| /********************************************************************** |
| * Author: Cavium, Inc. |
| * |
| * Contact: support@cavium.com |
| * Please include "LiquidIO" in the subject. |
| * |
| * Copyright (c) 2003-2015 Cavium, Inc. |
| * |
| * This file is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, Version 2, as |
| * published by the Free Software Foundation. |
| * |
| * This file is distributed in the hope that it will be useful, but |
| * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty |
| * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or |
| * NONINFRINGEMENT. See the GNU General Public License for more |
| * details. |
| * |
| * This file may also be available under a different license from Cavium. |
| * Contact Cavium, Inc. for more information |
| **********************************************************************/ |
| #include <linux/pci.h> |
| #include <linux/netdevice.h> |
| #include <linux/vmalloc.h> |
| #include "liquidio_common.h" |
| #include "octeon_droq.h" |
| #include "octeon_iq.h" |
| #include "response_manager.h" |
| #include "octeon_device.h" |
| #include "octeon_main.h" |
| #include "octeon_network.h" |
| #include "cn66xx_device.h" |
| #include "cn23xx_pf_device.h" |
| |
| #define INCR_INSTRQUEUE_PKT_COUNT(octeon_dev_ptr, iq_no, field, count) \ |
| (octeon_dev_ptr->instr_queue[iq_no]->stats.field += count) |
| |
| struct iq_post_status { |
| int status; |
| int index; |
| }; |
| |
| static void check_db_timeout(struct work_struct *work); |
| static void __check_db_timeout(struct octeon_device *oct, u64 iq_no); |
| |
| static void (*reqtype_free_fn[MAX_OCTEON_DEVICES][REQTYPE_LAST + 1]) (void *); |
| |
| static inline int IQ_INSTR_MODE_64B(struct octeon_device *oct, int iq_no) |
| { |
| struct octeon_instr_queue *iq = |
| (struct octeon_instr_queue *)oct->instr_queue[iq_no]; |
| return iq->iqcmd_64B; |
| } |
| |
| #define IQ_INSTR_MODE_32B(oct, iq_no) (!IQ_INSTR_MODE_64B(oct, iq_no)) |
| |
| /* Define this to return the request status comaptible to old code */ |
| /*#define OCTEON_USE_OLD_REQ_STATUS*/ |
| |
| /* Return 0 on success, 1 on failure */ |
| int octeon_init_instr_queue(struct octeon_device *oct, |
| union oct_txpciq txpciq, |
| u32 num_descs) |
| { |
| struct octeon_instr_queue *iq; |
| struct octeon_iq_config *conf = NULL; |
| u32 iq_no = (u32)txpciq.s.q_no; |
| u32 q_size; |
| struct cavium_wq *db_wq; |
| int orig_node = dev_to_node(&oct->pci_dev->dev); |
| int numa_node = cpu_to_node(iq_no % num_online_cpus()); |
| |
| if (OCTEON_CN6XXX(oct)) |
| conf = &(CFG_GET_IQ_CFG(CHIP_FIELD(oct, cn6xxx, conf))); |
| else if (OCTEON_CN23XX_PF(oct)) |
| conf = &(CFG_GET_IQ_CFG(CHIP_FIELD(oct, cn23xx_pf, conf))); |
| if (!conf) { |
| dev_err(&oct->pci_dev->dev, "Unsupported Chip %x\n", |
| oct->chip_id); |
| return 1; |
| } |
| |
| if (num_descs & (num_descs - 1)) { |
| dev_err(&oct->pci_dev->dev, |
| "Number of descriptors for instr queue %d not in power of 2.\n", |
| iq_no); |
