| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * This module enables machines with Intel VT-x extensions to run virtual |
| * machines without emulation or binary translation. |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * |
| * Authors: |
| * Avi Kivity <avi@qumranet.com> |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "kvm.h" |
| |
| #include <linux/kvm.h> |
| #include <linux/module.h> |
| #include <linux/errno.h> |
| #include <linux/magic.h> |
| #include <asm/processor.h> |
| #include <linux/percpu.h> |
| #include <linux/gfp.h> |
| #include <asm/msr.h> |
| #include <linux/mm.h> |
| #include <linux/miscdevice.h> |
| #include <linux/vmalloc.h> |
| #include <asm/uaccess.h> |
| #include <linux/reboot.h> |
| #include <asm/io.h> |
| #include <linux/debugfs.h> |
| #include <linux/highmem.h> |
| #include <linux/file.h> |
| #include <asm/desc.h> |
| #include <linux/sysdev.h> |
| #include <linux/cpu.h> |
| #include <linux/file.h> |
| #include <linux/fs.h> |
| #include <linux/mount.h> |
| |
| #include "x86_emulate.h" |
| #include "segment_descriptor.h" |
| |
| MODULE_AUTHOR("Qumranet"); |
| MODULE_LICENSE("GPL"); |
| |
| static DEFINE_SPINLOCK(kvm_lock); |
| static LIST_HEAD(vm_list); |
| |
| struct kvm_arch_ops *kvm_arch_ops; |
| struct kvm_stat kvm_stat; |
| EXPORT_SYMBOL_GPL(kvm_stat); |
| |
| static struct kvm_stats_debugfs_item { |
| const char *name; |
| u32 *data; |
| struct dentry *dentry; |
| } debugfs_entries[] = { |
| { "pf_fixed", &kvm_stat.pf_fixed }, |
| { "pf_guest", &kvm_stat.pf_guest }, |
| { "tlb_flush", &kvm_stat.tlb_flush }, |
| { "invlpg", &kvm_stat.invlpg }, |
| { "exits", &kvm_stat.exits }, |
| { "io_exits", &kvm_stat.io_exits }, |
| { "mmio_exits", &kvm_stat.mmio_exits }, |
| { "signal_exits", &kvm_stat.signal_exits }, |
| { "irq_window", &kvm_stat.irq_window_exits }, |
| { "halt_exits", &kvm_stat.halt_exits }, |
| { "request_irq", &kvm_stat.request_irq_exits }, |
| { "irq_exits", &kvm_stat.irq_exits }, |
| { NULL, NULL } |
| }; |
| |
| static struct dentry *debugfs_dir; |
| |
| struct vfsmount *kvmfs_mnt; |
| |
| #define MAX_IO_MSRS 256 |
| |
| #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL |
| #define LMSW_GUEST_MASK 0x0eULL |
| #define CR4_RESEVED_BITS (~((1ULL << 11) - 1)) |
| #define CR8_RESEVED_BITS (~0x0fULL) |
| #define EFER_RESERVED_BITS 0xfffffffffffff2fe |
| |
| #ifdef CONFIG_X86_64 |
| // LDT or TSS descriptor in the GDT. 16 bytes. |
| struct segment_descriptor_64 { |
| struct segment_descriptor s; |
| u32 base_higher; |
| u32 pad_zero; |
| }; |
| |
| #endif |
| |
| static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, |
| unsigned long arg); |
| |
| static struct inode *kvmfs_inode(struct file_operations *fops) |
| { |
| int error = -ENOMEM; |
| struct inode *inode = new_inode(kvmfs_mnt->mnt_sb); |
| |
| if (!inode) |
| goto eexit_1; |
| |
| inode->i_fop = fops; |
| |
| /* |
| * Mark the inode dirty from the very beginning, |
| * that way it will never be moved to the dirty |
| * list because mark_inode_dirty() will think |
| * that it already _is_ on the dirty list. |
| */ |
| inode->i_state = I_DIRTY; |
| inode->i_mode = S_IRUSR | S_IWUSR; |
| inode->i_uid = current->fsuid; |
| inode->i_gid = current->fsgid; |
| inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; |
| return inode; |
| |
| eexit_1: |
| return ERR_PTR(error); |
| } |
| |
| static struct file *kvmfs_file(struct inode *inode, void *private_data) |
| { |
| struct file *file = get_empty_filp(); |
| |
| if (!file) |
| return ERR_PTR(-ENFILE); |
| |
| file->f_path.mnt = mntget(kvmfs_mnt); |
| file->f_path.dentry = d_alloc_anon(inode); |
| if (!file->f_path.dentry) |
| return ERR_PTR(-ENOMEM); |
| file->f_mapping = inode->i_mapping; |
| |
| file->f_pos = 0; |
| file->f_flags = O_RDWR; |
| file->f_op = inode->i_fop; |
| file->f_mode = FMODE_READ | FMODE_WRITE; |
| file->f_version = 0; |
| file->private_data = private_data; |
| return file; |
| } |
| |
| unsigned long segment_base(u16 selector) |
| { |
| struct descriptor_table gdt; |
| struct segment_descriptor *d; |
| unsigned long table_base; |
| typedef unsigned long ul; |
| unsigned long v; |
| |
| if (selector == 0) |
| return 0; |
| |
| asm ("sgdt %0" : "=m"(gdt)); |
| table_base = gdt.base; |
| |
| if (selector & 4) { /* from ldt */ |
| u16 ldt_selector; |
| |
| asm ("sldt %0" : "=g"(ldt_selector)); |
| table_base = segment_base(ldt_selector); |
| } |
| d = (struct segment_descriptor *)(table_base + (selector & ~7)); |
| v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24); |
| #ifdef CONFIG_X86_64 |
| if (d->system == 0 |
| && (d->type == 2 || d->type == 9 || d->type == 11)) |
| v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32; |
| #endif |
| return v; |
| } |
| EXPORT_SYMBOL_GPL(segment_base); |
| |
| static inline int valid_vcpu(int n) |
| { |
| return likely(n >= 0 && n < KVM_MAX_VCPUS); |
| } |
| |
| int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size, |
| void *dest) |
| { |
| unsigned char *host_buf = dest; |
| unsigned long req_size = size; |
| |
| while (size) { |
| hpa_t paddr; |
| unsigned now; |
| unsigned offset; |
| hva_t guest_buf; |
| |
| paddr = gva_to_hpa(vcpu, addr); |
| |
| if (is_error_hpa(paddr)) |
| break; |
| |
| guest_buf = (hva_t)kmap_atomic( |
| pfn_to_page(paddr >> PAGE_SHIFT), |
| KM_USER0); |
| offset = addr & ~PAGE_MASK; |
| guest_buf |= offset; |
| now = min(size, PAGE_SIZE - offset); |
| memcpy(host_buf, (void*)guest_buf, now); |
| host_buf += now; |
| addr += now; |
| size -= now; |
| kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0); |
| } |
| return req_size - size; |
| } |
| EXPORT_SYMBOL_GPL(kvm_read_guest); |
| |
| int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size, |
| void *data) |
| { |
| unsigned char *host_buf = data; |
| unsigned long req_size = size; |
| |
| while (size) { |
| hpa_t paddr; |
| unsigned now; |
| unsigned offset; |
| hva_t guest_buf; |
| gfn_t gfn; |
| |
| paddr = gva_to_hpa(vcpu, addr); |
| |
| if (is_error_hpa(paddr)) |
| break; |
| |
| gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT; |
| mark_page_dirty(vcpu->kvm, gfn); |
| guest_buf = (hva_t)kmap_atomic( |
| pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0); |
| offset = addr & ~PAGE_MASK; |
| guest_buf |= offset; |
| now = min(size, PAGE_SIZE - offset); |
| memcpy((void*)guest_buf, host_buf, now); |
| host_buf += now; |
| addr += now; |
| size -= now; |
| kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0); |
| } |
| return req_size - size; |
| } |
| EXPORT_SYMBOL_GPL(kvm_write_guest); |
| |
| /* |
| * Switches to specified vcpu, until a matching vcpu_put() |
| */ |
| static void vcpu_load(struct kvm_vcpu *vcpu) |
| { |
| mutex_lock(&vcpu->mutex); |
| kvm_arch_ops->vcpu_load(vcpu); |
| } |
| |
| /* |
| * Switches to specified vcpu, until a matching vcpu_put(). Will return NULL |
| * if the slot is not populated. |
| */ |
| static struct kvm_vcpu *vcpu_load_slot(struct kvm *kvm, int slot) |
| { |
| struct kvm_vcpu *vcpu = &kvm->vcpus[slot]; |
| |
| mutex_lock(&vcpu->mutex); |
| if (!vcpu->vmcs) { |
| mutex_unlock(&vcpu->mutex); |
| return NULL; |
| } |
| kvm_arch_ops->vcpu_load(vcpu); |
| return vcpu; |
| } |
| |
| static void vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| kvm_arch_ops->vcpu_put(vcpu); |
| mutex_unlock(&vcpu->mutex); |
| } |
| |
| static struct kvm *kvm_create_vm(void) |
| { |
| struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); |
| int i; |
| |
| if (!kvm) |
| return ERR_PTR(-ENOMEM); |
| |
| spin_lock_init(&kvm->lock); |
| INIT_LIST_HEAD(&kvm->active_mmu_pages); |
| for (i = 0; i < KVM_MAX_VCPUS; ++i) { |
| struct kvm_vcpu *vcpu = &kvm->vcpus[i]; |
| |
| mutex_init(&vcpu->mutex); |
| vcpu->cpu = -1; |
| vcpu->kvm = kvm; |
| vcpu->mmu.root_hpa = INVALID_PAGE; |
| INIT_LIST_HEAD(&vcpu->free_pages); |
| spin_lock(&kvm_lock); |
| list_add(&kvm->vm_list, &vm_list); |
| spin_unlock(&kvm_lock); |
| } |
| return kvm; |
| } |
| |
| static int kvm_dev_open(struct inode *inode, struct file *filp) |
| { |
| return 0; |
| } |
| |
| /* |
| * Free any memory in @free but not in @dont. |
| */ |
| static void kvm_free_physmem_slot(struct kvm_memory_slot *free, |
| struct kvm_memory_slot *dont) |
| { |
| int i; |
| |
| if (!dont || free->phys_mem != dont->phys_mem) |
| if (free->phys_mem) { |
| for (i = 0; i < free->npages; ++i) |
| if (free->phys_mem[i]) |
| __free_page(free->phys_mem[i]); |
| vfree(free->phys_mem); |
| } |
| |
| if (!dont || free->dirty_bitmap != dont->dirty_bitmap) |
| vfree(free->dirty_bitmap); |
| |
| free->phys_mem = NULL; |
| free->npages = 0; |
| free->dirty_bitmap = NULL; |
| } |
| |
| static void kvm_free_physmem(struct kvm *kvm) |
| { |
| int i; |
| |
| for (i = 0; i < kvm->nmemslots; ++i) |
| kvm_free_physmem_slot(&kvm->memslots[i], NULL); |
| } |
| |
| static void free_pio_guest_pages(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| |
| for (i = 0; i < 2; ++i) |
| if (vcpu->pio.guest_pages[i]) { |
