blob: 1a531b760b3bedb3b3395f95e4d1f2d1fbf8b4b5 [file] [log] [blame]
/*
* Memory Migration functionality - linux/mm/migration.c
*
* Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
*
* Page migration was first developed in the context of the memory hotplug
* project. The main authors of the migration code are:
*
* IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
* Hirokazu Takahashi <taka@valinux.co.jp>
* Dave Hansen <haveblue@us.ibm.com>
* Christoph Lameter
*/
#include <linux/migrate.h>
#include <linux/module.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/pagemap.h>
#include <linux/buffer_head.h>
#include <linux/mm_inline.h>
#include <linux/nsproxy.h>
#include <linux/pagevec.h>
#include <linux/ksm.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/writeback.h>
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
#include <linux/security.h>
#include <linux/memcontrol.h>
#include <linux/syscalls.h>
#include <linux/hugetlb.h>
#include <linux/gfp.h>
#include <asm/tlbflush.h>
#include "internal.h"
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
/*
* migrate_prep() needs to be called before we start compiling a list of pages
* to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
* undesirable, use migrate_prep_local()
*/
int migrate_prep(void)
{
/*
* Clear the LRU lists so pages can be isolated.
* Note that pages may be moved off the LRU after we have
* drained them. Those pages will fail to migrate like other
* pages that may be busy.
*/
lru_add_drain_all();
return 0;
}
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
lru_add_drain();
return 0;
}
/*
* Add isolated pages on the list back to the LRU under page lock
* to avoid leaking evictable pages back onto unevictable list.
*/
void putback_lru_pages(struct list_head *l)
{
struct page *page;
struct page *page2;
list_for_each_entry_safe(page, page2, l, lru) {
list_del(&page->lru);
dec_zone_page_state(page, NR_ISOLATED_ANON +
page_is_file_cache(page));
putback_lru_page(page);
}
}
/*
* Restore a potential migration pte to a working pte entry
*/
static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
unsigned long addr, void *old)
{
struct mm_struct *mm = vma->vm_mm;
swp_entry_t entry;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *ptep, pte;
spinlock_t *ptl;
if (unlikely(PageHuge(new))) {
ptep = huge_pte_offset(mm, addr);
if (!ptep)
goto out;
ptl = &mm->page_table_lock;
} else {
pgd = pgd_offset(mm, addr);
if (!pgd_present(*pgd))
goto out;
pud = pud_offset(pgd, addr);
if (!pud_present(*pud))
goto out;
pmd = pmd_offset(pud, addr);
if (pmd_trans_huge(*pmd))
goto out;
if (!pmd_present(*pmd))
goto out;
ptep = pte_offset_map(pmd, addr);
if (!is_swap_pte(*ptep)) {
pte_unmap(ptep);
goto out;
}
ptl = pte_lockptr(mm, pmd);
}
spin_lock(ptl);
pte = *ptep;
if (!is_swap_pte(pte))
goto unlock;
entry = pte_to_swp_entry(pte);
if (!is_migration_entry(entry) ||
migration_entry_to_page(entry) != old)
goto unlock;
get_page(new);
pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
if (is_write_migration_entry(entry))
pte = pte_mkwrite(pte);
#ifdef CONFIG_HUGETLB_PAGE
if (PageHuge(new))
pte = pte_mkhuge(pte);
#endif
flush_cache_page(vma, addr, pte_pfn(pte));
set_pte_at(mm, addr, ptep, pte);
if (PageHuge(new)) {
if (PageAnon(new))
hugepage_add_anon_rmap(new, vma, addr);
else
page_dup_rmap(new);
} else if (PageAnon(new))
page_add_anon_rmap(new, vma, addr);
else
page_add_file_rmap(new);
/* No need to invalidate - it was non-present before */
update_mmu_cache(vma, addr, ptep);
unlock:
pte_unmap_unlock(ptep, ptl);
out:
return SWAP_AGAIN;
}
/*
* Get rid of all migration entries and replace them by
* references to the indicated page.