| return 1; |
| } |
| |
| q_size = (u32)conf->instr_type * num_descs; |
| |
| iq = oct->instr_queue[iq_no]; |
| |
| iq->oct_dev = oct; |
| |
| set_dev_node(&oct->pci_dev->dev, numa_node); |
| iq->base_addr = lio_dma_alloc(oct, q_size, |
| (dma_addr_t *)&iq->base_addr_dma); |
| set_dev_node(&oct->pci_dev->dev, orig_node); |
| if (!iq->base_addr) |
| iq->base_addr = lio_dma_alloc(oct, q_size, |
| (dma_addr_t *)&iq->base_addr_dma); |
| if (!iq->base_addr) { |
| dev_err(&oct->pci_dev->dev, "Cannot allocate memory for instr queue %d\n", |
| iq_no); |
| return 1; |
| } |
| |
| iq->max_count = num_descs; |
| |
| /* Initialize a list to holds requests that have been posted to Octeon |
| * but has yet to be fetched by octeon |
| */ |
| iq->request_list = vmalloc_node((sizeof(*iq->request_list) * num_descs), |
| numa_node); |
| if (!iq->request_list) |
| iq->request_list = vmalloc(sizeof(*iq->request_list) * |
| num_descs); |
| if (!iq->request_list) { |
| lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma); |
| dev_err(&oct->pci_dev->dev, "Alloc failed for IQ[%d] nr free list\n", |
| iq_no); |
| return 1; |
| } |
| |
| memset(iq->request_list, 0, sizeof(*iq->request_list) * num_descs); |
| |
| dev_dbg(&oct->pci_dev->dev, "IQ[%d]: base: %p basedma: %llx count: %d\n", |
| iq_no, iq->base_addr, iq->base_addr_dma, iq->max_count); |
| |
| iq->txpciq.u64 = txpciq.u64; |
| iq->fill_threshold = (u32)conf->db_min; |
| iq->fill_cnt = 0; |
| iq->host_write_index = 0; |
| iq->octeon_read_index = 0; |
| iq->flush_index = 0; |
| iq->last_db_time = 0; |
| iq->do_auto_flush = 1; |
| iq->db_timeout = (u32)conf->db_timeout; |
| atomic_set(&iq->instr_pending, 0); |
| |
| /* Initialize the spinlock for this instruction queue */ |
| spin_lock_init(&iq->lock); |
| spin_lock_init(&iq->post_lock); |
| |
| spin_lock_init(&iq->iq_flush_running_lock); |
| |
| oct->io_qmask.iq |= (1ULL << iq_no); |
| |
| /* Set the 32B/64B mode for each input queue */ |
| oct->io_qmask.iq64B |= ((conf->instr_type == 64) << iq_no); |
| iq->iqcmd_64B = (conf->instr_type == 64); |
| |
| oct->fn_list.setup_iq_regs(oct, iq_no); |
| |
| oct->check_db_wq[iq_no].wq = alloc_workqueue("check_iq_db", |
| WQ_MEM_RECLAIM, |
| 0); |
| if (!oct->check_db_wq[iq_no].wq) { |
| lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma); |
| dev_err(&oct->pci_dev->dev, "check db wq create failed for iq %d\n", |
| iq_no); |
| return 1; |
| } |
| |
| db_wq = &oct->check_db_wq[iq_no]; |
| |
| INIT_DELAYED_WORK(&db_wq->wk.work, check_db_timeout); |
| db_wq->wk.ctxptr = oct; |
| db_wq->wk.ctxul = iq_no; |
| queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(1)); |
| |
| return 0; |
| } |
| |
| int octeon_delete_instr_queue(struct octeon_device *oct, u32 iq_no) |
| { |
| u64 desc_size = 0, q_size; |
| struct octeon_instr_queue *iq = oct->instr_queue[iq_no]; |
| |
| cancel_delayed_work_sync(&oct->check_db_wq[iq_no].wk.work); |
| destroy_workqueue(oct->check_db_wq[iq_no].wq); |
| |
| if (OCTEON_CN6XXX(oct)) |
