| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2018-2019 Synopsys, Inc. and/or its affiliates. |
| * Synopsys DesignWare eDMA core driver |
| * |
| * Author: Gustavo Pimentel <gustavo.pimentel@synopsys.com> |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/kernel.h> |
| #include <linux/dmaengine.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/dma/edma.h> |
| #include <linux/dma-mapping.h> |
| |
| #include "dw-edma-core.h" |
| #include "dw-edma-v0-core.h" |
| #include "../dmaengine.h" |
| #include "../virt-dma.h" |
| |
| static inline |
| struct device *dchan2dev(struct dma_chan *dchan) |
| { |
| return &dchan->dev->device; |
| } |
| |
| static inline |
| struct device *chan2dev(struct dw_edma_chan *chan) |
| { |
| return &chan->vc.chan.dev->device; |
| } |
| |
| static inline |
| struct dw_edma_desc *vd2dw_edma_desc(struct virt_dma_desc *vd) |
| { |
| return container_of(vd, struct dw_edma_desc, vd); |
| } |
| |
| static inline |
| u64 dw_edma_get_pci_address(struct dw_edma_chan *chan, phys_addr_t cpu_addr) |
| { |
| struct dw_edma_chip *chip = chan->dw->chip; |
| |
| if (chip->ops->pci_address) |
| return chip->ops->pci_address(chip->dev, cpu_addr); |
| |
| return cpu_addr; |
| } |
| |
| static struct dw_edma_burst *dw_edma_alloc_burst(struct dw_edma_chunk *chunk) |
| { |
| struct dw_edma_burst *burst; |
| |
| burst = kzalloc(sizeof(*burst), GFP_NOWAIT); |
| if (unlikely(!burst)) |
| return NULL; |
| |
| INIT_LIST_HEAD(&burst->list); |
| if (chunk->burst) { |
| /* Create and add new element into the linked list */ |
| chunk->bursts_alloc++; |
| list_add_tail(&burst->list, &chunk->burst->list); |
| } else { |
| /* List head */ |
| chunk->bursts_alloc = 0; |
| chunk->burst = burst; |
| } |
| |
| return burst; |
| } |
| |
| static struct dw_edma_chunk *dw_edma_alloc_chunk(struct dw_edma_desc *desc) |
| { |
| struct dw_edma_chip *chip = desc->chan->dw->chip; |
| struct dw_edma_chan *chan = desc->chan; |
| struct dw_edma_chunk *chunk; |
| |
| chunk = kzalloc(sizeof(*chunk), GFP_NOWAIT); |
| if (unlikely(!chunk)) |
| return NULL; |
| |
| INIT_LIST_HEAD(&chunk->list); |
| chunk->chan = chan; |
| /* Toggling change bit (CB) in each chunk, this is a mechanism to |
| * inform the eDMA HW block that this is a new linked list ready |
| * to be consumed. |
| * - Odd chunks originate CB equal to 0 |
| * - Even chunks originate CB equal to 1 |
| */ |
| chunk->cb = !(desc->chunks_alloc % 2); |
| if (chan->dir == EDMA_DIR_WRITE) { |
| chunk->ll_region.paddr = chip->ll_region_wr[chan->id].paddr; |
| chunk->ll_region.vaddr = chip->ll_region_wr[chan->id].vaddr; |
| } else { |
| chunk->ll_region.paddr = chip->ll_region_rd[chan->id].paddr; |
| chunk->ll_region.vaddr = chip->ll_region_rd[chan->id].vaddr; |
| } |
| |
| if (desc->chunk) { |
| /* Create and add new element into the linked list */ |
| if (!dw_edma_alloc_burst(chunk)) { |
| kfree(chunk); |
| return NULL; |
| } |
| desc->chunks_alloc++; |
| list_add_tail(&chunk->list, &desc->chunk->list); |
| } else { |
| /* List head */ |
| chunk->burst = NULL; |
| desc->chunks_alloc = 0; |
| desc->chunk = chunk; |
| } |
| |
| return chunk; |
| } |
| |
| static struct dw_edma_desc *dw_edma_alloc_desc(struct dw_edma_chan *chan) |
| { |
| struct dw_edma_desc *desc; |
| |
| desc = kzalloc(sizeof(*desc), GFP_NOWAIT); |
| if (unlikely(!desc)) |
| return NULL; |
| |
| desc->chan = chan; |
| if (!dw_edma_alloc_chunk(desc)) { |
| kfree(desc); |
| return NULL; |
| } |
| |
| return desc; |
| } |
| |
