = { |
| [IB_QPS_RESET] = { .valid = 1 }, |
| [IB_QPS_INIT] = { |
| .valid = 1, |
| .req_param = { |
| [IB_QPT_UD] = (IB_QP_PKEY_INDEX | |
| IB_QP_PORT | |
| IB_QP_QKEY), |
| [IB_QPT_RAW_PACKET] = IB_QP_PORT, |
| [IB_QPT_UC] = (IB_QP_PKEY_INDEX | |
| IB_QP_PORT | |
| IB_QP_ACCESS_FLAGS), |
| [IB_QPT_RC] = (IB_QP_PKEY_INDEX | |
| IB_QP_PORT | |
| IB_QP_ACCESS_FLAGS), |
| [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | |
| IB_QP_PORT | |
| IB_QP_ACCESS_FLAGS), |
| [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | |
| IB_QP_PORT | |
| IB_QP_ACCESS_FLAGS), |
| [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | |
| IB_QP_QKEY), |
| [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | |
| IB_QP_QKEY), |
| } |
| }, |
| }, |
| [IB_QPS_INIT] = { |
| [IB_QPS_RESET] = { .valid = 1 }, |
| [IB_QPS_ERR] = { .valid = 1 }, |
| [IB_QPS_INIT] = { |
| .valid = 1, |
| .opt_param = { |
| [IB_QPT_UD] = (IB_QP_PKEY_INDEX | |
| IB_QP_PORT | |
| IB_QP_QKEY), |
| [IB_QPT_UC] = (IB_QP_PKEY_INDEX | |
| IB_QP_PORT | |
| IB_QP_ACCESS_FLAGS), |
| [IB_QPT_RC] = (IB_QP_PKEY_INDEX | |
| IB_QP_PORT | |
| IB_QP_ACCESS_FLAGS), |
| [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | |
| IB_QP_PORT | |
| IB_QP_ACCESS_FLAGS), |
| [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | |
| IB_QP_PORT | |
| IB_QP_ACCESS_FLAGS), |
| [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | |
| IB_QP_QKEY), |
| [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | |
| IB_QP_QKEY), |
| } |
| }, |
| [IB_QPS_RTR] = { |
| .valid = 1, |
| .req_param = { |
| [IB_QPT_UC] = (IB_QP_AV | |
| IB_QP_PATH_MTU | |
| IB_QP_DEST_QPN | |
| IB_QP_RQ_PSN), |
| [IB_QPT_RC] = (IB_QP_AV | |
| IB_QP_PATH_MTU | |
| IB_QP_DEST_QPN | |
| IB_QP_RQ_PSN | |
| IB_QP_MAX_DEST_RD_ATOMIC | |
| IB_QP_MIN_RNR_TIMER), |
| [IB_QPT_XRC_INI] = (IB_QP_AV | |
| IB_QP_PATH_MTU | |
| IB_QP_DEST_QPN | |
| IB_QP_RQ_PSN), |
| [IB_QPT_XRC_TGT] = (IB_QP_AV | |
| IB_QP_PATH_MTU | |
| IB_QP_DEST_QPN | |
| IB_QP_RQ_PSN | |
| IB_QP_MAX_DEST_RD_ATOMIC | |
| IB_QP_MIN_RNR_TIMER), |
| }, |
| .opt_param = { |
| [IB_QPT_UD] = (IB_QP_PKEY_INDEX | |
| IB_QP_QKEY), |
| [IB_QPT_UC] = (IB_QP_ALT_PATH | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_PKEY_INDEX), |
| [IB_QPT_RC] = (IB_QP_ALT_PATH | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_PKEY_INDEX), |
| [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_PKEY_INDEX), |
| [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_PKEY_INDEX), |
| [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | |
| IB_QP_QKEY), |
| [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | |
| IB_QP_QKEY), |
| }, |
| }, |
| }, |
| [IB_QPS_RTR] = { |
| [IB_QPS_RESET] = { .valid = 1 }, |
| [IB_QPS_ERR] = { .valid = 1 }, |
| [IB_QPS_RTS] = { |
| .valid = 1, |
| .req_param = { |
| [IB_QPT_UD] = IB_QP_SQ_PSN, |
| [IB_QPT_UC] = IB_QP_SQ_PSN, |
| [IB_QPT_RC] = (IB_QP_TIMEOUT | |
| IB_QP_RETRY_CNT | |
| IB_QP_RNR_RETRY | |
| IB_QP_SQ_PSN | |
| IB_QP_MAX_QP_RD_ATOMIC), |
| [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | |
| IB_QP_RETRY_CNT | |
| IB_QP_RNR_RETRY | |
| IB_QP_SQ_PSN | |
| IB_QP_MAX_QP_RD_ATOMIC), |
| [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | |
| IB_QP_SQ_PSN), |
| [IB_QPT_SMI] = IB_QP_SQ_PSN, |
| [IB_QPT_GSI] = IB_QP_SQ_PSN, |
| }, |
| .opt_param = { |
| [IB_QPT_UD] = (IB_QP_CUR_STATE | |
| IB_QP_QKEY), |
| [IB_QPT_UC] = (IB_QP_CUR_STATE | |
| IB_QP_ALT_PATH | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_PATH_MIG_STATE), |
| [IB_QPT_RC] = (IB_QP_CUR_STATE | |
| IB_QP_ALT_PATH | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_MIN_RNR_TIMER | |
| IB_QP_PATH_MIG_STATE), |
| [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | |
| IB_QP_ALT_PATH | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_PATH_MIG_STATE), |
| [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | |
| IB_QP_ALT_PATH | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_MIN_RNR_TIMER | |
| IB_QP_PATH_MIG_STATE), |
| [IB_QPT_SMI] = (IB_QP_CUR_STATE | |
| IB_QP_QKEY), |
| [IB_QPT_GSI] = (IB_QP_CUR_STATE | |
| IB_QP_QKEY), |
| [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, |
| } |
| } |
| }, |
| [IB_QPS_RTS] = { |
| [IB_QPS_RESET] = { .valid = 1 }, |