| desc_size = |
| CFG_GET_IQ_INSTR_TYPE(CHIP_FIELD(oct, cn6xxx, conf)); |
| else if (OCTEON_CN23XX_PF(oct)) |
| desc_size = |
| CFG_GET_IQ_INSTR_TYPE(CHIP_FIELD(oct, cn23xx_pf, conf)); |
| |
| vfree(iq->request_list); |
| |
| if (iq->base_addr) { |
| q_size = iq->max_count * desc_size; |
| lio_dma_free(oct, (u32)q_size, iq->base_addr, |
| iq->base_addr_dma); |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* Return 0 on success, 1 on failure */ |
| int octeon_setup_iq(struct octeon_device *oct, |
| int ifidx, |
| int q_index, |
| union oct_txpciq txpciq, |
| u32 num_descs, |
| void *app_ctx) |
| { |
| u32 iq_no = (u32)txpciq.s.q_no; |
| int numa_node = cpu_to_node(iq_no % num_online_cpus()); |
| |
| if (oct->instr_queue[iq_no]) { |
| dev_dbg(&oct->pci_dev->dev, "IQ is in use. Cannot create the IQ: %d again\n", |
| iq_no); |
| oct->instr_queue[iq_no]->txpciq.u64 = txpciq.u64; |
| oct->instr_queue[iq_no]->app_ctx = app_ctx; |
| return 0; |
| } |
| oct->instr_queue[iq_no] = |
| vmalloc_node(sizeof(struct octeon_instr_queue), numa_node); |
| if (!oct->instr_queue[iq_no]) |
| oct->instr_queue[iq_no] = |
| vmalloc(sizeof(struct octeon_instr_queue)); |
| if (!oct->instr_queue[iq_no]) |
| return 1; |
| |
| memset(oct->instr_queue[iq_no], 0, |
| sizeof(struct octeon_instr_queue)); |
| |
| oct->instr_queue[iq_no]->q_index = q_index; |
| oct->instr_queue[iq_no]->app_ctx = app_ctx; |
| oct->instr_queue[iq_no]->ifidx = ifidx; |
| |
| if (octeon_init_instr_queue(oct, txpciq, num_descs)) { |
| vfree(oct->instr_queue[iq_no]); |
| oct->instr_queue[iq_no] = NULL; |
| return 1; |
| } |
| |
| oct->num_iqs++; |
| oct->fn_list.enable_io_queues(oct); |
| return 0; |
| } |
| |
| int lio_wait_for_instr_fetch(struct octeon_device *oct) |
| { |
| int i, retry = 1000, pending, instr_cnt = 0; |
| |
| do { |
| instr_cnt = 0; |
| |
| /*for (i = 0; i < oct->num_iqs; i++) {*/ |
| for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) { |
| if (!(oct->io_qmask.iq & (1ULL << i))) |
| continue; |
| pending = |
| atomic_read(&oct-> |
| instr_queue[i]->instr_pending); |
| if (pending) |
| __check_db_timeout(oct, i); |
| instr_cnt += pending; |
| } |
| |
| if (instr_cnt == 0) |
| break; |
| |
| schedule_timeout_uninterruptible(1); |
| |
| } while (retry-- && instr_cnt); |
| |
| return instr_cnt; |
| } |
| |
| static inline void |
| ring_doorbell(struct octeon_device *oct, struct octeon_instr_queue *iq) |
| { |
| if (atomic_read(&oct->status) == OCT_DEV_RUNNING) { |
| writel(iq->fill_cnt, iq->doorbell_reg); |
| /* make sure doorbell write goes through */ |
| mmiowb(); |
| iq->fill_cnt = 0; |
| iq->last_db_time = jiffies; |
| return; |
| } |
| } |
| |
| static inline void __copy_cmd_into_iq(struct octeon_instr_queue *iq, |
| u8 *cmd) |
| { |
| u8 *iqptr, cmdsize; |
| |
| cmdsize = ((iq->iqcmd_64B) ? 64 : 32); |
| iqptr = iq->base_addr + (cmdsize * iq->host_write_index); |
| |
| memcpy(iqptr, cmd, cmdsize); |
| } |
| |
| static inline struct iq_post_status |