| __free_page(vcpu->pio.guest_pages[i]); |
| vcpu->pio.guest_pages[i] = NULL; |
| } |
| } |
| |
| static void kvm_free_vcpu(struct kvm_vcpu *vcpu) |
| { |
| if (!vcpu->vmcs) |
| return; |
| |
| vcpu_load(vcpu); |
| kvm_mmu_destroy(vcpu); |
| vcpu_put(vcpu); |
| kvm_arch_ops->vcpu_free(vcpu); |
| free_page((unsigned long)vcpu->run); |
| vcpu->run = NULL; |
| free_page((unsigned long)vcpu->pio_data); |
| vcpu->pio_data = NULL; |
| free_pio_guest_pages(vcpu); |
| } |
| |
| static void kvm_free_vcpus(struct kvm *kvm) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < KVM_MAX_VCPUS; ++i) |
| kvm_free_vcpu(&kvm->vcpus[i]); |
| } |
| |
| static int kvm_dev_release(struct inode *inode, struct file *filp) |
| { |
| return 0; |
| } |
| |
| static void kvm_destroy_vm(struct kvm *kvm) |
| { |
| spin_lock(&kvm_lock); |
| list_del(&kvm->vm_list); |
| spin_unlock(&kvm_lock); |
| kvm_free_vcpus(kvm); |
| kvm_free_physmem(kvm); |
| kfree(kvm); |
| } |
| |
| static int kvm_vm_release(struct inode *inode, struct file *filp) |
| { |
| struct kvm *kvm = filp->private_data; |
| |
| kvm_destroy_vm(kvm); |
| return 0; |
| } |
| |
| static void inject_gp(struct kvm_vcpu *vcpu) |
| { |
| kvm_arch_ops->inject_gp(vcpu, 0); |
| } |
| |
| /* |
| * Load the pae pdptrs. Return true is they are all valid. |
| */ |
| static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) |
| { |
| gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; |
| unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; |
| int i; |
| u64 pdpte; |
| u64 *pdpt; |
| int ret; |
| struct page *page; |
| |
| spin_lock(&vcpu->kvm->lock); |
| page = gfn_to_page(vcpu->kvm, pdpt_gfn); |
| /* FIXME: !page - emulate? 0xff? */ |
| pdpt = kmap_atomic(page, KM_USER0); |
| |
| ret = 1; |
| for (i = 0; i < 4; ++i) { |
| pdpte = pdpt[offset + i]; |
| if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) { |
| ret = 0; |
| goto out; |
| } |
| } |
| |
| for (i = 0; i < 4; ++i) |
| vcpu->pdptrs[i] = pdpt[offset + i]; |
| |
| out: |
| kunmap_atomic(pdpt, KM_USER0); |
| spin_unlock(&vcpu->kvm->lock); |
| |
| return ret; |
| } |
| |
| void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
| { |
| if (cr0 & CR0_RESEVED_BITS) { |
| printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n", |
| cr0, vcpu->cr0); |
| inject_gp(vcpu); |
| return; |
| } |
| |
| if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) { |
| printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| |
| if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) { |
| printk(KERN_DEBUG "set_cr0: #GP, set PG flag " |
| "and a clear PE flag\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| |
| if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) { |
| #ifdef CONFIG_X86_64 |
| if ((vcpu->shadow_efer & EFER_LME)) { |
| int cs_db, cs_l; |
| |
| if (!is_pae(vcpu)) { |
| printk(KERN_DEBUG "set_cr0: #GP, start paging " |
| "in long mode while PAE is disabled\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
| if (cs_l) { |
| printk(KERN_DEBUG "set_cr0: #GP, start paging " |
| "in long mode while CS.L == 1\n"); |
| inject_gp(vcpu); |
| return; |
| |
| } |
| } else |
| #endif |
| if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) { |
| printk(KERN_DEBUG "set_cr0: #GP, pdptrs " |
| "reserved bits\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| |
| } |
| |
| kvm_arch_ops->set_cr0(vcpu, cr0); |
| vcpu->cr0 = cr0; |
| |
| spin_lock(&vcpu->kvm->lock); |
| kvm_mmu_reset_context(vcpu); |
| spin_unlock(&vcpu->kvm->lock); |
| return; |
| } |
| EXPORT_SYMBOL_GPL(set_cr0); |
| |
| void lmsw(struct kvm_vcpu *vcpu, unsigned long msw) |
| { |
| kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu); |
| set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f)); |
| } |
| EXPORT_SYMBOL_GPL(lmsw); |
| |
| void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| { |
| if (cr4 & CR4_RESEVED_BITS) { |
| printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| |
| if (is_long_mode(vcpu)) { |
| if (!(cr4 & CR4_PAE_MASK)) { |
| printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while " |
| "in long mode\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK) |
| && !load_pdptrs(vcpu, vcpu->cr3)) { |
| printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n"); |
| inject_gp(vcpu); |
| } |
| |
| if (cr4 & CR4_VMXE_MASK) { |
| printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| kvm_arch_ops->set_cr4(vcpu, cr4); |
| spin_lock(&vcpu->kvm->lock); |
| kvm_mmu_reset_context(vcpu); |
| spin_unlock(&vcpu->kvm->lock); |
| } |
| EXPORT_SYMBOL_GPL(set_cr4); |
| |
| void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) |
| { |
| if (is_long_mode(vcpu)) { |
| if (cr3 & CR3_L_MODE_RESEVED_BITS) { |
| printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| } else { |
| if (cr3 & CR3_RESEVED_BITS) { |
| printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| if (is_paging(vcpu) && is_pae(vcpu) && |
| !load_pdptrs(vcpu, cr3)) { |
| printk(KERN_DEBUG "set_cr3: #GP, pdptrs " |
| "reserved bits\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| } |
| |
| vcpu->cr3 = cr3; |
| spin_lock(&vcpu->kvm->lock); |
| /* |
| * Does the new cr3 value map to physical memory? (Note, we |
| * catch an invalid cr3 even in real-mode, because it would |
| * cause trouble later on when we turn on paging anyway.) |
| * |
| * A real CPU would silently accept an invalid cr3 and would |
| * attempt to use it - with largely undefined (and often hard |
| * to debug) behavior on the guest side. |
| */ |
| if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) |
| inject_gp(vcpu); |
| else |
| vcpu->mmu.new_cr3(vcpu); |
| spin_unlock(&vcpu->kvm->lock); |
| } |
| EXPORT_SYMBOL_GPL(set_cr3); |
| |
| void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) |
| { |
| if ( cr8 & CR8_RESEVED_BITS) { |
| printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8); |
| inject_gp(vcpu); |
| return; |
| } |
| vcpu->cr8 = cr8; |
| } |
| EXPORT_SYMBOL_GPL(set_cr8); |
| |
| void fx_init(struct kvm_vcpu *vcpu) |
| { |
| struct __attribute__ ((__packed__)) fx_image_s { |
| u16 control; //fcw |
| u16 status; //fsw |
| u16 tag; // ftw |
| u16 opcode; //fop |
| u64 ip; // fpu ip |
| u64 operand;// fpu dp |
| u32 mxcsr; |
| u32 mxcsr_mask; |
| |
| } *fx_image; |
| |
| fx_save(vcpu->host_fx_image); |
| fpu_init(); |
| fx_save(vcpu->guest_fx_image); |
| fx_restore(vcpu->host_fx_image); |
| |
| fx_image = (struct fx_image_s *)vcpu->guest_fx_image; |
| fx_image->mxcsr = 0x1f80; |
| memset(vcpu->guest_fx_image + sizeof(struct fx_image_s), |
| 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s)); |
| } |
| EXPORT_SYMBOL_GPL(fx_init); |
| |
| static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot) |
| { |
| spin_lock(&vcpu->kvm->lock); |
| kvm_mmu_slot_remove_write_access(vcpu, slot); |
| spin_unlock(&vcpu->kvm->lock); |
| } |
| |
| /* |
| * Allocate some memory and give it an address in the guest physical address |
| * space. |
| * |
| * Discontiguous memory is allowed, mostly for framebuffers. |
| */ |
| static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, |
| struct kvm_memory_region *mem) |
| { |
| int r; |
| gfn_t base_gfn; |
| unsigned long npages; |
| unsigned long i; |
| struct kvm_memory_slot *memslot; |
| struct kvm_memory_slot old, new; |
| int memory_config_version; |
| |
| r = -EINVAL; |
| /* General sanity checks */ |
| if (mem->memory_size & (PAGE_SIZE - 1)) |
| goto out; |
| if (mem->guest_phys_addr & (PAGE_SIZE - 1)) |
| goto out; |
| if (mem->slot >= KVM_MEMORY_SLOTS) |
| goto out; |
| if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) |
| goto out; |
| |
| memslot = &kvm->memslots[mem->slot]; |
| base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; |
| npages = mem->memory_size >> PAGE_SHIFT; |
| |
| if (!npages) |
| mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; |
| |
| raced: |
| spin_lock(&kvm->lock); |
| |
| memory_config_version = kvm->memory_config_version; |
| new = old = *memslot; |
| |
| new.base_gfn = base_gfn; |
| new.npages = npages; |
| new.flags = mem->flags; |
| |
| /* Disallow changing a memory slot's size. */ |
| r = -EINVAL; |
| if (npages && old.npages && npages != old.npages) |
| goto out_unlock; |
| |
| /* Check for overlaps */ |
| r = -EEXIST; |
| for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { |
| struct kvm_memory_slot *s = &kvm->memslots[i]; |
| |
| if (s == memslot) |
| continue; |
| if (!((base_gfn + npages <= s->base_gfn) || |
| (base_gfn >= s->base_gfn + s->npages))) |
| goto out_unlock; |
| } |
| /* |
| * Do memory allocations outside lock. memory_config_version will |
| * detect any races. |
| */ |
| spin_unlock(&kvm->lock); |
| |
| /* Deallocate if slot is being removed */ |
| if (!npages) |
| new.phys_mem = NULL; |
| |
| /* Free page dirty bitmap if unneeded */ |
| if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) |
| new.dirty_bitmap = NULL; |
| |
| r = -ENOMEM; |
| |
| /* Allocate if a slot is being created */ |