| [IB_QPS_ERR] = { .valid = 1 }, |
| [IB_QPS_RTS] = { |
| .valid = 1, |
| .opt_param = { |
| [IB_QPT_UD] = (IB_QP_CUR_STATE | |
| IB_QP_QKEY), |
| [IB_QPT_UC] = (IB_QP_CUR_STATE | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_ALT_PATH | |
| IB_QP_PATH_MIG_STATE), |
| [IB_QPT_RC] = (IB_QP_CUR_STATE | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_ALT_PATH | |
| IB_QP_PATH_MIG_STATE | |
| IB_QP_MIN_RNR_TIMER), |
| [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_ALT_PATH | |
| IB_QP_PATH_MIG_STATE), |
| [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_ALT_PATH | |
| IB_QP_PATH_MIG_STATE | |
| IB_QP_MIN_RNR_TIMER), |
| [IB_QPT_SMI] = (IB_QP_CUR_STATE | |
| IB_QP_QKEY), |
| [IB_QPT_GSI] = (IB_QP_CUR_STATE | |
| IB_QP_QKEY), |
| [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, |
| } |
| }, |
| [IB_QPS_SQD] = { |
| .valid = 1, |
| .opt_param = { |
| [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, |
| [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, |
| [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, |
| [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, |
| [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ |
| [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, |
| [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY |
| } |
| }, |
| }, |
| [IB_QPS_SQD] = { |
| [IB_QPS_RESET] = { .valid = 1 }, |
| [IB_QPS_ERR] = { .valid = 1 }, |
| [IB_QPS_RTS] = { |
| .valid = 1, |
| .opt_param = { |
| [IB_QPT_UD] = (IB_QP_CUR_STATE | |
| IB_QP_QKEY), |
| [IB_QPT_UC] = (IB_QP_CUR_STATE | |
| IB_QP_ALT_PATH | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_PATH_MIG_STATE), |
| [IB_QPT_RC] = (IB_QP_CUR_STATE | |
| IB_QP_ALT_PATH | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_MIN_RNR_TIMER | |
| IB_QP_PATH_MIG_STATE), |
| [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | |
| IB_QP_ALT_PATH | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_PATH_MIG_STATE), |
| [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | |
| IB_QP_ALT_PATH | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_MIN_RNR_TIMER | |
| IB_QP_PATH_MIG_STATE), |
| [IB_QPT_SMI] = (IB_QP_CUR_STATE | |
| IB_QP_QKEY), |
| [IB_QPT_GSI] = (IB_QP_CUR_STATE | |
| IB_QP_QKEY), |
| } |
| }, |
| [IB_QPS_SQD] = { |
| .valid = 1, |
| .opt_param = { |
| [IB_QPT_UD] = (IB_QP_PKEY_INDEX | |
| IB_QP_QKEY), |
| [IB_QPT_UC] = (IB_QP_AV | |
| IB_QP_ALT_PATH | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_PKEY_INDEX | |
| IB_QP_PATH_MIG_STATE), |
| [IB_QPT_RC] = (IB_QP_PORT | |
| IB_QP_AV | |
| IB_QP_TIMEOUT | |
| IB_QP_RETRY_CNT | |
| IB_QP_RNR_RETRY | |
| IB_QP_MAX_QP_RD_ATOMIC | |
| IB_QP_MAX_DEST_RD_ATOMIC | |
| IB_QP_ALT_PATH | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_PKEY_INDEX | |
| IB_QP_MIN_RNR_TIMER | |
| IB_QP_PATH_MIG_STATE), |
| [IB_QPT_XRC_INI] = (IB_QP_PORT | |
| IB_QP_AV | |
| IB_QP_TIMEOUT | |
| IB_QP_RETRY_CNT | |
| IB_QP_RNR_RETRY | |
| IB_QP_MAX_QP_RD_ATOMIC | |
| IB_QP_ALT_PATH | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_PKEY_INDEX | |
| IB_QP_PATH_MIG_STATE), |
| [IB_QPT_XRC_TGT] = (IB_QP_PORT | |
| IB_QP_AV | |
| IB_QP_TIMEOUT | |
| IB_QP_MAX_DEST_RD_ATOMIC | |
| IB_QP_ALT_PATH | |
| IB_QP_ACCESS_FLAGS | |
| IB_QP_PKEY_INDEX | |
| IB_QP_MIN_RNR_TIMER | |
| IB_QP_PATH_MIG_STATE), |
| [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | |
| IB_QP_QKEY), |
| [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | |
| IB_QP_QKEY), |
| } |
| } |
| }, |
| [IB_QPS_SQE] = { |
| [IB_QPS_RESET] = { .valid = 1 }, |
| [IB_QPS_ERR] = { .valid = 1 }, |
| [IB_QPS_RTS] = { |
| .valid = 1, |
| .opt_param = { |
| [IB_QPT_UD] = (IB_QP_CUR_STATE | |
| IB_QP_QKEY), |
| [IB_QPT_UC] = (IB_QP_CUR_STATE | |
| IB_QP_ACCESS_FLAGS), |
| [IB_QPT_SMI] = (IB_QP_CUR_STATE | |
| IB_QP_QKEY), |
| [IB_QPT_GSI] = (IB_QP_CUR_STATE | |
| IB_QP_QKEY), |
| } |
| } |
| }, |
| [IB_QPS_ERR] = { |
| [IB_QPS_RESET] = { .valid = 1 }, |
| [IB_QPS_ERR] = { .valid = 1 } |
| } |
| }; |
| |
| int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, |
| enum ib_qp_type type, enum ib_qp_attr_mask mask, |
| enum rdma_link_layer ll) |
| { |
| enum ib_qp_attr_mask req_param, opt_param; |
| |
| if (cur_state < 0 || cur_state > IB_QPS_ERR || |