| __post_command2(struct octeon_instr_queue *iq, u8 *cmd) |
| { |
| struct iq_post_status st; |
| |
| st.status = IQ_SEND_OK; |
| |
| /* This ensures that the read index does not wrap around to the same |
| * position if queue gets full before Octeon could fetch any instr. |
| */ |
| if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 1)) { |
| st.status = IQ_SEND_FAILED; |
| st.index = -1; |
| return st; |
| } |
| |
| if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 2)) |
| st.status = IQ_SEND_STOP; |
| |
| __copy_cmd_into_iq(iq, cmd); |
| |
| /* "index" is returned, host_write_index is modified. */ |
| st.index = iq->host_write_index; |
| INCR_INDEX_BY1(iq->host_write_index, iq->max_count); |
| iq->fill_cnt++; |
| |
| /* Flush the command into memory. We need to be sure the data is in |
| * memory before indicating that the instruction is pending. |
| */ |
| wmb(); |
| |
| atomic_inc(&iq->instr_pending); |
| |
| return st; |
| } |
| |
| int |
| octeon_register_reqtype_free_fn(struct octeon_device *oct, int reqtype, |
| void (*fn)(void *)) |
| { |
| if (reqtype > REQTYPE_LAST) { |
| dev_err(&oct->pci_dev->dev, "%s: Invalid reqtype: %d\n", |
| __func__, reqtype); |
| return -EINVAL; |
| } |
| |
| reqtype_free_fn[oct->octeon_id][reqtype] = fn; |
| |
| return 0; |
| } |
| |
| static inline void |
| __add_to_request_list(struct octeon_instr_queue *iq, |
| int idx, void *buf, int reqtype) |
| { |
| iq->request_list[idx].buf = buf; |
| iq->request_list[idx].reqtype = reqtype; |
| } |
| |
| /* Can only run in process context */ |
| int |
| lio_process_iq_request_list(struct octeon_device *oct, |
| struct octeon_instr_queue *iq, u32 napi_budget) |
| { |
| int reqtype; |
| void *buf; |
| u32 old = iq->flush_index; |
| u32 inst_count = 0; |
| unsigned int pkts_compl = 0, bytes_compl = 0; |
| struct octeon_soft_command *sc; |
| struct octeon_instr_irh *irh; |
| unsigned long flags; |
| |
| while (old != iq->octeon_read_index) { |
| reqtype = iq->request_list[old].reqtype; |
| buf = iq->request_list[old].buf; |
| |
| if (reqtype == REQTYPE_NONE) |
| goto skip_this; |
| |
| octeon_update_tx_completion_counters(buf, reqtype, &pkts_compl, |
| &bytes_compl); |
| |
| switch (reqtype) { |
| case REQTYPE_NORESP_NET: |
| case REQTYPE_NORESP_NET_SG: |
| case REQTYPE_RESP_NET_SG: |
| reqtype_free_fn[oct->octeon_id][reqtype](buf); |
| break; |
| case REQTYPE_RESP_NET: |
| case REQTYPE_SOFT_COMMAND: |
| sc = buf; |
| |
| if (OCTEON_CN23XX_PF(oct)) |
| irh = (struct octeon_instr_irh *) |
| &sc->cmd.cmd3.irh; |
| else |
| irh = (struct octeon_instr_irh *) |
| &sc->cmd.cmd2.irh; |
| if (irh->rflag) { |
| /* We're expecting a response from Octeon. |
| * It's up to lio_process_ordered_list() to |
| * process sc. Add sc to the ordered soft |
| * command response list because we expect |
| * a response from Octeon. |
| */ |
| spin_lock_irqsave |
| (&oct->response_list |
| [OCTEON_ORDERED_SC_LIST].lock, |
| flags); |
| atomic_inc(&oct->response_list |