| if (npages && !new.phys_mem) { |
| new.phys_mem = vmalloc(npages * sizeof(struct page *)); |
| |
| if (!new.phys_mem) |
| goto out_free; |
| |
| memset(new.phys_mem, 0, npages * sizeof(struct page *)); |
| for (i = 0; i < npages; ++i) { |
| new.phys_mem[i] = alloc_page(GFP_HIGHUSER |
| | __GFP_ZERO); |
| if (!new.phys_mem[i]) |
| goto out_free; |
| set_page_private(new.phys_mem[i],0); |
| } |
| } |
| |
| /* Allocate page dirty bitmap if needed */ |
| if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { |
| unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8; |
| |
| new.dirty_bitmap = vmalloc(dirty_bytes); |
| if (!new.dirty_bitmap) |
| goto out_free; |
| memset(new.dirty_bitmap, 0, dirty_bytes); |
| } |
| |
| spin_lock(&kvm->lock); |
| |
| if (memory_config_version != kvm->memory_config_version) { |
| spin_unlock(&kvm->lock); |
| kvm_free_physmem_slot(&new, &old); |
| goto raced; |
| } |
| |
| r = -EAGAIN; |
| if (kvm->busy) |
| goto out_unlock; |
| |
| if (mem->slot >= kvm->nmemslots) |
| kvm->nmemslots = mem->slot + 1; |
| |
| *memslot = new; |
| ++kvm->memory_config_version; |
| |
| spin_unlock(&kvm->lock); |
| |
| for (i = 0; i < KVM_MAX_VCPUS; ++i) { |
| struct kvm_vcpu *vcpu; |
| |
| vcpu = vcpu_load_slot(kvm, i); |
| if (!vcpu) |
| continue; |
| if (new.flags & KVM_MEM_LOG_DIRTY_PAGES) |
| do_remove_write_access(vcpu, mem->slot); |
| kvm_mmu_reset_context(vcpu); |
| vcpu_put(vcpu); |
| } |
| |
| kvm_free_physmem_slot(&old, &new); |
| return 0; |
| |
| out_unlock: |
| spin_unlock(&kvm->lock); |
| out_free: |
| kvm_free_physmem_slot(&new, &old); |
| out: |
| return r; |
| } |
| |
| /* |
| * Get (and clear) the dirty memory log for a memory slot. |
| */ |
| static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, |
| struct kvm_dirty_log *log) |
| { |
| struct kvm_memory_slot *memslot; |
| int r, i; |
| int n; |
| int cleared; |
| unsigned long any = 0; |
| |
| spin_lock(&kvm->lock); |
| |
| /* |
| * Prevent changes to guest memory configuration even while the lock |
| * is not taken. |
| */ |
| ++kvm->busy; |
| spin_unlock(&kvm->lock); |
| r = -EINVAL; |
| if (log->slot >= KVM_MEMORY_SLOTS) |
| goto out; |
| |
| memslot = &kvm->memslots[log->slot]; |
| r = -ENOENT; |
| if (!memslot->dirty_bitmap) |
| goto out; |
| |
| n = ALIGN(memslot->npages, BITS_PER_LONG) / 8; |
| |
| for (i = 0; !any && i < n/sizeof(long); ++i) |
| any = memslot->dirty_bitmap[i]; |
| |
| r = -EFAULT; |
| if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) |
| goto out; |
| |
| if (any) { |
| cleared = 0; |
| for (i = 0; i < KVM_MAX_VCPUS; ++i) { |
| struct kvm_vcpu *vcpu; |
| |
| vcpu = vcpu_load_slot(kvm, i); |
| if (!vcpu) |
| continue; |
| if (!cleared) { |
| do_remove_write_access(vcpu, log->slot); |
| memset(memslot->dirty_bitmap, 0, n); |
| cleared = 1; |
| } |
| kvm_arch_ops->tlb_flush(vcpu); |
| vcpu_put(vcpu); |
| } |
| } |
| |
| r = 0; |
| |
| out: |
| spin_lock(&kvm->lock); |
| --kvm->busy; |
| spin_unlock(&kvm->lock); |
| return r; |
| } |
| |
| struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) |
| { |
| int i; |
| |
| for (i = 0; i < kvm->nmemslots; ++i) { |
| struct kvm_memory_slot *memslot = &kvm->memslots[i]; |
| |
| if (gfn >= memslot->base_gfn |
| && gfn < memslot->base_gfn + memslot->npages) |
| return memslot; |
| } |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(gfn_to_memslot); |
| |
| struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) |
| { |
| struct kvm_memory_slot *slot; |
| |
| slot = gfn_to_memslot(kvm, gfn); |
| if (!slot) |
| return NULL; |
| return slot->phys_mem[gfn - slot->base_gfn]; |
| } |
| EXPORT_SYMBOL_GPL(gfn_to_page); |
| |
| void mark_page_dirty(struct kvm *kvm, gfn_t gfn) |
| { |
| int i; |
| struct kvm_memory_slot *memslot = NULL; |
| unsigned long rel_gfn; |
| |
| for (i = 0; i < kvm->nmemslots; ++i) { |
| memslot = &kvm->memslots[i]; |
| |
| if (gfn >= memslot->base_gfn |
| && gfn < memslot->base_gfn + memslot->npages) { |
| |
| if (!memslot || !memslot->dirty_bitmap) |
| return; |
| |
| rel_gfn = gfn - memslot->base_gfn; |
| |
| /* avoid RMW */ |
| if (!test_bit(rel_gfn, memslot->dirty_bitmap)) |
| set_bit(rel_gfn, memslot->dirty_bitmap); |
| return; |
| } |
| } |
| } |
| |
| static int emulator_read_std(unsigned long addr, |
| unsigned long *val, |
| unsigned int bytes, |
| struct x86_emulate_ctxt *ctxt) |
| { |
| struct kvm_vcpu *vcpu = ctxt->vcpu; |
| void *data = val; |
| |
| while (bytes) { |
| gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr); |
| unsigned offset = addr & (PAGE_SIZE-1); |
| unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset); |
| unsigned long pfn; |
| struct page *page; |
| void *page_virt; |
| |
| if (gpa == UNMAPPED_GVA) |
| return X86EMUL_PROPAGATE_FAULT; |
| pfn = gpa >> PAGE_SHIFT; |
| page = gfn_to_page(vcpu->kvm, pfn); |
| if (!page) |
| return X86EMUL_UNHANDLEABLE; |
| page_virt = kmap_atomic(page, KM_USER0); |
| |
| memcpy(data, page_virt + offset, tocopy); |
| |
| kunmap_atomic(page_virt, KM_USER0); |
| |
| bytes -= tocopy; |
| data += tocopy; |
| addr += tocopy; |
| } |
| |
| return X86EMUL_CONTINUE; |
| } |
| |
| static int emulator_write_std(unsigned long addr, |
| unsigned long val, |
| unsigned int bytes, |
| struct x86_emulate_ctxt *ctxt) |
| { |
| printk(KERN_ERR "emulator_write_std: addr %lx n %d\n", |
| addr, bytes); |
| return X86EMUL_UNHANDLEABLE; |
| } |
| |
| static int emulator_read_emulated(unsigned long addr, |
| unsigned long *val, |
| unsigned int bytes, |
| struct x86_emulate_ctxt *ctxt) |
| { |
| struct kvm_vcpu *vcpu = ctxt->vcpu; |
| |
| if (vcpu->mmio_read_completed) { |
| memcpy(val, vcpu->mmio_data, bytes); |
| vcpu->mmio_read_completed = 0; |
| return X86EMUL_CONTINUE; |
| } else if (emulator_read_std(addr, val, bytes, ctxt) |
| == X86EMUL_CONTINUE) |
| return X86EMUL_CONTINUE; |
| else { |
| gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr); |
| |
| if (gpa == UNMAPPED_GVA) |
| return X86EMUL_PROPAGATE_FAULT; |
| vcpu->mmio_needed = 1; |
| vcpu->mmio_phys_addr = gpa; |
| vcpu->mmio_size = bytes; |
| vcpu->mmio_is_write = 0; |
| |
| return X86EMUL_UNHANDLEABLE; |
| } |
| } |
| |
| static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, |
| unsigned long val, int bytes) |
| { |
| struct page *page; |
| void *virt; |
| |
| if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT)) |
| return 0; |
| page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); |
| if (!page) |
| return 0; |
| kvm_mmu_pre_write(vcpu, gpa, bytes); |
| mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT); |
| virt = kmap_atomic(page, KM_USER0); |
| memcpy(virt + offset_in_page(gpa), &val, bytes); |
| kunmap_atomic(virt, KM_USER0); |
| kvm_mmu_post_write(vcpu, gpa, bytes); |
| return 1; |
| } |
| |
| static int emulator_write_emulated(unsigned long addr, |
| unsigned long val, |
| unsigned int bytes, |
| struct x86_emulate_ctxt *ctxt) |
| { |
| struct kvm_vcpu *vcpu = ctxt->vcpu; |
| gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr); |
| |
| if (gpa == UNMAPPED_GVA) |
| return X86EMUL_PROPAGATE_FAULT; |
| |
| if (emulator_write_phys(vcpu, gpa, val, bytes)) |
| return X86EMUL_CONTINUE; |
| |
| vcpu->mmio_needed = 1; |
| vcpu->mmio_phys_addr = gpa; |
| vcpu->mmio_size = bytes; |
| vcpu->mmio_is_write = 1; |
| memcpy(vcpu->mmio_data, &val, bytes); |
| |
| return X86EMUL_CONTINUE; |
| } |
| |
| static int emulator_cmpxchg_emulated(unsigned long addr, |
| unsigned long old, |
| unsigned long new, |
| unsigned int bytes, |
| struct x86_emulate_ctxt *ctxt) |
| { |
| static int reported; |
| |
| if (!reported) { |
| reported = 1; |
| printk(KERN_WARNING "kvm: emulating exchange as write\n"); |
| } |
| return emulator_write_emulated(addr, new, bytes, ctxt); |
| } |
| |
| #ifdef CONFIG_X86_32 |
| |
| static int emulator_cmpxchg8b_emulated(unsigned long addr, |
| unsigned long old_lo, |
| unsigned long old_hi, |
| unsigned long new_lo, |
| unsigned long new_hi, |
| struct x86_emulate_ctxt *ctxt) |
| { |
| static int reported; |
| int r; |
| |
| if (!reported) { |
| reported = 1; |
| printk(KERN_WARNING "kvm: emulating exchange8b as write\n"); |
| } |
| r = emulator_write_emulated(addr, new_lo, 4, ctxt); |
| if (r != X86EMUL_CONTINUE) |
| return r; |
| return emulator_write_emulated(addr+4, new_hi, 4, ctxt); |
| } |
| |
| #endif |
| |
| static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) |
| { |
| return kvm_arch_ops->get_segment_base(vcpu, seg); |
| } |
| |
| int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address) |
| { |
| return X86EMUL_CONTINUE; |
| } |
| |
| int emulate_clts(struct kvm_vcpu *vcpu) |
| { |
| unsigned long cr0; |
| |
| kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu); |
| cr0 = vcpu->cr0 & ~CR0_TS_MASK; |
| kvm_arch_ops->set_cr0(vcpu, cr0); |
| return X86EMUL_CONTINUE; |
| } |
| |
| int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest) |
| { |
| struct kvm_vcpu *vcpu = ctxt->vcpu; |
| |
| switch (dr) { |