| static void dw_edma_free_burst(struct dw_edma_chunk *chunk) |
| { |
| struct dw_edma_burst *child, *_next; |
| |
| /* Remove all the list elements */ |
| list_for_each_entry_safe(child, _next, &chunk->burst->list, list) { |
| list_del(&child->list); |
| kfree(child); |
| chunk->bursts_alloc--; |
| } |
| |
| /* Remove the list head */ |
| kfree(child); |
| chunk->burst = NULL; |
| } |
| |
| static void dw_edma_free_chunk(struct dw_edma_desc *desc) |
| { |
| struct dw_edma_chunk *child, *_next; |
| |
| if (!desc->chunk) |
| return; |
| |
| /* Remove all the list elements */ |
| list_for_each_entry_safe(child, _next, &desc->chunk->list, list) { |
| dw_edma_free_burst(child); |
| list_del(&child->list); |
| kfree(child); |
| desc->chunks_alloc--; |
| } |
| |
| /* Remove the list head */ |
| kfree(child); |
| desc->chunk = NULL; |
| } |
| |
| static void dw_edma_free_desc(struct dw_edma_desc *desc) |
| { |
| dw_edma_free_chunk(desc); |
| kfree(desc); |
| } |
| |
| static void vchan_free_desc(struct virt_dma_desc *vdesc) |
| { |
| dw_edma_free_desc(vd2dw_edma_desc(vdesc)); |
| } |
| |
| static void dw_edma_start_transfer(struct dw_edma_chan *chan) |
| { |
| struct dw_edma_chunk *child; |
| struct dw_edma_desc *desc; |
| struct virt_dma_desc *vd; |
| |
| vd = vchan_next_desc(&chan->vc); |
| if (!vd) |
| return; |
| |
| desc = vd2dw_edma_desc(vd); |
| if (!desc) |
| return; |
| |
| child = list_first_entry_or_null(&desc->chunk->list, |
| struct dw_edma_chunk, list); |
| if (!child) |
| return; |
| |
| dw_edma_v0_core_start(child, !desc->xfer_sz); |
| desc->xfer_sz += child->ll_region.sz; |
| dw_edma_free_burst(child); |
| list_del(&child->list); |
| kfree(child); |
| desc->chunks_alloc--; |
| } |
| |
| static void dw_edma_device_caps(struct dma_chan *dchan, |
| struct dma_slave_caps *caps) |
| { |
| struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan); |
| |
| if (chan->dw->chip->flags & DW_EDMA_CHIP_LOCAL) { |
| if (chan->dir == EDMA_DIR_READ) |
| caps->directions = BIT(DMA_DEV_TO_MEM); |
| else |
| caps->directions = BIT(DMA_MEM_TO_DEV); |
| } else { |
| if (chan->dir == EDMA_DIR_WRITE) |
| caps->directions = BIT(DMA_DEV_TO_MEM); |
| else |
| caps->directions = BIT(DMA_MEM_TO_DEV); |
| } |
| } |
| |
| static int dw_edma_device_config(struct dma_chan *dchan, |
| struct dma_slave_config *config) |
| { |
| struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan); |
| |
| memcpy(&chan->config, config, sizeof(*config)); |
| chan->configured = true; |
| |
| return 0; |
| } |
| |
| static int dw_edma_device_pause(struct dma_chan *dchan) |
| { |
| struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan); |
| int err = 0; |
| |
| if (!chan->configured) |
| err = -EPERM; |
| else if (chan->status != EDMA_ST_BUSY) |
| err = -EPERM; |
| else if (chan->request != EDMA_REQ_NONE) |
| err = -EPERM; |
| else |
| chan->request = EDMA_REQ_PAUSE; |
| |
| return err; |
| } |
| |
| static int dw_edma_device_resume(struct dma_chan *dchan) |
| { |
| struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan); |
| int err = 0; |
| |
| if (!chan->configured) { |
| err = -EPERM; |
| } else if (chan->status != EDMA_ST_PAUSE) { |
| err = -EPERM; |
| } else if (chan->request != EDMA_REQ_NONE) { |
| err = -EPERM; |
| } else { |
| chan->status = EDMA_ST_BUSY; |
| dw_edma_start_transfer(chan); |
| } |
| |
| return err; |
| } |
| |
| static int dw_edma_device_terminate_all(struct dma_chan *dchan) |
| { |
| struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan); |
| int err = 0; |
| |
| if (!chan->configured) { |