| [OCTEON_ORDERED_SC_LIST]. |
| pending_req_count); |
| list_add_tail(&sc->node, &oct->response_list |
| [OCTEON_ORDERED_SC_LIST].head); |
| spin_unlock_irqrestore |
| (&oct->response_list |
| [OCTEON_ORDERED_SC_LIST].lock, |
| flags); |
| } else { |
| if (sc->callback) { |
| /* This callback must not sleep */ |
| sc->callback(oct, OCTEON_REQUEST_DONE, |
| sc->callback_arg); |
| } |
| } |
| break; |
| default: |
| dev_err(&oct->pci_dev->dev, |
| "%s Unknown reqtype: %d buf: %p at idx %d\n", |
| __func__, reqtype, buf, old); |
| } |
| |
| iq->request_list[old].buf = NULL; |
| iq->request_list[old].reqtype = 0; |
| |
| skip_this: |
| inst_count++; |
| INCR_INDEX_BY1(old, iq->max_count); |
| |
| if ((napi_budget) && (inst_count >= napi_budget)) |
| break; |
| } |
| if (bytes_compl) |
| octeon_report_tx_completion_to_bql(iq->app_ctx, pkts_compl, |
| bytes_compl); |
| iq->flush_index = old; |
| |
| return inst_count; |
| } |
| |
| /* Can only be called from process context */ |
| int |
| octeon_flush_iq(struct octeon_device *oct, struct octeon_instr_queue *iq, |
| u32 pending_thresh, u32 napi_budget) |
| { |
| u32 inst_processed = 0; |
| u32 tot_inst_processed = 0; |
| int tx_done = 1; |
| |
| if (!spin_trylock(&iq->iq_flush_running_lock)) |
| return tx_done; |
| |
| spin_lock_bh(&iq->lock); |
| |
| iq->octeon_read_index = oct->fn_list.update_iq_read_idx(iq); |
| |
| if (atomic_read(&iq->instr_pending) >= (s32)pending_thresh) { |
| do { |
| /* Process any outstanding IQ packets. */ |
| if (iq->flush_index == iq->octeon_read_index) |
| break; |
| |
| if (napi_budget) |
| inst_processed = lio_process_iq_request_list |
| (oct, iq, |
| napi_budget - tot_inst_processed); |
| else |
| inst_processed = |
| lio_process_iq_request_list(oct, iq, 0); |
| |
| if (inst_processed) { |
| atomic_sub(inst_processed, &iq->instr_pending); |
| iq->stats.instr_processed += inst_processed; |
| } |
| |
| tot_inst_processed += inst_processed; |
| inst_processed = 0; |
| |
| } while (tot_inst_processed < napi_budget); |
| |
| if (napi_budget && (tot_inst_processed >= napi_budget)) |
| tx_done = 0; |
| } |
| |
| iq->last_db_time = jiffies; |
| |
| spin_unlock_bh(&iq->lock); |
| |
| spin_unlock(&iq->iq_flush_running_lock); |
| |
| return tx_done; |
| } |
| |
| /* Process instruction queue after timeout. |
| * This routine gets called from a workqueue or when removing the module. |
| */ |
| static void __check_db_timeout(struct octeon_device *oct, u64 iq_no) |
| { |
| struct octeon_instr_queue *iq; |
| u64 next_time; |
| |
| if (!oct) |
| return; |
| |
| iq = oct->instr_queue[iq_no]; |
| if (!iq) |
| return; |
| |
| /* return immediately, if no work pending */ |
| if (!atomic_read(&iq->instr_pending)) |
| return; |
| /* If jiffies - last_db_time < db_timeout do nothing */ |
| next_time = iq->last_db_time + iq->db_timeout; |
| if (!time_after(jiffies, (unsigned long)next_time)) |
| return; |
| iq->last_db_time = jiffies; |
| |
| /* Flush the instruction queue */ |