*/
static void remove_migration_ptes(struct page *old, struct page *new)
{
rmap_walk(new, remove_migration_pte, old);
}
/*
* Something used the pte of a page under migration. We need to
* get to the page and wait until migration is finished.
* When we return from this function the fault will be retried.
*
* This function is called from do_swap_page().
*/
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
unsigned long address)
{
pte_t *ptep, pte;
spinlock_t *ptl;
swp_entry_t entry;
struct page *page;
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
pte = *ptep;
if (!is_swap_pte(pte))
goto out;
entry = pte_to_swp_entry(pte);
if (!is_migration_entry(entry))
goto out;
page = migration_entry_to_page(entry);
/*
* Once radix-tree replacement of page migration started, page_count
* *must* be zero. And, we don't want to call wait_on_page_locked()
* against a page without get_page().
* So, we use get_page_unless_zero(), here. Even failed, page fault
* will occur again.
*/
if (!get_page_unless_zero(page))
goto out;
pte_unmap_unlock(ptep, ptl);
wait_on_page_locked(page);
put_page(page);
return;
out:
pte_unmap_unlock(ptep, ptl);
}
/*
* Replace the page in the mapping.
*
* The number of remaining references must be:
* 1 for anonymous pages without a mapping
* 2 for pages with a mapping
* 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
*/
static int migrate_page_move_mapping(struct address_space *mapping,
struct page *newpage, struct page *page)
{
int expected_count;
void **pslot;
if (!mapping) {
/* Anonymous page without mapping */
if (page_count(page) != 1)
return -EAGAIN;
return 0;
}
spin_lock_irq(&mapping->tree_lock);
pslot = radix_tree_lookup_slot(&mapping->page_tree,
page_index(page));
expected_count = 2 + page_has_private(page);
if (page_count(page) != expected_count ||
(struct page *)radix_tree_deref_slot(pslot) != page) {
spin_unlock_irq(&mapping->tree_lock);
return -EAGAIN;
}
if (!page_freeze_refs(page, expected_count)) {
spin_unlock_irq(&mapping->tree_lock);
return -EAGAIN;
}
/*
* Now we know that no one else is looking at the page.
*/
get_page(newpage); /* add cache reference */
if (PageSwapCache(page)) {
SetPageSwapCache(newpage);
set_page_private(newpage, page_private(page));
}
radix_tree_replace_slot(pslot, newpage);
page_unfreeze_refs(page, expected_count);
/*
* Drop cache reference from old page.
* We know this isn't the last reference.
*/
__put_page(page);
/*
* If moved to a different zone then also account
* the page for that zone. Other VM counters will be
* taken care of when we establish references to the
* new page and drop references to the old page.
*
* Note that anonymous pages are accounted for
* via NR_FILE_PAGES and NR_ANON_PAGES if they
* are mapped to swap space.
*/
__dec_zone_page_state(page, NR_FILE_PAGES);
__inc_zone_page_state(newpage, NR_FILE_PAGES);
if (PageSwapBacked(page)) {
__dec_zone_page_state(page, NR_SHMEM);
__inc_zone_page_state(newpage, NR_SHMEM);
}
spin_unlock_irq(&mapping->tree_lock);
return 0;
}
/*
* The expected number of remaining references is the same as that
* of migrate_page_move_mapping().