| case 0 ... 3: |
| *dest = kvm_arch_ops->get_dr(vcpu, dr); |
| return X86EMUL_CONTINUE; |
| default: |
| printk(KERN_DEBUG "%s: unexpected dr %u\n", |
| __FUNCTION__, dr); |
| return X86EMUL_UNHANDLEABLE; |
| } |
| } |
| |
| int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) |
| { |
| unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U; |
| int exception; |
| |
| kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception); |
| if (exception) { |
| /* FIXME: better handling */ |
| return X86EMUL_UNHANDLEABLE; |
| } |
| return X86EMUL_CONTINUE; |
| } |
| |
| static void report_emulation_failure(struct x86_emulate_ctxt *ctxt) |
| { |
| static int reported; |
| u8 opcodes[4]; |
| unsigned long rip = ctxt->vcpu->rip; |
| unsigned long rip_linear; |
| |
| rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS); |
| |
| if (reported) |
| return; |
| |
| emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt); |
| |
| printk(KERN_ERR "emulation failed but !mmio_needed?" |
| " rip %lx %02x %02x %02x %02x\n", |
| rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]); |
| reported = 1; |
| } |
| |
| struct x86_emulate_ops emulate_ops = { |
| .read_std = emulator_read_std, |
| .write_std = emulator_write_std, |
| .read_emulated = emulator_read_emulated, |
| .write_emulated = emulator_write_emulated, |
| .cmpxchg_emulated = emulator_cmpxchg_emulated, |
| #ifdef CONFIG_X86_32 |
| .cmpxchg8b_emulated = emulator_cmpxchg8b_emulated, |
| #endif |
| }; |
| |
| int emulate_instruction(struct kvm_vcpu *vcpu, |
| struct kvm_run *run, |
| unsigned long cr2, |
| u16 error_code) |
| { |
| struct x86_emulate_ctxt emulate_ctxt; |
| int r; |
| int cs_db, cs_l; |
| |
| kvm_arch_ops->cache_regs(vcpu); |
| |
| kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
| |
| emulate_ctxt.vcpu = vcpu; |
| emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu); |
| emulate_ctxt.cr2 = cr2; |
| emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM) |
| ? X86EMUL_MODE_REAL : cs_l |
| ? X86EMUL_MODE_PROT64 : cs_db |
| ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; |
| |
| if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) { |
| emulate_ctxt.cs_base = 0; |
| emulate_ctxt.ds_base = 0; |
| emulate_ctxt.es_base = 0; |
| emulate_ctxt.ss_base = 0; |
| } else { |
| emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS); |
| emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS); |
| emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES); |
| emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS); |
| } |
| |
| emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS); |
| emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS); |
| |
| vcpu->mmio_is_write = 0; |
| r = x86_emulate_memop(&emulate_ctxt, &emulate_ops); |
| |
| if ((r || vcpu->mmio_is_write) && run) { |
| run->mmio.phys_addr = vcpu->mmio_phys_addr; |
| memcpy(run->mmio.data, vcpu->mmio_data, 8); |
| run->mmio.len = vcpu->mmio_size; |
| run->mmio.is_write = vcpu->mmio_is_write; |
| } |
| |
| if (r) { |
| if (kvm_mmu_unprotect_page_virt(vcpu, cr2)) |
| return EMULATE_DONE; |
| if (!vcpu->mmio_needed) { |
| report_emulation_failure(&emulate_ctxt); |
| return EMULATE_FAIL; |
| } |
| return EMULATE_DO_MMIO; |
| } |
| |
| kvm_arch_ops->decache_regs(vcpu); |
| kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags); |
| |
| if (vcpu->mmio_is_write) |
| return EMULATE_DO_MMIO; |
| |
| return EMULATE_DONE; |
| } |
| EXPORT_SYMBOL_GPL(emulate_instruction); |
| |
| int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| { |
| unsigned long nr, a0, a1, a2, a3, a4, a5, ret; |
| |
| kvm_arch_ops->cache_regs(vcpu); |
| ret = -KVM_EINVAL; |
| #ifdef CONFIG_X86_64 |
| if (is_long_mode(vcpu)) { |
| nr = vcpu->regs[VCPU_REGS_RAX]; |
| a0 = vcpu->regs[VCPU_REGS_RDI]; |
| a1 = vcpu->regs[VCPU_REGS_RSI]; |
| a2 = vcpu->regs[VCPU_REGS_RDX]; |
| a3 = vcpu->regs[VCPU_REGS_RCX]; |
| a4 = vcpu->regs[VCPU_REGS_R8]; |
| a5 = vcpu->regs[VCPU_REGS_R9]; |
| } else |
| #endif |
| { |
| nr = vcpu->regs[VCPU_REGS_RBX] & -1u; |
| a0 = vcpu->regs[VCPU_REGS_RAX] & -1u; |
| a1 = vcpu->regs[VCPU_REGS_RCX] & -1u; |
| a2 = vcpu->regs[VCPU_REGS_RDX] & -1u; |
| a3 = vcpu->regs[VCPU_REGS_RSI] & -1u; |
| a4 = vcpu->regs[VCPU_REGS_RDI] & -1u; |
| a5 = vcpu->regs[VCPU_REGS_RBP] & -1u; |
| } |
| switch (nr) { |
| default: |
| run->hypercall.args[0] = a0; |
| run->hypercall.args[1] = a1; |
| run->hypercall.args[2] = a2; |
| run->hypercall.args[3] = a3; |
| run->hypercall.args[4] = a4; |
| run->hypercall.args[5] = a5; |
| run->hypercall.ret = ret; |
| run->hypercall.longmode = is_long_mode(vcpu); |
| kvm_arch_ops->decache_regs(vcpu); |
| return 0; |
| } |
| vcpu->regs[VCPU_REGS_RAX] = ret; |
| kvm_arch_ops->decache_regs(vcpu); |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(kvm_hypercall); |
| |
| static u64 mk_cr_64(u64 curr_cr, u32 new_val) |
| { |
| return (curr_cr & ~((1ULL << 32) - 1)) | new_val; |
| } |
| |
| void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) |
| { |
| struct descriptor_table dt = { limit, base }; |
| |
| kvm_arch_ops->set_gdt(vcpu, &dt); |
| } |
| |
| void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) |
| { |
| struct descriptor_table dt = { limit, base }; |
| |
| kvm_arch_ops->set_idt(vcpu, &dt); |
| } |
| |
| void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw, |
| unsigned long *rflags) |
| { |
| lmsw(vcpu, msw); |
| *rflags = kvm_arch_ops->get_rflags(vcpu); |
| } |
| |
| unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr) |
| { |
| kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu); |
| switch (cr) { |
| case 0: |
| return vcpu->cr0; |
| case 2: |
| return vcpu->cr2; |
| case 3: |
| return vcpu->cr3; |
| case 4: |
| return vcpu->cr4; |
| default: |
| vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr); |
| return 0; |
| } |
| } |
| |
| void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val, |
| unsigned long *rflags) |
| { |
| switch (cr) { |
| case 0: |
| set_cr0(vcpu, mk_cr_64(vcpu->cr0, val)); |
| *rflags = kvm_arch_ops->get_rflags(vcpu); |
| break; |
| case 2: |
| vcpu->cr2 = val; |
| break; |
| case 3: |
| set_cr3(vcpu, val); |
| break; |
| case 4: |
| set_cr4(vcpu, mk_cr_64(vcpu->cr4, val)); |
| break; |
| default: |
| vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr); |
| } |
| } |
| |
| /* |
| * Register the para guest with the host: |
| */ |
| static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa) |
| { |
| struct kvm_vcpu_para_state *para_state; |
| hpa_t para_state_hpa, hypercall_hpa; |
| struct page *para_state_page; |
| unsigned char *hypercall; |
| gpa_t hypercall_gpa; |
| |
| printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n"); |
| printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa); |
| |
| /* |
| * Needs to be page aligned: |
| */ |
| if (para_state_gpa != PAGE_ALIGN(para_state_gpa)) |
| goto err_gp; |
| |
| para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa); |
| printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa); |
| if (is_error_hpa(para_state_hpa)) |
| goto err_gp; |
| |
| mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT); |
| para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT); |
| para_state = kmap_atomic(para_state_page, KM_USER0); |
| |
| printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version); |
| printk(KERN_DEBUG ".... size: %d\n", para_state->size); |
| |
| para_state->host_version = KVM_PARA_API_VERSION; |
| /* |
| * We cannot support guests that try to register themselves |
| * with a newer API version than the host supports: |
| */ |
| if (para_state->guest_version > KVM_PARA_API_VERSION) { |
| para_state->ret = -KVM_EINVAL; |
| goto err_kunmap_skip; |
| } |
| |
| hypercall_gpa = para_state->hypercall_gpa; |
| hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa); |
| printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa); |
| if (is_error_hpa(hypercall_hpa)) { |
| para_state->ret = -KVM_EINVAL; |
| goto err_kunmap_skip; |
| } |
| |
| printk(KERN_DEBUG "kvm: para guest successfully registered.\n"); |
| vcpu->para_state_page = para_state_page; |
| vcpu->para_state_gpa = para_state_gpa; |
| vcpu->hypercall_gpa = hypercall_gpa; |
| |
| mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT); |
| hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT), |
| KM_USER1) + (hypercall_hpa & ~PAGE_MASK); |
| kvm_arch_ops->patch_hypercall(vcpu, hypercall); |
| kunmap_atomic(hypercall, KM_USER1); |
| |
| para_state->ret = 0; |
| err_kunmap_skip: |
| kunmap_atomic(para_state, KM_USER0); |
| return 0; |
| err_gp: |
| return 1; |
| } |
| |
| int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
| { |
| u64 data; |
| |
| switch (msr) { |
| case 0xc0010010: /* SYSCFG */ |
| case 0xc0010015: /* HWCR */ |
| case MSR_IA32_PLATFORM_ID: |
| case MSR_IA32_P5_MC_ADDR: |
| case MSR_IA32_P5_MC_TYPE: |
| case MSR_IA32_MC0_CTL: |
| case MSR_IA32_MCG_STATUS: |
| case MSR_IA32_MCG_CAP: |
| case MSR_IA32_MC0_MISC: |