| octeon_flush_iq(oct, iq, 1, 0); |
| |
| lio_enable_irq(NULL, iq); |
| } |
| |
| /* Called by the Poll thread at regular intervals to check the instruction |
| * queue for commands to be posted and for commands that were fetched by Octeon. |
| */ |
| static void check_db_timeout(struct work_struct *work) |
| { |
| struct cavium_wk *wk = (struct cavium_wk *)work; |
| struct octeon_device *oct = (struct octeon_device *)wk->ctxptr; |
| u64 iq_no = wk->ctxul; |
| struct cavium_wq *db_wq = &oct->check_db_wq[iq_no]; |
| u32 delay = 10; |
| |
| __check_db_timeout(oct, iq_no); |
| queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(delay)); |
| } |
| |
| int |
| octeon_send_command(struct octeon_device *oct, u32 iq_no, |
| u32 force_db, void *cmd, void *buf, |
| u32 datasize, u32 reqtype) |
| { |
| struct iq_post_status st; |
| struct octeon_instr_queue *iq = oct->instr_queue[iq_no]; |
| |
| /* Get the lock and prevent other tasks and tx interrupt handler from |
| * running. |
| */ |
| spin_lock_bh(&iq->post_lock); |
| |
| st = __post_command2(iq, cmd); |
| |
| if (st.status != IQ_SEND_FAILED) { |
| octeon_report_sent_bytes_to_bql(buf, reqtype); |
| __add_to_request_list(iq, st.index, buf, reqtype); |
| INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, bytes_sent, datasize); |
| INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_posted, 1); |
| |
| if (force_db) |
| ring_doorbell(oct, iq); |
| } else { |
| INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_dropped, 1); |
| } |
| |
| spin_unlock_bh(&iq->post_lock); |
| |
| /* This is only done here to expedite packets being flushed |
| * for cases where there are no IQ completion interrupts. |
| */ |
| /*if (iq->do_auto_flush)*/ |
| /* octeon_flush_iq(oct, iq, 2, 0);*/ |
| |
| return st.status; |
| } |
| |
| void |
| octeon_prepare_soft_command(struct octeon_device *oct, |
| struct octeon_soft_command *sc, |
| u8 opcode, |
| u8 subcode, |
| u32 irh_ossp, |
| u64 ossp0, |
| u64 ossp1) |
| { |
| struct octeon_config *oct_cfg; |
| struct octeon_instr_ih2 *ih2; |
| struct octeon_instr_ih3 *ih3; |
| struct octeon_instr_pki_ih3 *pki_ih3; |
| struct octeon_instr_irh *irh; |
| struct octeon_instr_rdp *rdp; |
| |
| WARN_ON(opcode > 15); |
| WARN_ON(subcode > 127); |
| |
| oct_cfg = octeon_get_conf(oct); |
| |
| if (OCTEON_CN23XX_PF(oct)) { |
| ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3; |
| |
| ih3->pkind = oct->instr_queue[sc->iq_no]->txpciq.s.pkind; |
| |
| pki_ih3 = (struct octeon_instr_pki_ih3 *)&sc->cmd.cmd3.pki_ih3; |
| |
| pki_ih3->w = 1; |
| pki_ih3->raw = 1; |
| pki_ih3->utag = 1; |
| pki_ih3->uqpg = |
| oct->instr_queue[sc->iq_no]->txpciq.s.use_qpg; |
| pki_ih3->utt = 1; |
| pki_ih3->tag = LIO_CONTROL; |
| pki_ih3->tagtype = ATOMIC_TAG; |
| pki_ih3->qpg = |
| oct->instr_queue[sc->iq_no]->txpciq.s.qpg; |
| pki_ih3->pm = 0x7; |
| pki_ih3->sl = 8; |
| |
| if (sc->datasize) |
| ih3->dlengsz = sc->datasize; |
| |
| irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh; |