*/
int migrate_huge_page_move_mapping(struct address_space *mapping,
struct page *newpage, struct page *page)
{
int expected_count;
void **pslot;
if (!mapping) {
if (page_count(page) != 1)
return -EAGAIN;
return 0;
}
spin_lock_irq(&mapping->tree_lock);
pslot = radix_tree_lookup_slot(&mapping->page_tree,
page_index(page));
expected_count = 2 + page_has_private(page);
if (page_count(page) != expected_count ||
(struct page *)radix_tree_deref_slot(pslot) != page) {
spin_unlock_irq(&mapping->tree_lock);
return -EAGAIN;
}
if (!page_freeze_refs(page, expected_count)) {
spin_unlock_irq(&mapping->tree_lock);
return -EAGAIN;
}
get_page(newpage);
radix_tree_replace_slot(pslot, newpage);
page_unfreeze_refs(page, expected_count);
__put_page(page);
spin_unlock_irq(&mapping->tree_lock);
return 0;
}
/*
* Copy the page to its new location
*/
void migrate_page_copy(struct page *newpage, struct page *page)
{
if (PageHuge(page))
copy_huge_page(newpage, page);
else
copy_highpage(newpage, page);
if (PageError(page))
SetPageError(newpage);
if (PageReferenced(page))
SetPageReferenced(newpage);
if (PageUptodate(page))
SetPageUptodate(newpage);
if (TestClearPageActive(page)) {
VM_BUG_ON(PageUnevictable(page));
SetPageActive(newpage);
} else if (TestClearPageUnevictable(page))
SetPageUnevictable(newpage);
if (PageChecked(page))
SetPageChecked(newpage);
if (PageMappedToDisk(page))
SetPageMappedToDisk(newpage);
if (PageDirty(page)) {
clear_page_dirty_for_io(page);
/*
* Want to mark the page and the radix tree as dirty, and
* redo the accounting that clear_page_dirty_for_io undid,
* but we can't use set_page_dirty because that function
* is actually a signal that all of the page has become dirty.
* Wheras only part of our page may be dirty.
*/
__set_page_dirty_nobuffers(newpage);
}
mlock_migrate_page(newpage, page);
ksm_migrate_page(newpage, page);
ClearPageSwapCache(page);
ClearPagePrivate(page);
set_page_private(page, 0);
page->mapping = NULL;
/*
* If any waiters have accumulated on the new page then
* wake them up.
*/
if (PageWriteback(newpage))
end_page_writeback(newpage);
}
/************************************************************
* Migration functions
***********************************************************/
/* Always fail migration. Used for mappings that are not movable */
int fail_migrate_page(struct address_space *mapping,
struct page *newpage, struct page *page)
{
return -EIO;
}
EXPORT_SYMBOL(fail_migrate_page);
/*
* Common logic to directly migrate a single page suitable for
* pages that do not use PagePrivate/PagePrivate2.
*
* Pages are locked upon entry and exit.
*/
int migrate_page(struct address_space *mapping,
struct page *newpage, struct page *page)
{
int rc;
BUG_ON(PageWriteback(page)); /* Writeback must be complete */
rc = migrate_page_move_mapping(mapping, newpage, page);
if (rc)
return rc;
migrate_page_copy(newpage, page);
return 0;
}
EXPORT_SYMBOL(migrate_page);
#ifdef CONFIG_BLOCK
/*
* Migration function for pages with buffers. This function can only be used
* if the underlying filesystem guarantees that no other references to "page"
* exist.
*/
int buffer_migrate_page(struct address_space *mapping,
struct page *newpage, struct page *page)
{
struct buffer_head *bh, *head;
int rc;
if (!page_has_buffers(page))
return migrate_page(mapping, newpage, page);
head = page_buffers(page);
rc = migrate_page_move_mapping(mapping, newpage, page);
if (rc)
return rc;
bh = head;
do {
get_bh(bh);
lock_buffer(bh);
bh = bh->b_this_page;
} while (bh != head);
ClearPagePrivate(page);
set_page_private(newpage, page_private(page));
set_page_private(page, 0);
put_page(page);
get_page(newpage);
bh = head;
do {
set_bh_page(bh, newpage, bh_offset(bh));
bh = bh->b_this_page;
} while (bh != head);
SetPagePrivate(newpage);
migrate_page_copy(newpage, page);
bh = head;
do {
unlock_buffer(bh);
put_bh(bh);
bh = bh->b_this_page;
} while (bh != head);
return 0;
}
EXPORT_SYMBOL(buffer_migrate_page);
#endif
/*
* Writeback a page to clean the dirty state
*/
static int writeout(struct address_space *mapping, struct page *page)
{
struct writeback_control wbc = {
.sync_mode = WB_SYNC_NONE,
.nr_to_write = 1,
.range_start = 0,
.range_end = LLONG_MAX,
.for_reclaim = 1
};
int rc;
if (!mapping->a_ops->writepage)
/* No write method for the address space */
return -EINVAL;
if (!clear_page_dirty_for_io(page))
/* Someone else already triggered a write */
return -EAGAIN;
/*
* A dirty page may imply that the underlying filesystem has
* the page on some queue. So the page must be clean for
* migration. Writeout may mean we loose the lock and the
* page state is no longer what we checked for earlier.