| case MSR_IA32_MC0_MISC+4: |
| case MSR_IA32_MC0_MISC+8: |
| case MSR_IA32_MC0_MISC+12: |
| case MSR_IA32_MC0_MISC+16: |
| case MSR_IA32_UCODE_REV: |
| case MSR_IA32_PERF_STATUS: |
| /* MTRR registers */ |
| case 0xfe: |
| case 0x200 ... 0x2ff: |
| data = 0; |
| break; |
| case 0xcd: /* fsb frequency */ |
| data = 3; |
| break; |
| case MSR_IA32_APICBASE: |
| data = vcpu->apic_base; |
| break; |
| case MSR_IA32_MISC_ENABLE: |
| data = vcpu->ia32_misc_enable_msr; |
| break; |
| #ifdef CONFIG_X86_64 |
| case MSR_EFER: |
| data = vcpu->shadow_efer; |
| break; |
| #endif |
| default: |
| printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr); |
| return 1; |
| } |
| *pdata = data; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_msr_common); |
| |
| /* |
| * Reads an msr value (of 'msr_index') into 'pdata'. |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) |
| { |
| return kvm_arch_ops->get_msr(vcpu, msr_index, pdata); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| |
| static void set_efer(struct kvm_vcpu *vcpu, u64 efer) |
| { |
| if (efer & EFER_RESERVED_BITS) { |
| printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n", |
| efer); |
| inject_gp(vcpu); |
| return; |
| } |
| |
| if (is_paging(vcpu) |
| && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) { |
| printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n"); |
| inject_gp(vcpu); |
| return; |
| } |
| |
| kvm_arch_ops->set_efer(vcpu, efer); |
| |
| efer &= ~EFER_LMA; |
| efer |= vcpu->shadow_efer & EFER_LMA; |
| |
| vcpu->shadow_efer = efer; |
| } |
| |
| #endif |
| |
| int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
| { |
| switch (msr) { |
| #ifdef CONFIG_X86_64 |
| case MSR_EFER: |
| set_efer(vcpu, data); |
| break; |
| #endif |
| case MSR_IA32_MC0_STATUS: |
| printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n", |
| __FUNCTION__, data); |
| break; |
| case MSR_IA32_MCG_STATUS: |
| printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n", |
| __FUNCTION__, data); |
| break; |
| case MSR_IA32_UCODE_REV: |
| case MSR_IA32_UCODE_WRITE: |
| case 0x200 ... 0x2ff: /* MTRRs */ |
| break; |
| case MSR_IA32_APICBASE: |
| vcpu->apic_base = data; |
| break; |
| case MSR_IA32_MISC_ENABLE: |
| vcpu->ia32_misc_enable_msr = data; |
| break; |
| /* |
| * This is the 'probe whether the host is KVM' logic: |
| */ |
| case MSR_KVM_API_MAGIC: |
| return vcpu_register_para(vcpu, data); |
| |
| default: |
| printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr); |
| return 1; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_msr_common); |
| |
| /* |
| * Writes msr value into into the appropriate "register". |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) |
| { |
| return kvm_arch_ops->set_msr(vcpu, msr_index, data); |
| } |
| |
| void kvm_resched(struct kvm_vcpu *vcpu) |
| { |
| vcpu_put(vcpu); |
| cond_resched(); |
| vcpu_load(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_resched); |
| |
| void load_msrs(struct vmx_msr_entry *e, int n) |
| { |
| int i; |
| |
| for (i = 0; i < n; ++i) |
| wrmsrl(e[i].index, e[i].data); |
| } |
| EXPORT_SYMBOL_GPL(load_msrs); |
| |
| void save_msrs(struct vmx_msr_entry *e, int n) |
| { |
| int i; |
| |
| for (i = 0; i < n; ++i) |
| rdmsrl(e[i].index, e[i].data); |
| } |
| EXPORT_SYMBOL_GPL(save_msrs); |
| |
| void kvm_emulate_cpuid(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| u32 function; |
| struct kvm_cpuid_entry *e, *best; |
| |
| kvm_arch_ops->cache_regs(vcpu); |
| function = vcpu->regs[VCPU_REGS_RAX]; |
| vcpu->regs[VCPU_REGS_RAX] = 0; |
| vcpu->regs[VCPU_REGS_RBX] = 0; |
| vcpu->regs[VCPU_REGS_RCX] = 0; |
| vcpu->regs[VCPU_REGS_RDX] = 0; |
| best = NULL; |
| for (i = 0; i < vcpu->cpuid_nent; ++i) { |
| e = &vcpu->cpuid_entries[i]; |
| if (e->function == function) { |
| best = e; |
| break; |
| } |
| /* |
| * Both basic or both extended? |
| */ |
| if (((e->function ^ function) & 0x80000000) == 0) |
| if (!best || e->function > best->function) |
| best = e; |
| } |
| if (best) { |
| vcpu->regs[VCPU_REGS_RAX] = best->eax; |
| vcpu->regs[VCPU_REGS_RBX] = best->ebx; |
| vcpu->regs[VCPU_REGS_RCX] = best->ecx; |
| vcpu->regs[VCPU_REGS_RDX] = best->edx; |
| } |
| kvm_arch_ops->decache_regs(vcpu); |
| kvm_arch_ops->skip_emulated_instruction(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); |
| |
| static int pio_copy_data(struct kvm_vcpu *vcpu) |
| { |
| void *p = vcpu->pio_data; |
| void *q; |
| unsigned bytes; |
| int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1; |
| |
| kvm_arch_ops->vcpu_put(vcpu); |
| q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE, |
| PAGE_KERNEL); |
| if (!q) { |
| kvm_arch_ops->vcpu_load(vcpu); |
| free_pio_guest_pages(vcpu); |
| return -ENOMEM; |
| } |
| q += vcpu->pio.guest_page_offset; |
| bytes = vcpu->pio.size * vcpu->pio.cur_count; |
| if (vcpu->pio.in) |
| memcpy(q, p, bytes); |
| else |
| memcpy(p, q, bytes); |
| q -= vcpu->pio.guest_page_offset; |
| vunmap(q); |
| kvm_arch_ops->vcpu_load(vcpu); |
| free_pio_guest_pages(vcpu); |
| return 0; |
| } |
| |
| static int complete_pio(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pio_request *io = &vcpu->pio; |
| long delta; |
| int r; |
| |
| kvm_arch_ops->cache_regs(vcpu); |
| |
| if (!io->string) { |
| if (io->in) |
| memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data, |
| io->size); |
| } else { |
| if (io->in) { |
| r = pio_copy_data(vcpu); |
| if (r) { |
| kvm_arch_ops->cache_regs(vcpu); |
| return r; |
| } |
| } |
| |
| delta = 1; |
| if (io->rep) { |
| delta *= io->cur_count; |
| /* |
| * The size of the register should really depend on |
| * current address size. |
| */ |
| vcpu->regs[VCPU_REGS_RCX] -= delta; |
| } |
| if (io->down) |
| delta = -delta; |
| delta *= io->size; |
| if (io->in) |
| vcpu->regs[VCPU_REGS_RDI] += delta; |
| else |
| vcpu->regs[VCPU_REGS_RSI] += delta; |
| } |
| |
| vcpu->run->io_completed = 0; |
| |
| kvm_arch_ops->decache_regs(vcpu); |
| |
| io->count -= io->cur_count; |
| io->cur_count = 0; |
| |
| if (!io->count) |
| kvm_arch_ops->skip_emulated_instruction(vcpu); |
| return 0; |
| } |
| |
| int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in, |
| int size, unsigned long count, int string, int down, |
| gva_t address, int rep, unsigned port) |
| { |
| unsigned now, in_page; |
| int i; |
| int nr_pages = 1; |
| struct page *page; |
| |
| vcpu->run->exit_reason = KVM_EXIT_IO; |
| vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; |
| vcpu->run->io.size = size; |
| vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; |
| vcpu->run->io.count = count; |
| vcpu->run->io.port = port; |
| vcpu->pio.count = count; |
| vcpu->pio.cur_count = count; |
| vcpu->pio.size = size; |
| vcpu->pio.in = in; |
| vcpu->pio.string = string; |
| vcpu->pio.down = down; |
| vcpu->pio.guest_page_offset = offset_in_page(address); |
| vcpu->pio.rep = rep; |
| |
| if (!string) { |
| kvm_arch_ops->cache_regs(vcpu); |
| memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4); |
| kvm_arch_ops->decache_regs(vcpu); |
| return 0; |
| } |
| |
| if (!count) { |
| kvm_arch_ops->skip_emulated_instruction(vcpu); |
| return 1; |
| } |
| |
| now = min(count, PAGE_SIZE / size); |
| |
| if (!down) |
| in_page = PAGE_SIZE - offset_in_page(address); |
| else |
| in_page = offset_in_page(address) + size; |
| now = min(count, (unsigned long)in_page / size); |
| if (!now) { |
| /* |
| * String I/O straddles page boundary. Pin two guest pages |
| * so that we satisfy atomicity constraints. Do just one |
| * transaction to avoid complexity. |
| */ |
| nr_pages = 2; |
| now = 1; |
| } |
| if (down) { |
| /* |
| * String I/O in reverse. Yuck. Kill the guest, fix later. |
| */ |
| printk(KERN_ERR "kvm: guest string pio down\n"); |
| inject_gp(vcpu); |
| return 1; |
| } |
| vcpu->run->io.count = now; |
| vcpu->pio.cur_count = now; |
| |
| for (i = 0; i < nr_pages; ++i) { |
| spin_lock(&vcpu->kvm->lock); |
| page = gva_to_page(vcpu, address + i * PAGE_SIZE); |
| if (page) |
| get_page(page); |
| vcpu->pio.guest_pages[i] = page; |
| spin_unlock(&vcpu->kvm->lock); |
| if (!page) { |
| inject_gp(vcpu); |
| free_pio_guest_pages(vcpu); |
| return 1; |
| } |
| } |
| |
| if (!vcpu->pio.in) |
| return pio_copy_data(vcpu); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_setup_pio); |
| |
| static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| int r; |
| sigset_t sigsaved; |
| |
| vcpu_load(vcpu); |
| |
| if (vcpu->sigset_active) |
| sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); |
| |
| /* re-sync apic's tpr */ |
| vcpu->cr8 = kvm_run->cr8; |
| |
| if (kvm_run->io_completed) { |
| if (vcpu->pio.cur_count) { |
| r = complete_pio(vcpu); |
| if (r) |
| goto out; |
| } else { |
| memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8); |
| vcpu->mmio_read_completed = 1; |
| } |
| } |
| |
| vcpu->mmio_needed = 0; |
| |
| if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) { |