| next_state < 0 || next_state > IB_QPS_ERR) |
| return 0; |
| |
| if (mask & IB_QP_CUR_STATE && |
| cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && |
| cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) |
| return 0; |
| |
| if (!qp_state_table[cur_state][next_state].valid) |
| return 0; |
| |
| req_param = qp_state_table[cur_state][next_state].req_param[type]; |
| opt_param = qp_state_table[cur_state][next_state].opt_param[type]; |
| |
| if ((mask & req_param) != req_param) |
| return 0; |
| |
| if (mask & ~(req_param | opt_param | IB_QP_STATE)) |
| return 0; |
| |
| return 1; |
| } |
| EXPORT_SYMBOL(ib_modify_qp_is_ok); |
| |
| int ib_resolve_eth_dmac(struct ib_device *device, |
| struct rdma_ah_attr *ah_attr) |
| { |
| int ret = 0; |
| struct ib_global_route *grh; |
| |
| if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr))) |
| return -EINVAL; |
| |
| if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE) |
| return 0; |
| |
| grh = rdma_ah_retrieve_grh(ah_attr); |
| |
| if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) { |
| rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, |
| ah_attr->roce.dmac); |
| } else { |
| union ib_gid sgid; |
| struct ib_gid_attr sgid_attr; |
| int ifindex; |
| int hop_limit; |
| |
| ret = ib_query_gid(device, |
| rdma_ah_get_port_num(ah_attr), |
| grh->sgid_index, |
| &sgid, &sgid_attr); |
| |
| if (ret || !sgid_attr.ndev) { |
| if (!ret) |
| ret = -ENXIO; |
| goto out; |
| } |
| |
| ifindex = sgid_attr.ndev->ifindex; |
| |
| ret = |
| rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid, |
| ah_attr->roce.dmac, |
| NULL, &ifindex, &hop_limit); |
| |
| dev_put(sgid_attr.ndev); |
| |
| grh->hop_limit = hop_limit; |
| } |
| out: |
| return ret; |
| } |
| EXPORT_SYMBOL(ib_resolve_eth_dmac); |
| |
| /** |
| * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. |
| * @qp: The QP to modify. |
| * @attr: On input, specifies the QP attributes to modify. On output, |
| * the current values of selected QP attributes are returned. |
| * @attr_mask: A bit-mask used to specify which attributes of the QP |
| * are being modified. |
| * @udata: pointer to user's input output buffer information |
| * are being modified. |
| * It returns 0 on success and returns appropriate error code on error. |
| */ |
| int ib_modify_qp_with_udata(struct ib_qp *qp, struct ib_qp_attr *attr, |
| int attr_mask, struct ib_udata *udata) |
| { |
| int ret; |
| |
| if (attr_mask & IB_QP_AV) { |
| ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr); |
| if (ret) |
| return ret; |
| } |
| return ib_security_modify_qp(qp, attr, attr_mask, udata); |
| } |
| EXPORT_SYMBOL(ib_modify_qp_with_udata); |
| |
| int ib_modify_qp(struct ib_qp *qp, |
| struct ib_qp_attr *qp_attr, |
| int qp_attr_mask) |
| { |
| return ib_modify_qp_with_udata(qp, qp_attr, qp_attr_mask, NULL); |
| } |
| EXPORT_SYMBOL(ib_modify_qp); |
| |
| int ib_query_qp(struct ib_qp *qp, |
| struct ib_qp_attr *qp_attr, |
| int qp_attr_mask, |
| struct ib_qp_init_attr *qp_init_attr) |
| { |
| return qp->device->query_qp ? |
| qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) : |
| -ENOSYS; |
| } |
| EXPORT_SYMBOL(ib_query_qp); |
| |
| int ib_close_qp(struct ib_qp *qp) |
| { |
| struct ib_qp *real_qp; |
| unsigned long flags; |
| |
| real_qp = qp->real_qp; |
| if (real_qp == qp) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); |
| list_del(&qp->open_list); |
| spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); |
| |
| atomic_dec(&real_qp->usecnt); |
| ib_close_shared_qp_security(qp->qp_sec); |
| kfree(qp); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(ib_close_qp); |
| |
| static int __ib_destroy_shared_qp(struct ib_qp *qp) |
| { |
| struct ib_xrcd *xrcd; |
| struct ib_qp *real_qp; |
| int ret; |
| |
| real_qp = qp->real_qp; |
| xrcd = real_qp->xrcd; |
| |
| mutex_lock(&xrcd->tgt_qp_mutex); |
| ib_close_qp(qp); |
| if (atomic_read(&real_qp->usecnt) == 0) |
| list_del(&real_qp->xrcd_list); |
| else |
| real_qp = NULL; |
| mutex_unlock(&xrcd->tgt_qp_mutex); |
| |
| if (real_qp) { |
| ret = ib_destroy_qp(real_qp); |
| if (!ret) |
| atomic_dec(&xrcd->usecnt); |
| else |
| __ib_insert_xrcd_qp(xrcd, real_qp); |