* At this point we know that the migration attempt cannot
* be successful.
*/
remove_migration_ptes(page, page);
rc = mapping->a_ops->writepage(page, &wbc);
if (rc != AOP_WRITEPAGE_ACTIVATE)
/* unlocked. Relock */
lock_page(page);
return (rc < 0) ? -EIO : -EAGAIN;
}
/*
* Default handling if a filesystem does not provide a migration function.
*/
static int fallback_migrate_page(struct address_space *mapping,
struct page *newpage, struct page *page)
{
if (PageDirty(page))
return writeout(mapping, page);
/*
* Buffers may be managed in a filesystem specific way.
* We must have no buffers or drop them.
*/
if (page_has_private(page) &&
!try_to_release_page(page, GFP_KERNEL))
return -EAGAIN;
return migrate_page(mapping, newpage, page);
}
/*
* Move a page to a newly allocated page
* The page is locked and all ptes have been successfully removed.
*
* The new page will have replaced the old page if this function
* is successful.
*
* Return value:
* < 0 - error code
* == 0 - success
*/
static int move_to_new_page(struct page *newpage, struct page *page,
int remap_swapcache)
{
struct address_space *mapping;
int rc;
/*
* Block others from accessing the page when we get around to
* establishing additional references. We are the only one
* holding a reference to the new page at this point.
*/
if (!trylock_page(newpage))
BUG();
/* Prepare mapping for the new page.*/
newpage->index = page->index;
newpage->mapping = page->mapping;
if (PageSwapBacked(page))
SetPageSwapBacked(newpage);
mapping = page_mapping(page);
if (!mapping)
rc = migrate_page(mapping, newpage, page);
else if (mapping->a_ops->migratepage)
/*
* Most pages have a mapping and most filesystems
* should provide a migration function. Anonymous
* pages are part of swap space which also has its
* own migration function. This is the most common
* path for page migration.
*/
rc = mapping->a_ops->migratepage(mapping,
newpage, page);
else
rc = fallback_migrate_page(mapping, newpage, page);
if (rc) {
newpage->mapping = NULL;
} else {
if (remap_swapcache)
remove_migration_ptes(page, newpage);
}
unlock_page(newpage);
return rc;
}
/*
* Obtain the lock on page, remove all ptes and migrate the page
* to the newly allocated page in newpage.
*/
static int unmap_and_move(new_page_t get_new_page, unsigned long private,
struct page *page, int force, bool offlining, bool sync)
{
int rc = 0;
int *result = NULL;
struct page *newpage = get_new_page(page, private, &result);
int remap_swapcache = 1;
int rcu_locked = 0;
int charge = 0;
struct mem_cgroup *mem = NULL;
struct anon_vma *anon_vma = NULL;
if (!newpage)
return -ENOMEM;
if (page_count(page) == 1) {
/* page was freed from under us. So we are done. */
goto move_newpage;
}
if (unlikely(PageTransHuge(page)))
if (unlikely(split_huge_page(page)))
goto move_newpage;
/* prepare cgroup just returns 0 or -ENOMEM */
rc = -EAGAIN;
if (!trylock_page(page)) {
if (!force)
goto move_newpage;
/*
* It's not safe for direct compaction to call lock_page.
* For example, during page readahead pages are added locked
* to the LRU. Later, when the IO completes the pages are
* marked uptodate and unlocked. However, the queueing
* could be merging multiple pages for one bio (e.g.
* mpage_readpages). If an allocation happens for the
* second or third page, the process can end up locking
* the same page twice and deadlocking. Rather than
* trying to be clever about what pages can be locked,
* avoid the use of lock_page for direct compaction
* altogether.