| kvm_arch_ops->cache_regs(vcpu); |
| vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret; |
| kvm_arch_ops->decache_regs(vcpu); |
| } |
| |
| r = kvm_arch_ops->run(vcpu, kvm_run); |
| |
| out: |
| if (vcpu->sigset_active) |
| sigprocmask(SIG_SETMASK, &sigsaved, NULL); |
| |
| vcpu_put(vcpu); |
| return r; |
| } |
| |
| static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, |
| struct kvm_regs *regs) |
| { |
| vcpu_load(vcpu); |
| |
| kvm_arch_ops->cache_regs(vcpu); |
| |
| regs->rax = vcpu->regs[VCPU_REGS_RAX]; |
| regs->rbx = vcpu->regs[VCPU_REGS_RBX]; |
| regs->rcx = vcpu->regs[VCPU_REGS_RCX]; |
| regs->rdx = vcpu->regs[VCPU_REGS_RDX]; |
| regs->rsi = vcpu->regs[VCPU_REGS_RSI]; |
| regs->rdi = vcpu->regs[VCPU_REGS_RDI]; |
| regs->rsp = vcpu->regs[VCPU_REGS_RSP]; |
| regs->rbp = vcpu->regs[VCPU_REGS_RBP]; |
| #ifdef CONFIG_X86_64 |
| regs->r8 = vcpu->regs[VCPU_REGS_R8]; |
| regs->r9 = vcpu->regs[VCPU_REGS_R9]; |
| regs->r10 = vcpu->regs[VCPU_REGS_R10]; |
| regs->r11 = vcpu->regs[VCPU_REGS_R11]; |
| regs->r12 = vcpu->regs[VCPU_REGS_R12]; |
| regs->r13 = vcpu->regs[VCPU_REGS_R13]; |
| regs->r14 = vcpu->regs[VCPU_REGS_R14]; |
| regs->r15 = vcpu->regs[VCPU_REGS_R15]; |
| #endif |
| |
| regs->rip = vcpu->rip; |
| regs->rflags = kvm_arch_ops->get_rflags(vcpu); |
| |
| /* |
| * Don't leak debug flags in case they were set for guest debugging |
| */ |
| if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep) |
| regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, |
| struct kvm_regs *regs) |
| { |
| vcpu_load(vcpu); |
| |
| vcpu->regs[VCPU_REGS_RAX] = regs->rax; |
| vcpu->regs[VCPU_REGS_RBX] = regs->rbx; |
| vcpu->regs[VCPU_REGS_RCX] = regs->rcx; |
| vcpu->regs[VCPU_REGS_RDX] = regs->rdx; |
| vcpu->regs[VCPU_REGS_RSI] = regs->rsi; |
| vcpu->regs[VCPU_REGS_RDI] = regs->rdi; |
| vcpu->regs[VCPU_REGS_RSP] = regs->rsp; |
| vcpu->regs[VCPU_REGS_RBP] = regs->rbp; |
| #ifdef CONFIG_X86_64 |
| vcpu->regs[VCPU_REGS_R8] = regs->r8; |
| vcpu->regs[VCPU_REGS_R9] = regs->r9; |
| vcpu->regs[VCPU_REGS_R10] = regs->r10; |
| vcpu->regs[VCPU_REGS_R11] = regs->r11; |
| vcpu->regs[VCPU_REGS_R12] = regs->r12; |
| vcpu->regs[VCPU_REGS_R13] = regs->r13; |
| vcpu->regs[VCPU_REGS_R14] = regs->r14; |
| vcpu->regs[VCPU_REGS_R15] = regs->r15; |
| #endif |
| |
| vcpu->rip = regs->rip; |
| kvm_arch_ops->set_rflags(vcpu, regs->rflags); |
| |
| kvm_arch_ops->decache_regs(vcpu); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static void get_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| return kvm_arch_ops->get_segment(vcpu, var, seg); |
| } |
| |
| static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| struct descriptor_table dt; |
| |
| vcpu_load(vcpu); |
| |
| get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
| get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); |
| get_segment(vcpu, &sregs->es, VCPU_SREG_ES); |
| get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); |
| get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); |
| get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); |
| |
| get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
| get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); |
| |
| kvm_arch_ops->get_idt(vcpu, &dt); |
| sregs->idt.limit = dt.limit; |
| sregs->idt.base = dt.base; |
| kvm_arch_ops->get_gdt(vcpu, &dt); |
| sregs->gdt.limit = dt.limit; |
| sregs->gdt.base = dt.base; |
| |
| kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu); |
| sregs->cr0 = vcpu->cr0; |
| sregs->cr2 = vcpu->cr2; |
| sregs->cr3 = vcpu->cr3; |
| sregs->cr4 = vcpu->cr4; |
| sregs->cr8 = vcpu->cr8; |
| sregs->efer = vcpu->shadow_efer; |
| sregs->apic_base = vcpu->apic_base; |
| |
| memcpy(sregs->interrupt_bitmap, vcpu->irq_pending, |
| sizeof sregs->interrupt_bitmap); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static void set_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| return kvm_arch_ops->set_segment(vcpu, var, seg); |
| } |
| |
| static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| int mmu_reset_needed = 0; |
| int i; |
| struct descriptor_table dt; |
| |
| vcpu_load(vcpu); |
| |
| dt.limit = sregs->idt.limit; |
| dt.base = sregs->idt.base; |
| kvm_arch_ops->set_idt(vcpu, &dt); |
| dt.limit = sregs->gdt.limit; |
| dt.base = sregs->gdt.base; |
| kvm_arch_ops->set_gdt(vcpu, &dt); |
| |
| vcpu->cr2 = sregs->cr2; |
| mmu_reset_needed |= vcpu->cr3 != sregs->cr3; |
| vcpu->cr3 = sregs->cr3; |
| |
| vcpu->cr8 = sregs->cr8; |
| |
| mmu_reset_needed |= vcpu->shadow_efer != sregs->efer; |
| #ifdef CONFIG_X86_64 |
| kvm_arch_ops->set_efer(vcpu, sregs->efer); |
| #endif |
| vcpu->apic_base = sregs->apic_base; |
| |
| kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu); |
| |
| mmu_reset_needed |= vcpu->cr0 != sregs->cr0; |
| kvm_arch_ops->set_cr0(vcpu, sregs->cr0); |
| |
| mmu_reset_needed |= vcpu->cr4 != sregs->cr4; |
| kvm_arch_ops->set_cr4(vcpu, sregs->cr4); |
| if (!is_long_mode(vcpu) && is_pae(vcpu)) |
| load_pdptrs(vcpu, vcpu->cr3); |
| |
| if (mmu_reset_needed) |
| kvm_mmu_reset_context(vcpu); |
| |
| memcpy(vcpu->irq_pending, sregs->interrupt_bitmap, |
| sizeof vcpu->irq_pending); |
| vcpu->irq_summary = 0; |
| for (i = 0; i < NR_IRQ_WORDS; ++i) |
| if (vcpu->irq_pending[i]) |
| __set_bit(i, &vcpu->irq_summary); |
| |
| set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
| set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); |
| set_segment(vcpu, &sregs->es, VCPU_SREG_ES); |
| set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); |
| set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); |
| set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); |
| |
| set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
| set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| /* |
| * List of msr numbers which we expose to userspace through KVM_GET_MSRS |
| * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. |
| * |
| * This list is modified at module load time to reflect the |
| * capabilities of the host cpu. |
| */ |
| static u32 msrs_to_save[] = { |
| MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, |
| MSR_K6_STAR, |
| #ifdef CONFIG_X86_64 |
| MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, |
| #endif |
| MSR_IA32_TIME_STAMP_COUNTER, |
| }; |
| |
| static unsigned num_msrs_to_save; |
| |
| static u32 emulated_msrs[] = { |
| MSR_IA32_MISC_ENABLE, |
| }; |
| |
| static __init void kvm_init_msr_list(void) |
| { |
| u32 dummy[2]; |
| unsigned i, j; |
| |
| for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { |
| if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) |
| continue; |
| if (j < i) |
| msrs_to_save[j] = msrs_to_save[i]; |
| j++; |
| } |
| num_msrs_to_save = j; |
| } |
| |
| /* |
| * Adapt set_msr() to msr_io()'s calling convention |
| */ |
| static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
| { |
| return set_msr(vcpu, index, *data); |
| } |
| |
| /* |
| * Read or write a bunch of msrs. All parameters are kernel addresses. |
| * |
| * @return number of msrs set successfully. |
| */ |
| static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, |
| struct kvm_msr_entry *entries, |
| int (*do_msr)(struct kvm_vcpu *vcpu, |
| unsigned index, u64 *data)) |
| { |
| int i; |
| |
| vcpu_load(vcpu); |
| |
| for (i = 0; i < msrs->nmsrs; ++i) |
| if (do_msr(vcpu, entries[i].index, &entries[i].data)) |
| break; |
| |
| vcpu_put(vcpu); |
| |
| return i; |
| } |
| |
| /* |
| * Read or write a bunch of msrs. Parameters are user addresses. |
| * |
| * @return number of msrs set successfully. |
| */ |
| static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, |
| int (*do_msr)(struct kvm_vcpu *vcpu, |
| unsigned index, u64 *data), |
| int writeback) |
| { |
| struct kvm_msrs msrs; |
| struct kvm_msr_entry *entries; |
| int r, n; |
| unsigned size; |
| |
| r = -EFAULT; |
| if (copy_from_user(&msrs, user_msrs, sizeof msrs)) |
| goto out; |
| |
| r = -E2BIG; |
| if (msrs.nmsrs >= MAX_IO_MSRS) |
| goto out; |
| |
| r = -ENOMEM; |
| size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; |
| entries = vmalloc(size); |
| if (!entries) |
| goto out; |
| |
| r = -EFAULT; |
| if (copy_from_user(entries, user_msrs->entries, size)) |
| goto out_free; |
| |
| r = n = __msr_io(vcpu, &msrs, entries, do_msr); |
| if (r < 0) |
| goto out_free; |
| |
| r = -EFAULT; |
| if (writeback && copy_to_user(user_msrs->entries, entries, size)) |
| goto out_free; |
| |
| r = n; |
| |
| out_free: |
| vfree(entries); |
| out: |
| return r; |
| } |
| |
| /* |
| * Translate a guest virtual address to a guest physical address. |
| */ |
| static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, |
| struct kvm_translation *tr) |
| { |
| unsigned long vaddr = tr->linear_address; |
| gpa_t gpa; |
| |
| vcpu_load(vcpu); |
| spin_lock(&vcpu->kvm->lock); |
| gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr); |
| tr->physical_address = gpa; |
| tr->valid = gpa != UNMAPPED_GVA; |
| tr->writeable = 1; |