| /* Do nothing */ |
| } else if (chan->status == EDMA_ST_PAUSE) { |
| chan->status = EDMA_ST_IDLE; |
| chan->configured = false; |
| } else if (chan->status == EDMA_ST_IDLE) { |
| chan->configured = false; |
| } else if (dw_edma_v0_core_ch_status(chan) == DMA_COMPLETE) { |
| /* |
| * The channel is in a false BUSY state, probably didn't |
| * receive or lost an interrupt |
| */ |
| chan->status = EDMA_ST_IDLE; |
| chan->configured = false; |
| } else if (chan->request > EDMA_REQ_PAUSE) { |
| err = -EPERM; |
| } else { |
| chan->request = EDMA_REQ_STOP; |
| } |
| |
| return err; |
| } |
| |
| static void dw_edma_device_issue_pending(struct dma_chan *dchan) |
| { |
| struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&chan->vc.lock, flags); |
| if (chan->configured && chan->request == EDMA_REQ_NONE && |
| chan->status == EDMA_ST_IDLE && vchan_issue_pending(&chan->vc)) { |
| chan->status = EDMA_ST_BUSY; |
| dw_edma_start_transfer(chan); |
| } |
| spin_unlock_irqrestore(&chan->vc.lock, flags); |
| } |
| |
| static enum dma_status |
| dw_edma_device_tx_status(struct dma_chan *dchan, dma_cookie_t cookie, |
| struct dma_tx_state *txstate) |
| { |
| struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan); |
| struct dw_edma_desc *desc; |
| struct virt_dma_desc *vd; |
| unsigned long flags; |
| enum dma_status ret; |
| u32 residue = 0; |
| |
| ret = dma_cookie_status(dchan, cookie, txstate); |
| if (ret == DMA_COMPLETE) |
| return ret; |
| |
| if (ret == DMA_IN_PROGRESS && chan->status == EDMA_ST_PAUSE) |
| ret = DMA_PAUSED; |
| |
| if (!txstate) |
| goto ret_residue; |
| |
| spin_lock_irqsave(&chan->vc.lock, flags); |
| vd = vchan_find_desc(&chan->vc, cookie); |
| if (vd) { |
| desc = vd2dw_edma_desc(vd); |
| if (desc) |
| residue = desc->alloc_sz - desc->xfer_sz; |
| } |
| spin_unlock_irqrestore(&chan->vc.lock, flags); |
| |
| ret_residue: |
| dma_set_residue(txstate, residue); |
| |
| return ret; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| dw_edma_device_transfer(struct dw_edma_transfer *xfer) |
| { |
| struct dw_edma_chan *chan = dchan2dw_edma_chan(xfer->dchan); |
| enum dma_transfer_direction dir = xfer->direction; |
| struct scatterlist *sg = NULL; |
| struct dw_edma_chunk *chunk; |
| struct dw_edma_burst *burst; |
| struct dw_edma_desc *desc; |
| u64 src_addr, dst_addr; |
| size_t fsz = 0; |
| u32 cnt = 0; |
| int i; |
| |
| if (!chan->configured) |
| return NULL; |
| |
| /* |
| * Local Root Port/End-point Remote End-point |
| * +-----------------------+ PCIe bus +----------------------+ |
| * | | +-+ | | |
| * | DEV_TO_MEM Rx Ch <----+ +---+ Tx Ch DEV_TO_MEM | |
| * | | | | | | |
| * | MEM_TO_DEV Tx Ch +----+ +---> Rx Ch MEM_TO_DEV | |
| * | | +-+ | | |
| * +-----------------------+ +----------------------+ |
| * |
| * 1. Normal logic: |
| * If eDMA is embedded into the DW PCIe RP/EP and controlled from the |
| * CPU/Application side, the Rx channel (EDMA_DIR_READ) will be used |
| * for the device read operations (DEV_TO_MEM) and the Tx channel |
| * (EDMA_DIR_WRITE) - for the write operations (MEM_TO_DEV). |
| * |
| * 2. Inverted logic: |
| * If eDMA is embedded into a Remote PCIe EP and is controlled by the |
| * MWr/MRd TLPs sent from the CPU's PCIe host controller, the Tx |
| * channel (EDMA_DIR_WRITE) will be used for the device read operations |
| * (DEV_TO_MEM) and the Rx channel (EDMA_DIR_READ) - for the write |
| * operations (MEM_TO_DEV). |
| * |
| * It is the client driver responsibility to choose a proper channel |