*/
if (current->flags & PF_MEMALLOC)
goto move_newpage;
lock_page(page);
}
/*
* Only memory hotplug's offline_pages() caller has locked out KSM,
* and can safely migrate a KSM page. The other cases have skipped
* PageKsm along with PageReserved - but it is only now when we have
* the page lock that we can be certain it will not go KSM beneath us
* (KSM will not upgrade a page from PageAnon to PageKsm when it sees
* its pagecount raised, but only here do we take the page lock which
* serializes that).
*/
if (PageKsm(page) && !offlining) {
rc = -EBUSY;
goto unlock;
}
/* charge against new page */
charge = mem_cgroup_prepare_migration(page, newpage, &mem);
if (charge == -ENOMEM) {
rc = -ENOMEM;
goto unlock;
}
BUG_ON(charge);
if (PageWriteback(page)) {
if (!force || !sync)
goto uncharge;
wait_on_page_writeback(page);
}
/*
* By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
* we cannot notice that anon_vma is freed while we migrates a page.
* This rcu_read_lock() delays freeing anon_vma pointer until the end
* of migration. File cache pages are no problem because of page_lock()
* File Caches may use write_page() or lock_page() in migration, then,
* just care Anon page here.
*/
if (PageAnon(page)) {
rcu_read_lock();
rcu_locked = 1;
/* Determine how to safely use anon_vma */
if (!page_mapped(page)) {
if (!PageSwapCache(page))
goto rcu_unlock;
/*
* We cannot be sure that the anon_vma of an unmapped
* swapcache page is safe to use because we don't
* know in advance if the VMA that this page belonged
* to still exists. If the VMA and others sharing the
* data have been freed, then the anon_vma could
* already be invalid.
*
* To avoid this possibility, swapcache pages get
* migrated but are not remapped when migration
* completes
*/
remap_swapcache = 0;
} else {
/*
* Take a reference count on the anon_vma if the
* page is mapped so that it is guaranteed to
* exist when the page is remapped later
*/
anon_vma = page_anon_vma(page);
get_anon_vma(anon_vma);
}
}
/*
* Corner case handling:
* 1. When a new swap-cache page is read into, it is added to the LRU
* and treated as swapcache but it has no rmap yet.
* Calling try_to_unmap() against a page->mapping==NULL page will
* trigger a BUG. So handle it here.
* 2. An orphaned page (see truncate_complete_page) might have
* fs-private metadata. The page can be picked up due to memory
* offlining. Everywhere else except page reclaim, the page is
* invisible to the vm, so the page can not be migrated. So try to
* free the metadata, so the page can be freed.
*/
if (!page->mapping) {
if (!PageAnon(page) && page_has_private(page)) {
/*
* Go direct to try_to_free_buffers() here because
* a) that's what try_to_release_page() would do anyway
* b) we may be under rcu_read_lock() here, so we can't
* use GFP_KERNEL which is what try_to_release_page()
* needs to be effective.
*/
try_to_free_buffers(page);
goto rcu_unlock;
}
goto skip_unmap;
}
/* Establish migration ptes or remove ptes */
try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
skip_unmap:
if (!page_mapped(page))
rc = move_to_new_page(newpage, page, remap_swapcache);
if (rc && remap_swapcache)
remove_migration_ptes(page, page);
rcu_unlock:
/* Drop an anon_vma reference if we took one */
if (anon_vma)
drop_anon_vma(anon_vma);
if (rcu_locked)
rcu_read_unlock();
uncharge:
if (!charge)
mem_cgroup_end_migration(mem, page, newpage);
unlock:
unlock_page(page);
if (rc != -EAGAIN) {
/*
* A page that has been migrated has all references
* removed and will be freed. A page that has not been
* migrated will have kepts its references and be
* restored.
*/
list_del(&page->lru);
dec_zone_page_state(page, NR_ISOLATED_ANON +
page_is_file_cache(page));
putback_lru_page(page);
}
move_newpage:
/*
* Move the new page to the LRU. If migration was not successful
* then this will free the page.
*/
putback_lru_page(newpage);
if (result) {
if (rc)
*result = rc;
else
*result = page_to_nid(newpage);
}
return rc;
}
/*
* Counterpart of unmap_and_move_page() for hugepage migration.