| } |
| |
| return 0; |
| } |
| |
| int ib_destroy_qp(struct ib_qp *qp) |
| { |
| struct ib_pd *pd; |
| struct ib_cq *scq, *rcq; |
| struct ib_srq *srq; |
| struct ib_rwq_ind_table *ind_tbl; |
| struct ib_qp_security *sec; |
| int ret; |
| |
| WARN_ON_ONCE(qp->mrs_used > 0); |
| |
| if (atomic_read(&qp->usecnt)) |
| return -EBUSY; |
| |
| if (qp->real_qp != qp) |
| return __ib_destroy_shared_qp(qp); |
| |
| pd = qp->pd; |
| scq = qp->send_cq; |
| rcq = qp->recv_cq; |
| srq = qp->srq; |
| ind_tbl = qp->rwq_ind_tbl; |
| sec = qp->qp_sec; |
| if (sec) |
| ib_destroy_qp_security_begin(sec); |
| |
| if (!qp->uobject) |
| rdma_rw_cleanup_mrs(qp); |
| |
| ret = qp->device->destroy_qp(qp); |
| if (!ret) { |
| if (pd) |
| atomic_dec(&pd->usecnt); |
| if (scq) |
| atomic_dec(&scq->usecnt); |
| if (rcq) |
| atomic_dec(&rcq->usecnt); |
| if (srq) |
| atomic_dec(&srq->usecnt); |
| if (ind_tbl) |
| atomic_dec(&ind_tbl->usecnt); |
| if (sec) |
| ib_destroy_qp_security_end(sec); |
| } else { |
| if (sec) |
| ib_destroy_qp_security_abort(sec); |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(ib_destroy_qp); |
| |
| /* Completion queues */ |
| |
| struct ib_cq *ib_create_cq(struct ib_device *device, |
| ib_comp_handler comp_handler, |
| void (*event_handler)(struct ib_event *, void *), |
| void *cq_context, |
| const struct ib_cq_init_attr *cq_attr) |
| { |
| struct ib_cq *cq; |
| |
| cq = device->create_cq(device, cq_attr, NULL, NULL); |
| |
| if (!IS_ERR(cq)) { |
| cq->device = device; |
| cq->uobject = NULL; |
| cq->comp_handler = comp_handler; |
| cq->event_handler = event_handler; |
| cq->cq_context = cq_context; |
| atomic_set(&cq->usecnt, 0); |
| } |
| |
| return cq; |
| } |
| EXPORT_SYMBOL(ib_create_cq); |
| |
| int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period) |
| { |
| return cq->device->modify_cq ? |
| cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS; |
| } |
| EXPORT_SYMBOL(ib_modify_cq); |
| |
| int ib_destroy_cq(struct ib_cq *cq) |
| { |
| if (atomic_read(&cq->usecnt)) |
| return -EBUSY; |
| |
| return cq->device->destroy_cq(cq); |
| } |
| EXPORT_SYMBOL(ib_destroy_cq); |
| |
| int ib_resize_cq(struct ib_cq *cq, int cqe) |
| { |
| return cq->device->resize_cq ? |
| cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS; |
| } |
| EXPORT_SYMBOL(ib_resize_cq); |
| |
| /* Memory regions */ |
| |
| int ib_dereg_mr(struct ib_mr *mr) |
| { |
| struct ib_pd *pd = mr->pd; |
| int ret; |
| |
| ret = mr->device->dereg_mr(mr); |
| if (!ret) |
| atomic_dec(&pd->usecnt); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(ib_dereg_mr); |
| |
| /** |
| * ib_alloc_mr() - Allocates a memory region |
| * @pd: protection domain associated with the region |
| * @mr_type: memory region type |
| * @max_num_sg: maximum sg entries available for registration. |
| * |
| * Notes: |
| * Memory registeration page/sg lists must not exceed max_num_sg. |
| * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed |
| * max_num_sg * used_page_size. |
| * |
| */ |
| struct ib_mr *ib_alloc_mr(struct ib_pd *pd, |
| enum ib_mr_type mr_type, |
| u32 max_num_sg) |
| { |
| struct ib_mr *mr; |
| |
| if (!pd->device->alloc_mr) |
| return ERR_PTR(-ENOSYS); |
| |
| mr = pd->device->alloc_mr(pd, mr_type, max_num_sg); |
| if (!IS_ERR(mr)) { |
| mr->device = pd->device; |
| mr->pd = pd; |
| mr->uobject = NULL; |
| atomic_inc(&pd->usecnt); |
| mr->need_inval = false; |
| } |
| |
| return mr; |
| } |
| EXPORT_SYMBOL(ib_alloc_mr); |
| |
| /* "Fast" memory regions */ |
| |
| struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, |
| int mr_access_flags, |
| struct ib_fmr_attr *fmr_attr) |
| { |
| struct ib_fmr *fmr; |
| |
| if (!pd->device->alloc_fmr) |
| return ERR_PTR(-ENOSYS); |
| |
| fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr); |
| if (!IS_ERR(fmr)) { |
| fmr->device = pd->device; |
| fmr->pd = pd; |
| atomic_inc(&pd->usecnt); |
| } |
| |
| return fmr; |
| } |
| EXPORT_SYMBOL(ib_alloc_fmr); |
| |
| int ib_unmap_fmr(struct list_head *fmr_list) |
| { |
| struct ib_fmr *fmr; |
| |
| if (list_empty(fmr_list)) |
| return 0; |
| |
| fmr = list_entry(fmr_list->next, struct ib_fmr, list); |
| return fmr->device->unmap_fmr(fmr_list); |
| } |
| EXPORT_SYMBOL(ib_unmap_fmr); |