| * for the DMA transfers. |
| */ |
| if (chan->dw->chip->flags & DW_EDMA_CHIP_LOCAL) { |
| if ((chan->dir == EDMA_DIR_READ && dir != DMA_DEV_TO_MEM) || |
| (chan->dir == EDMA_DIR_WRITE && dir != DMA_MEM_TO_DEV)) |
| return NULL; |
| } else { |
| if ((chan->dir == EDMA_DIR_WRITE && dir != DMA_DEV_TO_MEM) || |
| (chan->dir == EDMA_DIR_READ && dir != DMA_MEM_TO_DEV)) |
| return NULL; |
| } |
| |
| if (xfer->type == EDMA_XFER_CYCLIC) { |
| if (!xfer->xfer.cyclic.len || !xfer->xfer.cyclic.cnt) |
| return NULL; |
| } else if (xfer->type == EDMA_XFER_SCATTER_GATHER) { |
| if (xfer->xfer.sg.len < 1) |
| return NULL; |
| } else if (xfer->type == EDMA_XFER_INTERLEAVED) { |
| if (!xfer->xfer.il->numf || xfer->xfer.il->frame_size < 1) |
| return NULL; |
| if (!xfer->xfer.il->src_inc || !xfer->xfer.il->dst_inc) |
| return NULL; |
| } else { |
| return NULL; |
| } |
| |
| desc = dw_edma_alloc_desc(chan); |
| if (unlikely(!desc)) |
| goto err_alloc; |
| |
| chunk = dw_edma_alloc_chunk(desc); |
| if (unlikely(!chunk)) |
| goto err_alloc; |
| |
| if (xfer->type == EDMA_XFER_INTERLEAVED) { |
| src_addr = xfer->xfer.il->src_start; |
| dst_addr = xfer->xfer.il->dst_start; |
| } else { |
| src_addr = chan->config.src_addr; |
| dst_addr = chan->config.dst_addr; |
| } |
| |
| if (dir == DMA_DEV_TO_MEM) |
| src_addr = dw_edma_get_pci_address(chan, (phys_addr_t)src_addr); |
| else |
| dst_addr = dw_edma_get_pci_address(chan, (phys_addr_t)dst_addr); |
| |
| if (xfer->type == EDMA_XFER_CYCLIC) { |
| cnt = xfer->xfer.cyclic.cnt; |
| } else if (xfer->type == EDMA_XFER_SCATTER_GATHER) { |
| cnt = xfer->xfer.sg.len; |
| sg = xfer->xfer.sg.sgl; |
| } else if (xfer->type == EDMA_XFER_INTERLEAVED) { |
| cnt = xfer->xfer.il->numf * xfer->xfer.il->frame_size; |
| fsz = xfer->xfer.il->frame_size; |
| } |
| |
| for (i = 0; i < cnt; i++) { |
| if (xfer->type == EDMA_XFER_SCATTER_GATHER && !sg) |
| break; |
| |
| if (chunk->bursts_alloc == chan->ll_max) { |
| chunk = dw_edma_alloc_chunk(desc); |
| if (unlikely(!chunk)) |
| goto err_alloc; |
| } |
| |
| burst = dw_edma_alloc_burst(chunk); |
| if (unlikely(!burst)) |
| goto err_alloc; |
| |
| if (xfer->type == EDMA_XFER_CYCLIC) |
| burst->sz = xfer->xfer.cyclic.len; |
| else if (xfer->type == EDMA_XFER_SCATTER_GATHER) |
| burst->sz = sg_dma_len(sg); |
| else if (xfer->type == EDMA_XFER_INTERLEAVED) |
| burst->sz = xfer->xfer.il->sgl[i % fsz].size; |
| |
| chunk->ll_region.sz += burst->sz; |
| desc->alloc_sz += burst->sz; |
| |
| if (dir == DMA_DEV_TO_MEM) { |
| burst->sar = src_addr; |
| if (xfer->type == EDMA_XFER_CYCLIC) { |
| burst->dar = xfer->xfer.cyclic.paddr; |
| } else if (xfer->type == EDMA_XFER_SCATTER_GATHER) { |
| src_addr += sg_dma_len(sg); |
| burst->dar = sg_dma_address(sg); |
| /* Unlike the typical assumption by other |
| * drivers/IPs the peripheral memory isn't |
| * a FIFO memory, in this case, it's a |
| * linear memory and that why the source |
| * and destination addresses are increased |
| * by the same portion (data length) |
| */ |
| } else if (xfer->type == EDMA_XFER_INTERLEAVED) { |
| burst->dar = dst_addr; |
| } |
| } else { |
| burst->dar = dst_addr; |
| if (xfer->type == EDMA_XFER_CYCLIC) { |
| burst->sar = xfer->xfer.cyclic.paddr; |
| } else if (xfer->type == EDMA_XFER_SCATTER_GATHER) { |
| dst_addr += sg_dma_len(sg); |
| burst->sar = sg_dma_address(sg); |
| /* Unlike the typical assumption by other |
| * drivers/IPs the peripheral memory isn't |
| * a FIFO memory, in this case, it's a |
| * linear memory and that why the source |