*
* This function doesn't wait the completion of hugepage I/O
* because there is no race between I/O and migration for hugepage.
* Note that currently hugepage I/O occurs only in direct I/O
* where no lock is held and PG_writeback is irrelevant,
* and writeback status of all subpages are counted in the reference
* count of the head page (i.e. if all subpages of a 2MB hugepage are
* under direct I/O, the reference of the head page is 512 and a bit more.)
* This means that when we try to migrate hugepage whose subpages are
* doing direct I/O, some references remain after try_to_unmap() and
* hugepage migration fails without data corruption.
*
* There is also no race when direct I/O is issued on the page under migration,
* because then pte is replaced with migration swap entry and direct I/O code
* will wait in the page fault for migration to complete.
*/
static int unmap_and_move_huge_page(new_page_t get_new_page,
unsigned long private, struct page *hpage,
int force, bool offlining, bool sync)
{
int rc = 0;
int *result = NULL;
struct page *new_hpage = get_new_page(hpage, private, &result);
int rcu_locked = 0;
struct anon_vma *anon_vma = NULL;
if (!new_hpage)
return -ENOMEM;
rc = -EAGAIN;
if (!trylock_page(hpage)) {
if (!force || !sync)
goto out;
lock_page(hpage);
}
if (PageAnon(hpage)) {
rcu_read_lock();
rcu_locked = 1;
if (page_mapped(hpage)) {
anon_vma = page_anon_vma(hpage);
atomic_inc(&anon_vma->external_refcount);
}
}
try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
if (!page_mapped(hpage))
rc = move_to_new_page(new_hpage, hpage, 1);
if (rc)
remove_migration_ptes(hpage, hpage);
if (anon_vma && atomic_dec_and_lock(&anon_vma->external_refcount,
&anon_vma->lock)) {
int empty = list_empty(&anon_vma->head);
spin_unlock(&anon_vma->lock);
if (empty)
anon_vma_free(anon_vma);
}
if (rcu_locked)
rcu_read_unlock();
out:
unlock_page(hpage);
if (rc != -EAGAIN) {
list_del(&hpage->lru);
put_page(hpage);
}
put_page(new_hpage);
if (result) {
if (rc)
*result = rc;
else
*result = page_to_nid(new_hpage);
}
return rc;
}
/*
* migrate_pages
*
* The function takes one list of pages to migrate and a function
* that determines from the page to be migrated and the private data
* the target of the move and allocates the page.
*
* The function returns after 10 attempts or if no pages
* are movable anymore because to has become empty
* or no retryable pages exist anymore.
* Caller should call putback_lru_pages to return pages to the LRU
* or free list.
*
* Return: Number of pages not migrated or error code.
*/
int migrate_pages(struct list_head *from,
new_page_t get_new_page, unsigned long private, bool offlining,
bool sync)
{
int retry = 1;
int nr_failed = 0;
int pass = 0;
struct page *page;
struct page *page2;
int swapwrite = current->flags & PF_SWAPWRITE;
int rc;
if (!swapwrite)
current->flags |= PF_SWAPWRITE;
for(pass = 0; pass < 10 && retry; pass++) {
retry = 0;
list_for_each_entry_safe(page, page2, from, lru) {
cond_resched();
rc = unmap_and_move(get_new_page, private,
page, pass > 2, offlining,
sync);
switch(rc) {
case -ENOMEM:
goto out;
case -EAGAIN:
retry++;
break;
case 0:
break;
default:
/* Permanent failure */
nr_failed++;
break;
}
}
}
rc = 0;
out:
if (!swapwrite)
current->flags &= ~PF_SWAPWRITE;
if (rc)
return rc;
return nr_failed + retry;
}
int migrate_huge_pages(struct list_head *from,
new_page_t get_new_page, unsigned long private, bool offlining,
bool sync)
{
int retry = 1;
int nr_failed = 0;
int pass = 0;
struct page *page;
struct page *page2;
int rc;
for (pass = 0; pass < 10 && retry; pass++) {
retry = 0;
list_for_each_entry_safe(page, page2, from, lru) {
cond_resched();
rc = unmap_and_move_huge_page(get_new_page,
private, page, pass > 2, offlining,
sync);
switch(rc) {
case -ENOMEM:
goto out;
case -EAGAIN:
retry++;
break;
case 0:
break;
default:
/* Permanent failure */
nr_failed++;
break;
}
}
}
rc = 0;
out:
list_for_each_entry_safe(page, page2, from, lru)
put_page(page);
if (rc)
return rc;
return nr_failed + retry;
}
#ifdef CONFIG_NUMA
/*
* Move a list of individual pages
*/
struct page_to_node {
unsigned long addr;
struct page *page;
int node;
int status;
};
static struct page *new_page_node(struct page *p, unsigned long private,
int **result)
{
struct page_to_node *pm = (struct page_to_node *)private;
while (pm->node != MAX_NUMNODES && pm->page != p)
pm++;
if (pm->node == MAX_NUMNODES)
return NULL;
*result = &pm->status;
return alloc_pages_exact_node(pm->node,
GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
}
/*
* Move a set of pages as indicated in the pm array. The addr
* field must be set to the virtual address of the page to be moved
* and the node number must contain a valid target node.