| irh->opcode = opcode; |
| irh->subcode = subcode; |
| |
| /* opcode/subcode specific parameters (ossp) */ |
| irh->ossp = irh_ossp; |
| sc->cmd.cmd3.ossp[0] = ossp0; |
| sc->cmd.cmd3.ossp[1] = ossp1; |
| |
| if (sc->rdatasize) { |
| rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd3.rdp; |
| rdp->pcie_port = oct->pcie_port; |
| rdp->rlen = sc->rdatasize; |
| |
| irh->rflag = 1; |
| /*PKI IH3*/ |
| /* pki_ih3 irh+ossp[0]+ossp[1]+rdp+rptr = 48 bytes */ |
| ih3->fsz = LIO_SOFTCMDRESP_IH3; |
| } else { |
| irh->rflag = 0; |
| /*PKI IH3*/ |
| /* pki_h3 + irh + ossp[0] + ossp[1] = 32 bytes */ |
| ih3->fsz = LIO_PCICMD_O3; |
| } |
| |
| } else { |
| ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2; |
| ih2->tagtype = ATOMIC_TAG; |
| ih2->tag = LIO_CONTROL; |
| ih2->raw = 1; |
| ih2->grp = CFG_GET_CTRL_Q_GRP(oct_cfg); |
| |
| if (sc->datasize) { |
| ih2->dlengsz = sc->datasize; |
| ih2->rs = 1; |
| } |
| |
| irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh; |
| irh->opcode = opcode; |
| irh->subcode = subcode; |
| |
| /* opcode/subcode specific parameters (ossp) */ |
| irh->ossp = irh_ossp; |
| sc->cmd.cmd2.ossp[0] = ossp0; |
| sc->cmd.cmd2.ossp[1] = ossp1; |
| |
| if (sc->rdatasize) { |
| rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd2.rdp; |
| rdp->pcie_port = oct->pcie_port; |
| rdp->rlen = sc->rdatasize; |
| |
| irh->rflag = 1; |
| /* irh+ossp[0]+ossp[1]+rdp+rptr = 40 bytes */ |
| ih2->fsz = LIO_SOFTCMDRESP_IH2; |
| } else { |
| irh->rflag = 0; |
| /* irh + ossp[0] + ossp[1] = 24 bytes */ |
| ih2->fsz = LIO_PCICMD_O2; |
| } |
| } |
| } |
| |
| int octeon_send_soft_command(struct octeon_device *oct, |
| struct octeon_soft_command *sc) |
| { |
| struct octeon_instr_ih2 *ih2; |
| struct octeon_instr_ih3 *ih3; |
| struct octeon_instr_irh *irh; |
| u32 len; |
| |
| if (OCTEON_CN23XX_PF(oct)) { |
| ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3; |
| if (ih3->dlengsz) { |
| WARN_ON(!sc->dmadptr); |
| sc->cmd.cmd3.dptr = sc->dmadptr; |
| } |
| irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh; |
| if (irh->rflag) { |
| WARN_ON(!sc->dmarptr); |
| WARN_ON(!sc->status_word); |
| *sc->status_word = COMPLETION_WORD_INIT; |
| sc->cmd.cmd3.rptr = sc->dmarptr; |
| } |
| len = (u32)ih3->dlengsz; |
| } else { |
| ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2; |
| if (ih2->dlengsz) { |
| WARN_ON(!sc->dmadptr); |
| sc->cmd.cmd2.dptr = sc->dmadptr; |
| } |
| irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh; |
| if (irh->rflag) { |
| WARN_ON(!sc->dmarptr); |
| WARN_ON(!sc->status_word); |
| *sc->status_word = COMPLETION_WORD_INIT; |
| sc->cmd.cmd2.rptr = sc->dmarptr; |
| } |
| len = (u32)ih2->dlengsz; |
| } |
| |
| if (sc->wait_time) |
| sc->timeout = jiffies + sc->wait_time; |
| |
| return (octeon_send_command(oct, sc->iq_no, 1, &sc->cmd, sc, |
| len, REQTYPE_SOFT_COMMAND)); |
| } |
| |
| int octeon_setup_sc_buffer_pool(struct octeon_device *oct) |
| { |
| int i; |
| u64 dma_addr; |