| * and destination addresses are increased |
| * by the same portion (data length) |
| */ |
| } else if (xfer->type == EDMA_XFER_INTERLEAVED) { |
| burst->sar = src_addr; |
| } |
| } |
| |
| if (xfer->type == EDMA_XFER_SCATTER_GATHER) { |
| sg = sg_next(sg); |
| } else if (xfer->type == EDMA_XFER_INTERLEAVED) { |
| struct dma_interleaved_template *il = xfer->xfer.il; |
| struct data_chunk *dc = &il->sgl[i % fsz]; |
| |
| src_addr += burst->sz; |
| if (il->src_sgl) |
| src_addr += dmaengine_get_src_icg(il, dc); |
| |
| dst_addr += burst->sz; |
| if (il->dst_sgl) |
| dst_addr += dmaengine_get_dst_icg(il, dc); |
| } |
| } |
| |
| return vchan_tx_prep(&chan->vc, &desc->vd, xfer->flags); |
| |
| err_alloc: |
| if (desc) |
| dw_edma_free_desc(desc); |
| |
| return NULL; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| dw_edma_device_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl, |
| unsigned int len, |
| enum dma_transfer_direction direction, |
| unsigned long flags, void *context) |
| { |
| struct dw_edma_transfer xfer; |
| |
| xfer.dchan = dchan; |
| xfer.direction = direction; |
| xfer.xfer.sg.sgl = sgl; |
| xfer.xfer.sg.len = len; |
| xfer.flags = flags; |
| xfer.type = EDMA_XFER_SCATTER_GATHER; |
| |
| return dw_edma_device_transfer(&xfer); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| dw_edma_device_prep_dma_cyclic(struct dma_chan *dchan, dma_addr_t paddr, |
| size_t len, size_t count, |
| enum dma_transfer_direction direction, |
| unsigned long flags) |
| { |
| struct dw_edma_transfer xfer; |
| |
| xfer.dchan = dchan; |
| xfer.direction = direction; |
| xfer.xfer.cyclic.paddr = paddr; |
| xfer.xfer.cyclic.len = len; |
| xfer.xfer.cyclic.cnt = count; |
| xfer.flags = flags; |
| xfer.type = EDMA_XFER_CYCLIC; |
| |
| return dw_edma_device_transfer(&xfer); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| dw_edma_device_prep_interleaved_dma(struct dma_chan *dchan, |
| struct dma_interleaved_template *ilt, |
| unsigned long flags) |
| { |
| struct dw_edma_transfer xfer; |
| |
| xfer.dchan = dchan; |
| xfer.direction = ilt->dir; |
| xfer.xfer.il = ilt; |
| xfer.flags = flags; |
| xfer.type = EDMA_XFER_INTERLEAVED; |
| |
| return dw_edma_device_transfer(&xfer); |
| } |
| |
| static void dw_edma_done_interrupt(struct dw_edma_chan *chan) |
| { |
| struct dw_edma_desc *desc; |
| struct virt_dma_desc *vd; |
| unsigned long flags; |
| |
| dw_edma_v0_core_clear_done_int(chan); |
| |
| spin_lock_irqsave(&chan->vc.lock, flags); |
| vd = vchan_next_desc(&chan->vc); |
| if (vd) { |
| switch (chan->request) { |
| case EDMA_REQ_NONE: |
| desc = vd2dw_edma_desc(vd); |
| if (desc->chunks_alloc) { |
| chan->status = EDMA_ST_BUSY; |
| dw_edma_start_transfer(chan); |
| } else { |
| list_del(&vd->node); |
| vchan_cookie_complete(vd); |
| chan->status = EDMA_ST_IDLE; |
| } |
| break; |
| |
| case EDMA_REQ_STOP: |
| list_del(&vd->node); |
| vchan_cookie_complete(vd); |
| chan->request = EDMA_REQ_NONE; |
| chan->status = EDMA_ST_IDLE; |
| break; |
| |
| case EDMA_REQ_PAUSE: |
| chan->request = EDMA_REQ_NONE; |
| chan->status = EDMA_ST_PAUSE; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&chan->vc.lock, flags); |
| } |
| |
| static void dw_edma_abort_interrupt(struct dw_edma_chan *chan) |
| { |
| struct virt_dma_desc *vd; |
| unsigned long flags; |
| |
| dw_edma_v0_core_clear_abort_int(chan); |
| |
| spin_lock_irqsave(&chan->vc.lock, flags); |
| vd = vchan_next_desc(&chan->vc); |
| if (vd) { |
| list_del(&vd->node); |
| vchan_cookie_complete(vd); |