* The pm array ends with node = MAX_NUMNODES.
*/
static int do_move_page_to_node_array(struct mm_struct *mm,
struct page_to_node *pm,
int migrate_all)
{
int err;
struct page_to_node *pp;
LIST_HEAD(pagelist);
down_read(&mm->mmap_sem);
/*
* Build a list of pages to migrate
*/
for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
struct vm_area_struct *vma;
struct page *page;
err = -EFAULT;
vma = find_vma(mm, pp->addr);
if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
goto set_status;
page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
err = PTR_ERR(page);
if (IS_ERR(page))
goto set_status;
err = -ENOENT;
if (!page)
goto set_status;
/* Use PageReserved to check for zero page */
if (PageReserved(page) || PageKsm(page))
goto put_and_set;
pp->page = page;
err = page_to_nid(page);
if (err == pp->node)
/*
* Node already in the right place
*/
goto put_and_set;
err = -EACCES;
if (page_mapcount(page) > 1 &&
!migrate_all)
goto put_and_set;
err = isolate_lru_page(page);
if (!err) {
list_add_tail(&page->lru, &pagelist);
inc_zone_page_state(page, NR_ISOLATED_ANON +
page_is_file_cache(page));
}
put_and_set:
/*
* Either remove the duplicate refcount from
* isolate_lru_page() or drop the page ref if it was
* not isolated.
*/
put_page(page);
set_status:
pp->status = err;
}
err = 0;
if (!list_empty(&pagelist)) {
err = migrate_pages(&pagelist, new_page_node,
(unsigned long)pm, 0, true);
if (err)
putback_lru_pages(&pagelist);
}
up_read(&mm->mmap_sem);
return err;
}
/*
* Migrate an array of page address onto an array of nodes and fill
* the corresponding array of status.
*/
static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
unsigned long nr_pages,
const void __user * __user *pages,
const int __user *nodes,
int __user *status, int flags)
{
struct page_to_node *pm;
nodemask_t task_nodes;
unsigned long chunk_nr_pages;
unsigned long chunk_start;
int err;
task_nodes = cpuset_mems_allowed(task);
err = -ENOMEM;
pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
if (!pm)
goto out;
migrate_prep();
/*
* Store a chunk of page_to_node array in a page,
* but keep the last one as a marker
*/
chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
for (chunk_start = 0;
chunk_start < nr_pages;
chunk_start += chunk_nr_pages) {
int j;
if (chunk_start + chunk_nr_pages > nr_pages)
chunk_nr_pages = nr_pages - chunk_start;
/* fill the chunk pm with addrs and nodes from user-space */
for (j = 0; j < chunk_nr_pages; j++) {
const void __user *p;
int node;
err = -EFAULT;
if (get_user(p, pages + j + chunk_start))
goto out_pm;
pm[j].addr = (unsigned long) p;
if (get_user(node, nodes + j + chunk_start))
goto out_pm;
err = -ENODEV;
if (node < 0 || node >= MAX_NUMNODES)
goto out_pm;
if (!node_state(node, N_HIGH_MEMORY))
goto out_pm;
err = -EACCES;
if (!node_isset(node, task_nodes))
goto out_pm;
pm[j].node = node;
}
/* End marker for this chunk */
pm[chunk_nr_pages].node = MAX_NUMNODES;
/* Migrate this chunk */
err = do_move_page_to_node_array(mm, pm,
flags & MPOL_MF_MOVE_ALL);
if (err < 0)
goto out_pm;
/* Return status information */
for (j = 0; j < chunk_nr_pages; j++)
if (put_user(pm[j].status, status + j + chunk_start)) {
err = -EFAULT;
goto out_pm;
}
}
err = 0;
out_pm:
free_page((unsigned long)pm);
out:
return err;
}
/*
* Determine the nodes of an array of pages and store it in an array of status.