| struct octeon_soft_command *sc; |
| |
| INIT_LIST_HEAD(&oct->sc_buf_pool.head); |
| spin_lock_init(&oct->sc_buf_pool.lock); |
| atomic_set(&oct->sc_buf_pool.alloc_buf_count, 0); |
| |
| for (i = 0; i < MAX_SOFT_COMMAND_BUFFERS; i++) { |
| sc = (struct octeon_soft_command *) |
| lio_dma_alloc(oct, |
| SOFT_COMMAND_BUFFER_SIZE, |
| (dma_addr_t *)&dma_addr); |
| if (!sc) |
| return 1; |
| |
| sc->dma_addr = dma_addr; |
| sc->size = SOFT_COMMAND_BUFFER_SIZE; |
| |
| list_add_tail(&sc->node, &oct->sc_buf_pool.head); |
| } |
| |
| return 0; |
| } |
| |
| int octeon_free_sc_buffer_pool(struct octeon_device *oct) |
| { |
| struct list_head *tmp, *tmp2; |
| struct octeon_soft_command *sc; |
| |
| spin_lock_bh(&oct->sc_buf_pool.lock); |
| |
| list_for_each_safe(tmp, tmp2, &oct->sc_buf_pool.head) { |
| list_del(tmp); |
| |
| sc = (struct octeon_soft_command *)tmp; |
| |
| lio_dma_free(oct, sc->size, sc, sc->dma_addr); |
| } |
| |
| INIT_LIST_HEAD(&oct->sc_buf_pool.head); |
| |
| spin_unlock_bh(&oct->sc_buf_pool.lock); |
| |
| return 0; |
| } |
| |
| struct octeon_soft_command *octeon_alloc_soft_command(struct octeon_device *oct, |
| u32 datasize, |
| u32 rdatasize, |
| u32 ctxsize) |
| { |
| u64 dma_addr; |
| u32 size; |
| u32 offset = sizeof(struct octeon_soft_command); |
| struct octeon_soft_command *sc = NULL; |
| struct list_head *tmp; |
| |
| WARN_ON((offset + datasize + rdatasize + ctxsize) > |
| SOFT_COMMAND_BUFFER_SIZE); |
| |
| spin_lock_bh(&oct->sc_buf_pool.lock); |
| |
| if (list_empty(&oct->sc_buf_pool.head)) { |
| spin_unlock_bh(&oct->sc_buf_pool.lock); |
| return NULL; |
| } |
| |
| list_for_each(tmp, &oct->sc_buf_pool.head) |
| break; |
| |
| list_del(tmp); |
| |
| atomic_inc(&oct->sc_buf_pool.alloc_buf_count); |
| |
| spin_unlock_bh(&oct->sc_buf_pool.lock); |
| |
| sc = (struct octeon_soft_command *)tmp; |
| |
| dma_addr = sc->dma_addr; |
| size = sc->size; |
| |
| memset(sc, 0, sc->size); |
| |
| sc->dma_addr = dma_addr; |
| sc->size = size; |
| |
| if (ctxsize) { |
| sc->ctxptr = (u8 *)sc + offset; |
| sc->ctxsize = ctxsize; |
| } |
| |
| /* Start data at 128 byte boundary */ |
| offset = (offset + ctxsize + 127) & 0xffffff80; |
| |
| if (datasize) { |
| sc->virtdptr = (u8 *)sc + offset; |
| sc->dmadptr = dma_addr + offset; |
| sc->datasize = datasize; |
| } |
| |
| /* Start rdata at 128 byte boundary */ |
| offset = (offset + datasize + 127) & 0xffffff80; |
| |
| if (rdatasize) { |
| WARN_ON(rdatasize < 16); |
| sc->virtrptr = (u8 *)sc + offset; |
| sc->dmarptr = dma_addr + offset; |
| sc->rdatasize = rdatasize; |
| sc->status_word = (u64 *)((u8 *)(sc->virtrptr) + rdatasize - 8); |
| } |
| |
| return sc; |
| } |
| |
| void octeon_free_soft_command(struct octeon_device *oct, |
| struct octeon_soft_command *sc) |
| { |
| spin_lock_bh(&oct->sc_buf_pool.lock); |
| |
| list_add_tail(&sc->node, &oct->sc_buf_pool.head); |
| |
| atomic_dec(&oct->sc_buf_pool.alloc_buf_count); |
| |
| spin_unlock_bh(&oct->sc_buf_pool.lock); |
| } |