| tr->usermode = 0; |
| spin_unlock(&vcpu->kvm->lock); |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, |
| struct kvm_interrupt *irq) |
| { |
| if (irq->irq < 0 || irq->irq >= 256) |
| return -EINVAL; |
| vcpu_load(vcpu); |
| |
| set_bit(irq->irq, vcpu->irq_pending); |
| set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary); |
| |
| vcpu_put(vcpu); |
| |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu, |
| struct kvm_debug_guest *dbg) |
| { |
| int r; |
| |
| vcpu_load(vcpu); |
| |
| r = kvm_arch_ops->set_guest_debug(vcpu, dbg); |
| |
| vcpu_put(vcpu); |
| |
| return r; |
| } |
| |
| static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma, |
| unsigned long address, |
| int *type) |
| { |
| struct kvm_vcpu *vcpu = vma->vm_file->private_data; |
| unsigned long pgoff; |
| struct page *page; |
| |
| *type = VM_FAULT_MINOR; |
| pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; |
| if (pgoff == 0) |
| page = virt_to_page(vcpu->run); |
| else if (pgoff == KVM_PIO_PAGE_OFFSET) |
| page = virt_to_page(vcpu->pio_data); |
| else |
| return NOPAGE_SIGBUS; |
| get_page(page); |
| return page; |
| } |
| |
| static struct vm_operations_struct kvm_vcpu_vm_ops = { |
| .nopage = kvm_vcpu_nopage, |
| }; |
| |
| static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| vma->vm_ops = &kvm_vcpu_vm_ops; |
| return 0; |
| } |
| |
| static int kvm_vcpu_release(struct inode *inode, struct file *filp) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| |
| fput(vcpu->kvm->filp); |
| return 0; |
| } |
| |
| static struct file_operations kvm_vcpu_fops = { |
| .release = kvm_vcpu_release, |
| .unlocked_ioctl = kvm_vcpu_ioctl, |
| .compat_ioctl = kvm_vcpu_ioctl, |
| .mmap = kvm_vcpu_mmap, |
| }; |
| |
| /* |
| * Allocates an inode for the vcpu. |
| */ |
| static int create_vcpu_fd(struct kvm_vcpu *vcpu) |
| { |
| int fd, r; |
| struct inode *inode; |
| struct file *file; |
| |
| atomic_inc(&vcpu->kvm->filp->f_count); |
| inode = kvmfs_inode(&kvm_vcpu_fops); |
| if (IS_ERR(inode)) { |
| r = PTR_ERR(inode); |
| goto out1; |
| } |
| |
| file = kvmfs_file(inode, vcpu); |
| if (IS_ERR(file)) { |
| r = PTR_ERR(file); |
| goto out2; |
| } |
| |
| r = get_unused_fd(); |
| if (r < 0) |
| goto out3; |
| fd = r; |
| fd_install(fd, file); |
| |
| return fd; |
| |
| out3: |
| fput(file); |
| out2: |
| iput(inode); |
| out1: |
| fput(vcpu->kvm->filp); |
| return r; |
| } |
| |
| /* |
| * Creates some virtual cpus. Good luck creating more than one. |
| */ |
| static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n) |
| { |
| int r; |
| struct kvm_vcpu *vcpu; |
| struct page *page; |
| |
| r = -EINVAL; |
| if (!valid_vcpu(n)) |
| goto out; |
| |
| vcpu = &kvm->vcpus[n]; |
| |
| mutex_lock(&vcpu->mutex); |
| |
| if (vcpu->vmcs) { |
| mutex_unlock(&vcpu->mutex); |
| return -EEXIST; |
| } |
| |
| page = alloc_page(GFP_KERNEL | __GFP_ZERO); |
| r = -ENOMEM; |
| if (!page) |
| goto out_unlock; |
| vcpu->run = page_address(page); |
| |
| page = alloc_page(GFP_KERNEL | __GFP_ZERO); |
| r = -ENOMEM; |
| if (!page) |
| goto out_free_run; |
| vcpu->pio_data = page_address(page); |
| |
| vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf, |
| FX_IMAGE_ALIGN); |
| vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE; |
| |
| r = kvm_arch_ops->vcpu_create(vcpu); |
| if (r < 0) |
| goto out_free_vcpus; |
| |
| r = kvm_mmu_create(vcpu); |
| if (r < 0) |
| goto out_free_vcpus; |
| |
| kvm_arch_ops->vcpu_load(vcpu); |
| r = kvm_mmu_setup(vcpu); |
| if (r >= 0) |
| r = kvm_arch_ops->vcpu_setup(vcpu); |
| vcpu_put(vcpu); |
| |
| if (r < 0) |
| goto out_free_vcpus; |
| |
| r = create_vcpu_fd(vcpu); |
| if (r < 0) |
| goto out_free_vcpus; |
| |
| return r; |
| |
| out_free_vcpus: |
| kvm_free_vcpu(vcpu); |
| out_free_run: |
| free_page((unsigned long)vcpu->run); |
| vcpu->run = NULL; |
| out_unlock: |
| mutex_unlock(&vcpu->mutex); |
| out: |
| return r; |
| } |
| |
| static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid *cpuid, |
| struct kvm_cpuid_entry __user *entries) |
| { |
| int r; |
| |
| r = -E2BIG; |
| if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(&vcpu->cpuid_entries, entries, |
| cpuid->nent * sizeof(struct kvm_cpuid_entry))) |
| goto out; |
| vcpu->cpuid_nent = cpuid->nent; |
| return 0; |
| |
| out: |
| return r; |
| } |
| |
| static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) |
| { |
| if (sigset) { |
| sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); |
| vcpu->sigset_active = 1; |
| vcpu->sigset = *sigset; |
| } else |
| vcpu->sigset_active = 0; |
| return 0; |
| } |
| |
| static long kvm_vcpu_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| int r = -EINVAL; |
| |
| switch (ioctl) { |
| case KVM_RUN: |
| r = -EINVAL; |
| if (arg) |
| goto out; |
| r = kvm_vcpu_ioctl_run(vcpu, vcpu->run); |
| break; |
| case KVM_GET_REGS: { |
| struct kvm_regs kvm_regs; |
| |
| memset(&kvm_regs, 0, sizeof kvm_regs); |
| r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs)) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_REGS: { |
| struct kvm_regs kvm_regs; |
| |
| r = -EFAULT; |
| if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs)) |
| goto out; |
| r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_GET_SREGS: { |
| struct kvm_sregs kvm_sregs; |
| |
| memset(&kvm_sregs, 0, sizeof kvm_sregs); |
| r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs)) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_SREGS: { |
| struct kvm_sregs kvm_sregs; |
| |
| r = -EFAULT; |
| if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs)) |
| goto out; |
| r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_TRANSLATE: { |
| struct kvm_translation tr; |
| |
| r = -EFAULT; |
| if (copy_from_user(&tr, argp, sizeof tr)) |
| goto out; |
| r = kvm_vcpu_ioctl_translate(vcpu, &tr); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &tr, sizeof tr)) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_INTERRUPT: { |
| struct kvm_interrupt irq; |
| |
| r = -EFAULT; |
| if (copy_from_user(&irq, argp, sizeof irq)) |
| goto out; |
| r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_DEBUG_GUEST: { |
| struct kvm_debug_guest dbg; |
| |
| r = -EFAULT; |
| if (copy_from_user(&dbg, argp, sizeof dbg)) |
| goto out; |
| r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_GET_MSRS: |
| r = msr_io(vcpu, argp, get_msr, 1); |
| break; |
| case KVM_SET_MSRS: |
| r = msr_io(vcpu, argp, do_set_msr, 0); |
| break; |
| case KVM_SET_CPUID: { |
| struct kvm_cpuid __user *cpuid_arg = argp; |
| struct kvm_cpuid cpuid; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) |
| goto out; |
| r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); |
| if (r) |
| goto out; |
| break; |
| } |
| case KVM_SET_SIGNAL_MASK: { |
| struct kvm_signal_mask __user *sigmask_arg = argp; |
| struct kvm_signal_mask kvm_sigmask; |
| sigset_t sigset, *p; |
| |
| p = NULL; |
| if (argp) { |
| r = -EFAULT; |
| if (copy_from_user(&kvm_sigmask, argp, |
| sizeof kvm_sigmask)) |
| goto out; |
| r = -EINVAL; |
| if (kvm_sigmask.len != sizeof sigset) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(&sigset, sigmask_arg->sigset, |
| sizeof sigset)) |
| goto out; |
| p = &sigset; |
| } |
| r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); |
| break; |
| } |
| default: |
| ; |
| } |
| out: |
| return r; |
| } |
| |
| static long kvm_vm_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm *kvm = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| int r = -EINVAL; |
| |
| switch (ioctl) { |
| case KVM_CREATE_VCPU: |
| r = kvm_vm_ioctl_create_vcpu(kvm, arg); |
| if (r < 0) |
| goto out; |
| break; |
| case KVM_SET_MEMORY_REGION: { |
| struct kvm_memory_region kvm_mem; |
| |
| r = -EFAULT; |
| if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem)) |
| goto out; |
| r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem); |
| if (r) |
| goto out; |
| break; |
| } |
| case KVM_GET_DIRTY_LOG: { |
| struct kvm_dirty_log log; |
| |
| r = -EFAULT; |
| if (copy_from_user(&log, argp, sizeof log)) |
| goto out; |
| r = kvm_vm_ioctl_get_dirty_log(kvm, &log); |
| if (r) |
| goto out; |
| break; |
| } |
| default: |
| ; |
| } |
| out: |
| return r; |
| } |
| |
| static struct page *kvm_vm_nopage(struct vm_area_struct *vma, |
| unsigned long address, |
| int *type) |
| { |
| struct kvm *kvm = vma->vm_file->private_data; |
| unsigned long pgoff; |
| struct page *page; |
| |
| *type = VM_FAULT_MINOR; |
| pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; |
| page = gfn_to_page(kvm, pgoff); |
| if (!page) |
| return NOPAGE_SIGBUS; |
| get_page(page); |
| return page; |
| } |
| |
| static struct vm_operations_struct kvm_vm_vm_ops = { |
| .nopage = kvm_vm_nopage, |
| }; |
| |
| static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| vma->vm_ops = &kvm_vm_vm_ops; |
| return 0; |
| } |
| |
| static struct file_operations kvm_vm_fops = { |
| .release = kvm_vm_release, |
| .unlocked_ioctl = kvm_vm_ioctl, |