*/
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
const void __user **pages, int *status)
{
unsigned long i;
down_read(&mm->mmap_sem);
for (i = 0; i < nr_pages; i++) {
unsigned long addr = (unsigned long)(*pages);
struct vm_area_struct *vma;
struct page *page;
int err = -EFAULT;
vma = find_vma(mm, addr);
if (!vma || addr < vma->vm_start)
goto set_status;
page = follow_page(vma, addr, 0);
err = PTR_ERR(page);
if (IS_ERR(page))
goto set_status;
err = -ENOENT;
/* Use PageReserved to check for zero page */
if (!page || PageReserved(page) || PageKsm(page))
goto set_status;
err = page_to_nid(page);
set_status:
*status = err;
pages++;
status++;
}
up_read(&mm->mmap_sem);
}
/*
* Determine the nodes of a user array of pages and store it in
* a user array of status.
*/
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
const void __user * __user *pages,
int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
int chunk_status[DO_PAGES_STAT_CHUNK_NR];
while (nr_pages) {
unsigned long chunk_nr;
chunk_nr = nr_pages;
if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
chunk_nr = DO_PAGES_STAT_CHUNK_NR;
if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
break;
do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
break;
pages += chunk_nr;
status += chunk_nr;
nr_pages -= chunk_nr;
}
return nr_pages ? -EFAULT : 0;
}
/*
* Move a list of pages in the address space of the currently executing
* process.
*/
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
const void __user * __user *, pages,
const int __user *, nodes,
int __user *, status, int, flags)
{
const struct cred *cred = current_cred(), *tcred;
struct task_struct *task;
struct mm_struct *mm;
int err;
/* Check flags */
if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
return -EINVAL;
if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
return -EPERM;
/* Find the mm_struct */
read_lock(&tasklist_lock);
task = pid ? find_task_by_vpid(pid) : current;
if (!task) {
read_unlock(&tasklist_lock);
return -ESRCH;
}
mm = get_task_mm(task);
read_unlock(&tasklist_lock);
if (!mm)
return -EINVAL;
/*
* Check if this process has the right to modify the specified
* process. The right exists if the process has administrative
* capabilities, superuser privileges or the same
* userid as the target process.
*/
rcu_read_lock();
tcred = __task_cred(task);
if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
cred->uid != tcred->suid && cred->uid != tcred->uid &&
!capable(CAP_SYS_NICE)) {
rcu_read_unlock();
err = -EPERM;
goto out;
}
rcu_read_unlock();
err = security_task_movememory(task);
if (err)
goto out;
if (nodes) {
err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
flags);
} else {
err = do_pages_stat(mm, nr_pages, pages, status);
}
out:
mmput(mm);
return err;
}
/*
* Call migration functions in the vma_ops that may prepare
* memory in a vm for migration. migration functions may perform
* the migration for vmas that do not have an underlying page struct.
*/
int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
const nodemask_t *from, unsigned long flags)
{
struct vm_area_struct *vma;
int err = 0;
for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
if (vma->vm_ops && vma->vm_ops->migrate) {
err = vma->vm_ops->migrate(vma, to, from, flags);
if (err)
break;
}
}
return err;
}
#endif