| |
| int ib_dealloc_fmr(struct ib_fmr *fmr) |
| { |
| struct ib_pd *pd; |
| int ret; |
| |
| pd = fmr->pd; |
| ret = fmr->device->dealloc_fmr(fmr); |
| if (!ret) |
| atomic_dec(&pd->usecnt); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(ib_dealloc_fmr); |
| |
| /* Multicast groups */ |
| |
| int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) |
| { |
| int ret; |
| |
| if (!qp->device->attach_mcast) |
| return -ENOSYS; |
| if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD || |
| lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || |
| lid == be16_to_cpu(IB_LID_PERMISSIVE)) |
| return -EINVAL; |
| |
| ret = qp->device->attach_mcast(qp, gid, lid); |
| if (!ret) |
| atomic_inc(&qp->usecnt); |
| return ret; |
| } |
| EXPORT_SYMBOL(ib_attach_mcast); |
| |
| int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) |
| { |
| int ret; |
| |
| if (!qp->device->detach_mcast) |
| return -ENOSYS; |
| if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD || |
| lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || |
| lid == be16_to_cpu(IB_LID_PERMISSIVE)) |
| return -EINVAL; |
| |
| ret = qp->device->detach_mcast(qp, gid, lid); |
| if (!ret) |
| atomic_dec(&qp->usecnt); |
| return ret; |
| } |
| EXPORT_SYMBOL(ib_detach_mcast); |
| |
| struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device) |
| { |
| struct ib_xrcd *xrcd; |
| |
| if (!device->alloc_xrcd) |
| return ERR_PTR(-ENOSYS); |
| |
| xrcd = device->alloc_xrcd(device, NULL, NULL); |
| if (!IS_ERR(xrcd)) { |
| xrcd->device = device; |
| xrcd->inode = NULL; |
| atomic_set(&xrcd->usecnt, 0); |
| mutex_init(&xrcd->tgt_qp_mutex); |
| INIT_LIST_HEAD(&xrcd->tgt_qp_list); |
| } |
| |
| return xrcd; |
| } |
| EXPORT_SYMBOL(ib_alloc_xrcd); |
| |
| int ib_dealloc_xrcd(struct ib_xrcd *xrcd) |
| { |
| struct ib_qp *qp; |
| int ret; |
| |
| if (atomic_read(&xrcd->usecnt)) |
| return -EBUSY; |
| |
| while (!list_empty(&xrcd->tgt_qp_list)) { |
| qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list); |
| ret = ib_destroy_qp(qp); |
| if (ret) |
| return ret; |
| } |
| |
| return xrcd->device->dealloc_xrcd(xrcd); |
| } |
| EXPORT_SYMBOL(ib_dealloc_xrcd); |
| |
| /** |
| * ib_create_wq - Creates a WQ associated with the specified protection |
| * domain. |
| * @pd: The protection domain associated with the WQ. |
| * @wq_init_attr: A list of initial attributes required to create the |
| * WQ. If WQ creation succeeds, then the attributes are updated to |
| * the actual capabilities of the created WQ. |
| * |
| * wq_init_attr->max_wr and wq_init_attr->max_sge determine |
| * the requested size of the WQ, and set to the actual values allocated |
| * on return. |
| * If ib_create_wq() succeeds, then max_wr and max_sge will always be |
| * at least as large as the requested values. |
| */ |
| struct ib_wq *ib_create_wq(struct ib_pd *pd, |
| struct ib_wq_init_attr *wq_attr) |
| { |
| struct ib_wq *wq; |
| |
| if (!pd->device->create_wq) |
| return ERR_PTR(-ENOSYS); |
| |
| wq = pd->device->create_wq(pd, wq_attr, NULL); |
| if (!IS_ERR(wq)) { |
| wq->event_handler = wq_attr->event_handler; |
| wq->wq_context = wq_attr->wq_context; |
| wq->wq_type = wq_attr->wq_type; |
| wq->cq = wq_attr->cq; |
| wq->device = pd->device; |
| wq->pd = pd; |
| wq->uobject = NULL; |
| atomic_inc(&pd->usecnt); |
| atomic_inc(&wq_attr->cq->usecnt); |
| atomic_set(&wq->usecnt, 0); |
| } |
| return wq; |
| } |
| EXPORT_SYMBOL(ib_create_wq); |
| |
| /** |
| * ib_destroy_wq - Destroys the specified WQ. |
| * @wq: The WQ to destroy. |
| */ |
| int ib_destroy_wq(struct ib_wq *wq) |
| { |
| int err; |
| struct ib_cq *cq = wq->cq; |
| struct ib_pd *pd = wq->pd; |
| |
| if (atomic_read(&wq->usecnt)) |
| return -EBUSY; |
| |
| err = wq->device->destroy_wq(wq); |
| if (!err) { |
| atomic_dec(&pd->usecnt); |
| atomic_dec(&cq->usecnt); |
| } |
| return err; |
| } |
| EXPORT_SYMBOL(ib_destroy_wq); |
| |
| /** |
| * ib_modify_wq - Modifies the specified WQ. |
| * @wq: The WQ to modify. |
| * @wq_attr: On input, specifies the WQ attributes to modify. |
| * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ |
| * are being modified. |
| * On output, the current values of selected WQ attributes are returned. |