| .compat_ioctl = kvm_vm_ioctl, |
| .mmap = kvm_vm_mmap, |
| }; |
| |
| static int kvm_dev_ioctl_create_vm(void) |
| { |
| int fd, r; |
| struct inode *inode; |
| struct file *file; |
| struct kvm *kvm; |
| |
| inode = kvmfs_inode(&kvm_vm_fops); |
| if (IS_ERR(inode)) { |
| r = PTR_ERR(inode); |
| goto out1; |
| } |
| |
| kvm = kvm_create_vm(); |
| if (IS_ERR(kvm)) { |
| r = PTR_ERR(kvm); |
| goto out2; |
| } |
| |
| file = kvmfs_file(inode, kvm); |
| if (IS_ERR(file)) { |
| r = PTR_ERR(file); |
| goto out3; |
| } |
| kvm->filp = file; |
| |
| r = get_unused_fd(); |
| if (r < 0) |
| goto out4; |
| fd = r; |
| fd_install(fd, file); |
| |
| return fd; |
| |
| out4: |
| fput(file); |
| out3: |
| kvm_destroy_vm(kvm); |
| out2: |
| iput(inode); |
| out1: |
| return r; |
| } |
| |
| static long kvm_dev_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| void __user *argp = (void __user *)arg; |
| long r = -EINVAL; |
| |
| switch (ioctl) { |
| case KVM_GET_API_VERSION: |
| r = -EINVAL; |
| if (arg) |
| goto out; |
| r = KVM_API_VERSION; |
| break; |
| case KVM_CREATE_VM: |
| r = -EINVAL; |
| if (arg) |
| goto out; |
| r = kvm_dev_ioctl_create_vm(); |
| break; |
| case KVM_GET_MSR_INDEX_LIST: { |
| struct kvm_msr_list __user *user_msr_list = argp; |
| struct kvm_msr_list msr_list; |
| unsigned n; |
| |
| r = -EFAULT; |
| if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) |
| goto out; |
| n = msr_list.nmsrs; |
| msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); |
| if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) |
| goto out; |
| r = -E2BIG; |
| if (n < num_msrs_to_save) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(user_msr_list->indices, &msrs_to_save, |
| num_msrs_to_save * sizeof(u32))) |
| goto out; |
| if (copy_to_user(user_msr_list->indices |
| + num_msrs_to_save * sizeof(u32), |
| &emulated_msrs, |
| ARRAY_SIZE(emulated_msrs) * sizeof(u32))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_CHECK_EXTENSION: |
| /* |
| * No extensions defined at present. |
| */ |
| r = 0; |
| break; |
| case KVM_GET_VCPU_MMAP_SIZE: |
| r = -EINVAL; |
| if (arg) |
| goto out; |
| r = 2 * PAGE_SIZE; |
| break; |
| default: |
| ; |
| } |
| out: |
| return r; |
| } |
| |
| static struct file_operations kvm_chardev_ops = { |
| .open = kvm_dev_open, |
| .release = kvm_dev_release, |
| .unlocked_ioctl = kvm_dev_ioctl, |
| .compat_ioctl = kvm_dev_ioctl, |
| }; |
| |
| static struct miscdevice kvm_dev = { |
| KVM_MINOR, |
| "kvm", |
| &kvm_chardev_ops, |
| }; |
| |
| static int kvm_reboot(struct notifier_block *notifier, unsigned long val, |
| void *v) |
| { |
| if (val == SYS_RESTART) { |
| /* |
| * Some (well, at least mine) BIOSes hang on reboot if |
| * in vmx root mode. |
| */ |
| printk(KERN_INFO "kvm: exiting hardware virtualization\n"); |
| on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1); |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block kvm_reboot_notifier = { |
| .notifier_call = kvm_reboot, |
| .priority = 0, |
| }; |
| |
| /* |
| * Make sure that a cpu that is being hot-unplugged does not have any vcpus |
| * cached on it. |
| */ |
| static void decache_vcpus_on_cpu(int cpu) |
| { |
| struct kvm *vm; |
| struct kvm_vcpu *vcpu; |
| int i; |
| |
| spin_lock(&kvm_lock); |
| list_for_each_entry(vm, &vm_list, vm_list) |
| for (i = 0; i < KVM_MAX_VCPUS; ++i) { |
| vcpu = &vm->vcpus[i]; |
| /* |
| * If the vcpu is locked, then it is running on some |
| * other cpu and therefore it is not cached on the |
| * cpu in question. |
| * |
| * If it's not locked, check the last cpu it executed |
| * on. |
| */ |
| if (mutex_trylock(&vcpu->mutex)) { |
| if (vcpu->cpu == cpu) { |
| kvm_arch_ops->vcpu_decache(vcpu); |
| vcpu->cpu = -1; |
| } |
| mutex_unlock(&vcpu->mutex); |
| } |
| } |
| spin_unlock(&kvm_lock); |
| } |
| |
| static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, |
| void *v) |
| { |
| int cpu = (long)v; |
| |
| switch (val) { |
| case CPU_DOWN_PREPARE: |
| case CPU_UP_CANCELED: |
| printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", |
| cpu); |
| decache_vcpus_on_cpu(cpu); |
| smp_call_function_single(cpu, kvm_arch_ops->hardware_disable, |
| NULL, 0, 1); |
| break; |
| case CPU_ONLINE: |
| printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", |
| cpu); |
| smp_call_function_single(cpu, kvm_arch_ops->hardware_enable, |
| NULL, 0, 1); |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block kvm_cpu_notifier = { |
| .notifier_call = kvm_cpu_hotplug, |
| .priority = 20, /* must be > scheduler priority */ |
| }; |
| |
| static __init void kvm_init_debug(void) |
| { |
| struct kvm_stats_debugfs_item *p; |
| |
| debugfs_dir = debugfs_create_dir("kvm", NULL); |
| for (p = debugfs_entries; p->name; ++p) |
| p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir, |
| p->data); |
| } |
| |
| static void kvm_exit_debug(void) |
| { |
| struct kvm_stats_debugfs_item *p; |
| |
| for (p = debugfs_entries; p->name; ++p) |
| debugfs_remove(p->dentry); |
| debugfs_remove(debugfs_dir); |
| } |
| |
| static int kvm_suspend(struct sys_device *dev, pm_message_t state) |
| { |
| decache_vcpus_on_cpu(raw_smp_processor_id()); |
| on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1); |
| return 0; |
| } |
| |
| static int kvm_resume(struct sys_device *dev) |
| { |
| on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1); |
| return 0; |
| } |
| |
| static struct sysdev_class kvm_sysdev_class = { |
| set_kset_name("kvm"), |
| .suspend = kvm_suspend, |
| .resume = kvm_resume, |
| }; |
| |
| static struct sys_device kvm_sysdev = { |
| .id = 0, |
| .cls = &kvm_sysdev_class, |
| }; |
| |
| hpa_t bad_page_address; |
| |
| static int kvmfs_get_sb(struct file_system_type *fs_type, int flags, |
| const char *dev_name, void *data, struct vfsmount *mnt) |
| { |
| return get_sb_pseudo(fs_type, "kvm:", NULL, KVMFS_SUPER_MAGIC, mnt); |
| } |
| |
| static struct file_system_type kvm_fs_type = { |
| .name = "kvmfs", |
| .get_sb = kvmfs_get_sb, |
| .kill_sb = kill_anon_super, |
| }; |
| |
| int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module) |
| { |
| int r; |
| |
| if (kvm_arch_ops) { |
| printk(KERN_ERR "kvm: already loaded the other module\n"); |
| return -EEXIST; |
| } |
| |
| if (!ops->cpu_has_kvm_support()) { |
| printk(KERN_ERR "kvm: no hardware support\n"); |
| return -EOPNOTSUPP; |
| } |
| if (ops->disabled_by_bios()) { |
| printk(KERN_ERR "kvm: disabled by bios\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| kvm_arch_ops = ops; |
| |
| r = kvm_arch_ops->hardware_setup(); |
| if (r < 0) |
| goto out; |
| |
| on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1); |
| r = register_cpu_notifier(&kvm_cpu_notifier); |
| if (r) |
| goto out_free_1; |
| register_reboot_notifier(&kvm_reboot_notifier); |
| |
| r = sysdev_class_register(&kvm_sysdev_class); |
| if (r) |
| goto out_free_2; |
| |
| r = sysdev_register(&kvm_sysdev); |
| if (r) |
| goto out_free_3; |
| |
| kvm_chardev_ops.owner = module; |
| |
| r = misc_register(&kvm_dev); |
| if (r) { |
| printk (KERN_ERR "kvm: misc device register failed\n"); |
| goto out_free; |
| } |
| |
| return r; |
| |
| out_free: |
| sysdev_unregister(&kvm_sysdev); |
| out_free_3: |
| sysdev_class_unregister(&kvm_sysdev_class); |
| out_free_2: |
| unregister_reboot_notifier(&kvm_reboot_notifier); |
| unregister_cpu_notifier(&kvm_cpu_notifier); |
| out_free_1: |
| on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1); |
| kvm_arch_ops->hardware_unsetup(); |
| out: |
| kvm_arch_ops = NULL; |
| return r; |
| } |
| |
| void kvm_exit_arch(void) |
| { |
| misc_deregister(&kvm_dev); |
| sysdev_unregister(&kvm_sysdev); |
| sysdev_class_unregister(&kvm_sysdev_class); |
| unregister_reboot_notifier(&kvm_reboot_notifier); |
| unregister_cpu_notifier(&kvm_cpu_notifier); |
| on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1); |
| kvm_arch_ops->hardware_unsetup(); |
| kvm_arch_ops = NULL; |
| } |
| |
| static __init int kvm_init(void) |
| { |
| static struct page *bad_page; |
| int r; |
| |
| r = register_filesystem(&kvm_fs_type); |
| if (r) |
| goto out3; |
| |
| kvmfs_mnt = kern_mount(&kvm_fs_type); |
| r = PTR_ERR(kvmfs_mnt); |
| if (IS_ERR(kvmfs_mnt)) |
| goto out2; |
| kvm_init_debug(); |
| |
| kvm_init_msr_list(); |
| |
| if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) { |
| r = -ENOMEM; |
| goto out; |
| } |
| |
| bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT; |
| memset(__va(bad_page_address), 0, PAGE_SIZE); |
| |
| return 0; |
| |
| out: |
| kvm_exit_debug(); |
| mntput(kvmfs_mnt); |
| out2: |
| unregister_filesystem(&kvm_fs_type); |
| out3: |
| return r; |
| } |
| |
| static __exit void kvm_exit(void) |
| { |
| kvm_exit_debug(); |
| __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT)); |
| mntput(kvmfs_mnt); |
| unregister_filesystem(&kvm_fs_type); |
| } |
| |
| module_init(kvm_init) |
| module_exit(kvm_exit) |
| |
| EXPORT_SYMBOL_GPL(kvm_init_arch); |
| EXPORT_SYMBOL_GPL(kvm_exit_arch); |