| } |
| spin_unlock_irqrestore(&chan->vc.lock, flags); |
| chan->request = EDMA_REQ_NONE; |
| chan->status = EDMA_ST_IDLE; |
| } |
| |
| static irqreturn_t dw_edma_interrupt(int irq, void *data, bool write) |
| { |
| struct dw_edma_irq *dw_irq = data; |
| struct dw_edma *dw = dw_irq->dw; |
| unsigned long total, pos, val; |
| unsigned long off; |
| u32 mask; |
| |
| if (write) { |
| total = dw->wr_ch_cnt; |
| off = 0; |
| mask = dw_irq->wr_mask; |
| } else { |
| total = dw->rd_ch_cnt; |
| off = dw->wr_ch_cnt; |
| mask = dw_irq->rd_mask; |
| } |
| |
| val = dw_edma_v0_core_status_done_int(dw, write ? |
| EDMA_DIR_WRITE : |
| EDMA_DIR_READ); |
| val &= mask; |
| for_each_set_bit(pos, &val, total) { |
| struct dw_edma_chan *chan = &dw->chan[pos + off]; |
| |
| dw_edma_done_interrupt(chan); |
| } |
| |
| val = dw_edma_v0_core_status_abort_int(dw, write ? |
| EDMA_DIR_WRITE : |
| EDMA_DIR_READ); |
| val &= mask; |
| for_each_set_bit(pos, &val, total) { |
| struct dw_edma_chan *chan = &dw->chan[pos + off]; |
| |
| dw_edma_abort_interrupt(chan); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static inline irqreturn_t dw_edma_interrupt_write(int irq, void *data) |
| { |
| return dw_edma_interrupt(irq, data, true); |
| } |
| |
| static inline irqreturn_t dw_edma_interrupt_read(int irq, void *data) |
| { |
| return dw_edma_interrupt(irq, data, false); |
| } |
| |
| static irqreturn_t dw_edma_interrupt_common(int irq, void *data) |
| { |
| dw_edma_interrupt(irq, data, true); |
| dw_edma_interrupt(irq, data, false); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int dw_edma_alloc_chan_resources(struct dma_chan *dchan) |
| { |
| struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan); |
| |
| if (chan->status != EDMA_ST_IDLE) |
| return -EBUSY; |
| |
| return 0; |
| } |
| |
| static void dw_edma_free_chan_resources(struct dma_chan *dchan) |
| { |
| unsigned long timeout = jiffies + msecs_to_jiffies(5000); |
| int ret; |
| |
| while (time_before(jiffies, timeout)) { |
| ret = dw_edma_device_terminate_all(dchan); |
| if (!ret) |
| break; |
| |
| if (time_after_eq(jiffies, timeout)) |
| return; |
| |
| cpu_relax(); |
| } |
| } |
| |
| static int dw_edma_channel_setup(struct dw_edma *dw, u32 wr_alloc, u32 rd_alloc) |
| { |
| struct dw_edma_chip *chip = dw->chip; |
| struct device *dev = chip->dev; |
| struct dw_edma_chan *chan; |
| struct dw_edma_irq *irq; |
| struct dma_device *dma; |
| u32 i, ch_cnt; |
| u32 pos; |
| |
| ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt; |
| dma = &dw->dma; |
| |
| INIT_LIST_HEAD(&dma->channels); |
| |
| for (i = 0; i < ch_cnt; i++) { |
| chan = &dw->chan[i]; |
| |
| chan->dw = dw; |
| |
| if (i < dw->wr_ch_cnt) { |
| chan->id = i; |
| chan->dir = EDMA_DIR_WRITE; |
| } else { |
| chan->id = i - dw->wr_ch_cnt; |
| chan->dir = EDMA_DIR_READ; |
| } |
| |
| chan->configured = false; |
| chan->request = EDMA_REQ_NONE; |
| chan->status = EDMA_ST_IDLE; |
| |
| if (chan->dir == EDMA_DIR_WRITE) |
| chan->ll_max = (chip->ll_region_wr[chan->id].sz / EDMA_LL_SZ); |
| else |
| chan->ll_max = (chip->ll_region_rd[chan->id].sz / EDMA_LL_SZ); |
| chan->ll_max -= 1; |
| |
| dev_vdbg(dev, "L. List:\tChannel %s[%u] max_cnt=%u\n", |
| chan->dir == EDMA_DIR_WRITE ? "write" : "read", |
| chan->id, chan->ll_max); |
| |
| if (dw->nr_irqs == 1) |
| pos = 0; |
| else if (chan->dir == EDMA_DIR_WRITE) |
| pos = chan->id % wr_alloc; |
| else |
| pos = wr_alloc + chan->id % rd_alloc; |
| |
| irq = &dw->irq[pos]; |
| |
| if (chan->dir == EDMA_DIR_WRITE) |