| */ |
| int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr, |
| u32 wq_attr_mask) |
| { |
| int err; |
| |
| if (!wq->device->modify_wq) |
| return -ENOSYS; |
| |
| err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL); |
| return err; |
| } |
| EXPORT_SYMBOL(ib_modify_wq); |
| |
| /* |
| * ib_create_rwq_ind_table - Creates a RQ Indirection Table. |
| * @device: The device on which to create the rwq indirection table. |
| * @ib_rwq_ind_table_init_attr: A list of initial attributes required to |
| * create the Indirection Table. |
| * |
| * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less |
| * than the created ib_rwq_ind_table object and the caller is responsible |
| * for its memory allocation/free. |
| */ |
| struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, |
| struct ib_rwq_ind_table_init_attr *init_attr) |
| { |
| struct ib_rwq_ind_table *rwq_ind_table; |
| int i; |
| u32 table_size; |
| |
| if (!device->create_rwq_ind_table) |
| return ERR_PTR(-ENOSYS); |
| |
| table_size = (1 << init_attr->log_ind_tbl_size); |
| rwq_ind_table = device->create_rwq_ind_table(device, |
| init_attr, NULL); |
| if (IS_ERR(rwq_ind_table)) |
| return rwq_ind_table; |
| |
| rwq_ind_table->ind_tbl = init_attr->ind_tbl; |
| rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size; |
| rwq_ind_table->device = device; |
| rwq_ind_table->uobject = NULL; |
| atomic_set(&rwq_ind_table->usecnt, 0); |
| |
| for (i = 0; i < table_size; i++) |
| atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt); |
| |
| return rwq_ind_table; |
| } |
| EXPORT_SYMBOL(ib_create_rwq_ind_table); |
| |
| /* |
| * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table. |
| * @wq_ind_table: The Indirection Table to destroy. |
| */ |
| int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table) |
| { |
| int err, i; |
| u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size); |
| struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl; |
| |
| if (atomic_read(&rwq_ind_table->usecnt)) |
| return -EBUSY; |
| |
| err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table); |
| if (!err) { |
| for (i = 0; i < table_size; i++) |
| atomic_dec(&ind_tbl[i]->usecnt); |
| } |
| |
| return err; |
| } |
| EXPORT_SYMBOL(ib_destroy_rwq_ind_table); |
| |
| struct ib_flow *ib_create_flow(struct ib_qp *qp, |
| struct ib_flow_attr *flow_attr, |
| int domain) |
| { |
| struct ib_flow *flow_id; |
| if (!qp->device->create_flow) |
| return ERR_PTR(-ENOSYS); |
| |
| flow_id = qp->device->create_flow(qp, flow_attr, domain); |
| if (!IS_ERR(flow_id)) { |
| atomic_inc(&qp->usecnt); |
| flow_id->qp = qp; |
| } |
| return flow_id; |
| } |
| EXPORT_SYMBOL(ib_create_flow); |
| |
| int ib_destroy_flow(struct ib_flow *flow_id) |
| { |
| int err; |
| struct ib_qp *qp = flow_id->qp; |
| |
| err = qp->device->destroy_flow(flow_id); |
| if (!err) |
| atomic_dec(&qp->usecnt); |
| return err; |
| } |
| EXPORT_SYMBOL(ib_destroy_flow); |
| |
| int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, |
| struct ib_mr_status *mr_status) |
| { |
| return mr->device->check_mr_status ? |
| mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS; |
| } |
| EXPORT_SYMBOL(ib_check_mr_status); |
| |
| int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, |
| int state) |
| { |
| if (!device->set_vf_link_state) |
| return -ENOSYS; |
| |
| return device->set_vf_link_state(device, vf, port, state); |
| } |
| EXPORT_SYMBOL(ib_set_vf_link_state); |
| |
| int ib_get_vf_config(struct ib_device *device, int vf, u8 port, |
| struct ifla_vf_info *info) |
| { |
| if (!device->get_vf_config) |
| return -ENOSYS; |
| |
| return device->get_vf_config(device, vf, port, info); |
| } |
| EXPORT_SYMBOL(ib_get_vf_config); |
| |
| int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, |
| struct ifla_vf_stats *stats) |
| { |
| if (!device->get_vf_stats) |
| return -ENOSYS; |
| |
| return device->get_vf_stats(device, vf, port, stats); |
| } |
| EXPORT_SYMBOL(ib_get_vf_stats); |
| |
| int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, |
| int type) |
| { |
| if (!device->set_vf_guid) |
| return -ENOSYS; |
| |
| return device->set_vf_guid(device, vf, port, guid, type); |
| } |