| irq->wr_mask |= BIT(chan->id); |
| else |
| irq->rd_mask |= BIT(chan->id); |
| |
| irq->dw = dw; |
| memcpy(&chan->msi, &irq->msi, sizeof(chan->msi)); |
| |
| dev_vdbg(dev, "MSI:\t\tChannel %s[%u] addr=0x%.8x%.8x, data=0x%.8x\n", |
| chan->dir == EDMA_DIR_WRITE ? "write" : "read", chan->id, |
| chan->msi.address_hi, chan->msi.address_lo, |
| chan->msi.data); |
| |
| chan->vc.desc_free = vchan_free_desc; |
| chan->vc.chan.private = chan->dir == EDMA_DIR_WRITE ? |
| &dw->chip->dt_region_wr[chan->id] : |
| &dw->chip->dt_region_rd[chan->id]; |
| |
| vchan_init(&chan->vc, dma); |
| |
| dw_edma_v0_core_device_config(chan); |
| } |
| |
| /* Set DMA channel capabilities */ |
| dma_cap_zero(dma->cap_mask); |
| dma_cap_set(DMA_SLAVE, dma->cap_mask); |
| dma_cap_set(DMA_CYCLIC, dma->cap_mask); |
| dma_cap_set(DMA_PRIVATE, dma->cap_mask); |
| dma_cap_set(DMA_INTERLEAVE, dma->cap_mask); |
| dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); |
| dma->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); |
| dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); |
| dma->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; |
| |
| /* Set DMA channel callbacks */ |
| dma->dev = chip->dev; |
| dma->device_alloc_chan_resources = dw_edma_alloc_chan_resources; |
| dma->device_free_chan_resources = dw_edma_free_chan_resources; |
| dma->device_caps = dw_edma_device_caps; |
| dma->device_config = dw_edma_device_config; |
| dma->device_pause = dw_edma_device_pause; |
| dma->device_resume = dw_edma_device_resume; |
| dma->device_terminate_all = dw_edma_device_terminate_all; |
| dma->device_issue_pending = dw_edma_device_issue_pending; |
| dma->device_tx_status = dw_edma_device_tx_status; |
| dma->device_prep_slave_sg = dw_edma_device_prep_slave_sg; |
| dma->device_prep_dma_cyclic = dw_edma_device_prep_dma_cyclic; |
| dma->device_prep_interleaved_dma = dw_edma_device_prep_interleaved_dma; |
| |
| dma_set_max_seg_size(dma->dev, U32_MAX); |
| |
| /* Register DMA device */ |
| return dma_async_device_register(dma); |
| } |
| |
| static inline void dw_edma_dec_irq_alloc(int *nr_irqs, u32 *alloc, u16 cnt) |
| { |
| if (*nr_irqs && *alloc < cnt) { |
| (*alloc)++; |
| (*nr_irqs)--; |
| } |
| } |
| |
| static inline void dw_edma_add_irq_mask(u32 *mask, u32 alloc, u16 cnt) |
| { |
| while (*mask * alloc < cnt) |
| (*mask)++; |
| } |
| |
| static int dw_edma_irq_request(struct dw_edma *dw, |
| u32 *wr_alloc, u32 *rd_alloc) |
| { |
| struct dw_edma_chip *chip = dw->chip; |
| struct device *dev = dw->chip->dev; |
| u32 wr_mask = 1; |
| u32 rd_mask = 1; |
| int i, err = 0; |
| u32 ch_cnt; |
| int irq; |
| |
| ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt; |
| |
| if (chip->nr_irqs < 1 || !chip->ops->irq_vector) |
| return -EINVAL; |
| |
| dw->irq = devm_kcalloc(dev, chip->nr_irqs, sizeof(*dw->irq), GFP_KERNEL); |
| if (!dw->irq) |
| return -ENOMEM; |
| |
| if (chip->nr_irqs == 1) { |
| /* Common IRQ shared among all channels */ |
| irq = chip->ops->irq_vector(dev, 0); |
| err = request_irq(irq, dw_edma_interrupt_common, |
| IRQF_SHARED, dw->name, &dw->irq[0]); |
| if (err) { |
| dw->nr_irqs = 0; |
| return err; |
| } |
| |
| if (irq_get_msi_desc(irq)) |
| get_cached_msi_msg(irq, &dw->irq[0].msi); |
| |
| dw->nr_irqs = 1; |
| } else { |
| /* Distribute IRQs equally among all channels */ |
| int tmp = chip->nr_irqs; |
| |
| while (tmp && (*wr_alloc + *rd_alloc) < ch_cnt) { |
| dw_edma_dec_irq_alloc(&tmp, wr_alloc, dw->wr_ch_cnt); |
| dw_edma_dec_irq_alloc(&tmp, rd_alloc, dw->rd_ch_cnt); |
| } |
| |
| dw_edma_add_irq_mask(&wr_mask, *wr_alloc, dw->wr_ch_cnt); |
| dw_edma_add_irq_mask(&rd_mask, *rd_alloc, dw->rd_ch_cnt); |
| |
| for (i = 0; i < (*wr_alloc + *rd_alloc); i++) { |
| irq = chip->ops->irq_vector(dev, i); |
| err = request_irq(irq, |
| i < *wr_alloc ? |
| dw_edma_interrupt_write : |
| dw_edma_interrupt_read, |
| IRQF_SHARED, dw->name, |
| &dw->irq[i]); |
| if (err) |
| goto err_irq_free; |
| |
| if (irq_get_msi_desc(irq)) |
| get_cached_msi_msg(irq, &dw->irq[i].msi); |
| } |
| |
| dw->nr_irqs = i; |
| } |
| |
| return 0; |
| |
| err_irq_free: |
| for (i--; i >= 0; i--) { |
| irq = chip->ops->irq_vector(dev, i); |
| free_irq(irq, &dw->irq[i]); |
| } |
| |
| return err; |
| } |
| |
| int dw_edma_probe(struct dw_edma_chip *chip) |
| { |
| struct device *dev; |
| struct dw_edma *dw; |
| u32 wr_alloc = 0; |
| u32 rd_alloc = 0; |
| int i, err; |
| |
| if (!chip) |
| return -EINVAL; |
| |
| dev = chip->dev; |
| if (!dev || !chip->ops) |
| return -EINVAL; |
| |
| dw = devm_kzalloc(dev, sizeof(*dw), GFP_KERNEL); |
| if (!dw) |
| return -ENOMEM; |
| |
| dw->chip = chip; |
| |
| raw_spin_lock_init(&dw->lock); |
| |
| dw->wr_ch_cnt = min_t(u16, chip->ll_wr_cnt, |
| dw_edma_v0_core_ch_count(dw, EDMA_DIR_WRITE)); |
| dw->wr_ch_cnt = min_t(u16, dw->wr_ch_cnt, EDMA_MAX_WR_CH); |
| |
| dw->rd_ch_cnt = min_t(u16, chip->ll_rd_cnt, |
| dw_edma_v0_core_ch_count(dw, EDMA_DIR_READ)); |
| dw->rd_ch_cnt = min_t(u16, dw->rd_ch_cnt, EDMA_MAX_RD_CH); |
| |
| if (!dw->wr_ch_cnt && !dw->rd_ch_cnt) |
| return -EINVAL; |
| |
| dev_vdbg(dev, "Channels:\twrite=%d, read=%d\n", |
| dw->wr_ch_cnt, dw->rd_ch_cnt); |
| |
| /* Allocate channels */ |
| dw->chan = devm_kcalloc(dev, dw->wr_ch_cnt + dw->rd_ch_cnt, |
| sizeof(*dw->chan), GFP_KERNEL); |
| if (!dw->chan) |
| return -ENOMEM; |
| |
| snprintf(dw->name, sizeof(dw->name), "dw-edma-core:%s", |
| dev_name(chip->dev)); |
| |
| /* Disable eDMA, only to establish the ideal initial conditions */ |
| dw_edma_v0_core_off(dw); |
| |
| /* Request IRQs */ |
| err = dw_edma_irq_request(dw, &wr_alloc, &rd_alloc); |
| if (err) |
| return err; |
| |
| /* Setup write/read channels */ |
| err = dw_edma_channel_setup(dw, wr_alloc, rd_alloc); |
| if (err) |
| goto err_irq_free; |
| |
| /* Turn debugfs on */ |
| dw_edma_v0_core_debugfs_on(dw); |
| |
| chip->dw = dw; |
| |
| return 0; |
| |
| err_irq_free: |
| for (i = (dw->nr_irqs - 1); i >= 0; i--) |
| free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]); |
| |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(dw_edma_probe); |
| |
| int dw_edma_remove(struct dw_edma_chip *chip) |
| { |
| struct dw_edma_chan *chan, *_chan; |
| struct device *dev = chip->dev; |
| struct dw_edma *dw = chip->dw; |
| int i; |
| |
| /* Skip removal if no private data found */ |
| if (!dw) |
| return -ENODEV; |
| |
| /* Disable eDMA */ |
| dw_edma_v0_core_off(dw); |
| |
| /* Free irqs */ |
| for (i = (dw->nr_irqs - 1); i >= 0; i--) |
| free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]); |
| |
| /* Deregister eDMA device */ |
| dma_async_device_unregister(&dw->dma); |
| list_for_each_entry_safe(chan, _chan, &dw->dma.channels, |
| vc.chan.device_node) { |
| tasklet_kill(&chan->vc.task); |
| list_del(&chan->vc.chan.device_node); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(dw_edma_remove); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("Synopsys DesignWare eDMA controller core driver"); |
| MODULE_AUTHOR("Gustavo Pimentel <gustavo.pimentel@synopsys.com>"); |