| EXPORT_SYMBOL(ib_set_vf_guid); |
| |
| /** |
| * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list |
| * and set it the memory region. |
| * @mr: memory region |
| * @sg: dma mapped scatterlist |
| * @sg_nents: number of entries in sg |
| * @sg_offset: offset in bytes into sg |
| * @page_size: page vector desired page size |
| * |
| * Constraints: |
| * - The first sg element is allowed to have an offset. |
| * - Each sg element must either be aligned to page_size or virtually |
| * contiguous to the previous element. In case an sg element has a |
| * non-contiguous offset, the mapping prefix will not include it. |
| * - The last sg element is allowed to have length less than page_size. |
| * - If sg_nents total byte length exceeds the mr max_num_sge * page_size |
| * then only max_num_sg entries will be mapped. |
| * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these |
| * constraints holds and the page_size argument is ignored. |
| * |
| * Returns the number of sg elements that were mapped to the memory region. |
| * |
| * After this completes successfully, the memory region |
| * is ready for registration. |
| */ |
| int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, |
| unsigned int *sg_offset, unsigned int page_size) |
| { |
| if (unlikely(!mr->device->map_mr_sg)) |
| return -ENOSYS; |
| |
| mr->page_size = page_size; |
| |
| return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset); |
| } |
| EXPORT_SYMBOL(ib_map_mr_sg); |
| |
| /** |
| * ib_sg_to_pages() - Convert the largest prefix of a sg list |
| * to a page vector |
| * @mr: memory region |
| * @sgl: dma mapped scatterlist |
| * @sg_nents: number of entries in sg |
| * @sg_offset_p: IN: start offset in bytes into sg |
| * OUT: offset in bytes for element n of the sg of the first |
| * byte that has not been processed where n is the return |
| * value of this function. |
| * @set_page: driver page assignment function pointer |
| * |
| * Core service helper for drivers to convert the largest |
| * prefix of given sg list to a page vector. The sg list |
| * prefix converted is the prefix that meet the requirements |
| * of ib_map_mr_sg. |
| * |
| * Returns the number of sg elements that were assigned to |
| * a page vector. |
| */ |
| int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, |
| unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) |
| { |
| struct scatterlist *sg; |
| u64 last_end_dma_addr = 0; |
| unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; |
| unsigned int last_page_off = 0; |
| u64 page_mask = ~((u64)mr->page_size - 1); |
| int i, ret; |
| |
| if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) |
| return -EINVAL; |
| |
| mr->iova = sg_dma_address(&sgl[0]) + sg_offset; |
| mr->length = 0; |
| |
| for_each_sg(sgl, sg, sg_nents, i) { |
| u64 dma_addr = sg_dma_address(sg) + sg_offset; |
| u64 prev_addr = dma_addr; |
| unsigned int dma_len = sg_dma_len(sg) - sg_offset; |
| u64 end_dma_addr = dma_addr + dma_len; |
| u64 page_addr = dma_addr & page_mask; |
| |
| /* |
| * For the second and later elements, check whether either the |
| * end of element i-1 or the start of element i is not aligned |
| * on a page boundary. |
| */ |
| if (i && (last_page_off != 0 || page_addr != dma_addr)) { |
| /* Stop mapping if there is a gap. */ |
| if (last_end_dma_addr != dma_addr) |
| break; |
| |
| /* |
| * Coalesce this element with the last. If it is small |
| * enough just update mr->length. Otherwise start |
| * mapping from the next page. |
| */ |
| goto next_page; |
| } |
| |
| do { |
| ret = set_page(mr, page_addr); |
| if (unlikely(ret < 0)) { |
| sg_offset = prev_addr - sg_dma_address(sg); |
| mr->length += prev_addr - dma_addr; |
| if (sg_offset_p) |
| *sg_offset_p = sg_offset; |
| return i || sg_offset ? i : ret; |
| } |
| prev_addr = page_addr; |
| next_page: |
| page_addr += mr->page_size; |
| } while (page_addr < end_dma_addr); |
| |
| mr->length += dma_len; |
| last_end_dma_addr = end_dma_addr; |
| last_page_off = end_dma_addr & ~page_mask; |
| |
| sg_offset = 0; |
| } |
| |
| if (sg_offset_p) |
| *sg_offset_p = 0; |
| return i; |
| } |
| EXPORT_SYMBOL(ib_sg_to_pages); |
| |
| struct ib_drain_cqe { |
| struct ib_cqe cqe; |
| struct completion done; |
| }; |
| |
| static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) |
| { |
| struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, |
| cqe); |
| |
| complete(&cqe->done); |
| } |
| |
| /* |
| * Post a WR and block until its completion is reaped for the SQ. |
| */ |
| static void __ib_drain_sq(struct ib_qp *qp) |
| { |
| struct ib_cq *cq = qp->send_cq; |
| struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; |
| struct ib_drain_cqe sdrain; |
| struct ib_send_wr swr = {}, *bad_swr; |
| int ret; |
| |
| swr.wr_cqe = &sdrain.cqe; |
| sdrain.cqe.done = ib_drain_qp_done; |
| init_completion(&sdrain.done); |
| |
| ret = ib_modify_qp(qp, &attr, IB_QP_STATE); |
| if (ret) { |
| WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); |
| return; |
| } |
| |
| ret = ib_post_send(qp, &swr, &bad_swr); |
| if (ret) { |
| WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); |
| return; |
| } |
| |
| if (cq->poll_ctx == IB_POLL_DIRECT) |
| while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) |
| ib_process_cq_direct(cq, -1); |
| else |
| wait_for_completion(&sdrain.done); |
| } |
| |
| /* |
| * Post a WR and block until its completion is reaped for the RQ. |
| */ |
| static void __ib_drain_rq(struct ib_qp *qp) |
| { |
| struct ib_cq *cq = qp->recv_cq; |
| struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; |
| struct ib_drain_cqe rdrain; |
| struct ib_recv_wr rwr = {}, *bad_rwr; |
| int ret; |
| |
| rwr.wr_cqe = &rdrain.cqe; |
| rdrain.cqe.done = ib_drain_qp_done; |
| init_completion(&rdrain.done); |
| |
| ret = ib_modify_qp(qp, &attr, IB_QP_STATE); |
| if (ret) { |
| WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); |
| return; |
| } |
| |
| ret = ib_post_recv(qp, &rwr, &bad_rwr); |
| if (ret) { |
| WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); |
| return; |
| } |
| |
| if (cq->poll_ctx == IB_POLL_DIRECT) |
| while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) |
| ib_process_cq_direct(cq, -1); |
| else |
| wait_for_completion(&rdrain.done); |
| } |
| |
| /** |
| * ib_drain_sq() - Block until all SQ CQEs have been consumed by the |
| * application. |
| * @qp: queue pair to drain |
| * |
| * If the device has a provider-specific drain function, then |
| * call that. Otherwise call the generic drain function |
| * __ib_drain_sq(). |
| * |
| * The caller must: |
| * |
| * ensure there is room in the CQ and SQ for the drain work request and |
| * completion. |
| * |
| * allocate the CQ using ib_alloc_cq(). |
| * |
| * ensure that there are no other contexts that are posting WRs concurrently. |
| * Otherwise the drain is not guaranteed. |
| */ |
| void ib_drain_sq(struct ib_qp *qp) |
| { |
| if (qp->device->drain_sq) |
| qp->device->drain_sq(qp); |
| else |
| __ib_drain_sq(qp); |
| } |
| EXPORT_SYMBOL(ib_drain_sq); |
| |
| /** |
| * ib_drain_rq() - Block until all RQ CQEs have been consumed by the |
| * application. |
| * @qp: queue pair to drain |
| * |
| * If the device has a provider-specific drain function, then |
| * call that. Otherwise call the generic drain function |
| * __ib_drain_rq(). |
| * |
| * The caller must: |
| * |
| * ensure there is room in the CQ and RQ for the drain work request and |
| * completion. |
| * |
| * allocate the CQ using ib_alloc_cq(). |
| * |
| * ensure that there are no other contexts that are posting WRs concurrently. |
| * Otherwise the drain is not guaranteed. |
| */ |
| void ib_drain_rq(struct ib_qp *qp) |
| { |
| if (qp->device->drain_rq) |
| qp->device->drain_rq(qp); |
| else |
| __ib_drain_rq(qp); |
| } |
| EXPORT_SYMBOL(ib_drain_rq); |
| |
| /** |
| * ib_drain_qp() - Block until all CQEs have been consumed by the |
| * application on both the RQ and SQ. |
| * @qp: queue pair to drain |
| * |
| * The caller must: |
| * |
| * ensure there is room in the CQ(s), SQ, and RQ for drain work requests |
| * and completions. |
| * |
| * allocate the CQs using ib_alloc_cq(). |
| * |
| * ensure that there are no other contexts that are posting WRs concurrently. |
| * Otherwise the drain is not guaranteed. |
| */ |
| void ib_drain_qp(struct ib_qp *qp) |
| { |
| ib_drain_sq(qp); |
| if (!qp->srq) |
| ib_drain_rq(qp); |
| } |
| EXPORT_SYMBOL(ib_drain_qp); |