| // SPDX-License-Identifier: GPL-2.0-only |
| /* tnum: tracked (or tristate) numbers |
| * |
| * A tnum tracks knowledge about the bits of a value. Each bit can be either |
| * known (0 or 1), or unknown (x). Arithmetic operations on tnums will |
| * propagate the unknown bits such that the tnum result represents all the |
| * possible results for possible values of the operands. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/tnum.h> |
| |
| #define TNUM(_v, _m) (struct tnum){.value = _v, .mask = _m} |
| /* A completely unknown value */ |
| const struct tnum tnum_unknown = { .value = 0, .mask = -1 }; |
| |
| struct tnum tnum_const(u64 value) |
| { |
| return TNUM(value, 0); |
| } |
| |
| struct tnum tnum_range(u64 min, u64 max) |
| { |
| u64 chi = min ^ max, delta; |
| u8 bits = fls64(chi); |
| |
| /* special case, needed because 1ULL << 64 is undefined */ |
| if (bits > 63) |
| return tnum_unknown; |
| /* e.g. if chi = 4, bits = 3, delta = (1<<3) - 1 = 7. |
| * if chi = 0, bits = 0, delta = (1<<0) - 1 = 0, so we return |
| * constant min (since min == max). |
| */ |
| delta = (1ULL << bits) - 1; |
| return TNUM(min & ~delta, delta); |
| } |
| |
| struct tnum tnum_lshift(struct tnum a, u8 shift) |
| { |
| return TNUM(a.value << shift, a.mask << shift); |
| } |
| |
| struct tnum tnum_rshift(struct tnum a, u8 shift) |
| { |
| return TNUM(a.value >> shift, a.mask >> shift); |
| } |
| |
| struct tnum tnum_arshift(struct tnum a, u8 min_shift, u8 insn_bitness) |
| { |
| /* if a.value is negative, arithmetic shifting by minimum shift |
| * will have larger negative offset compared to more shifting. |
| * If a.value is nonnegative, arithmetic shifting by minimum shift |
| * will have larger positive offset compare to more shifting. |
| */ |
| if (insn_bitness == 32) |
| return TNUM((u32)(((s32)a.value) >> min_shift), |
| (u32)(((s32)a.mask) >> min_shift)); |
| else |
| return TNUM((s64)a.value >> min_shift, |
| (s64)a.mask >> min_shift); |
| } |
| |
| struct tnum tnum_add(struct tnum a, struct tnum b) |
| { |
| u64 sm, sv, sigma, chi, mu; |
| |
| sm = a.mask + b.mask; |
| sv = a.value + b.value; |
| sigma = sm + sv; |
| chi = sigma ^ sv; |
| mu = chi | a.mask | b.mask; |
| return TNUM(sv & ~mu, mu); |
| } |
| |
| struct tnum tnum_sub(struct tnum a, struct tnum b) |
| { |
| u64 dv, alpha, beta, chi, mu; |
| |
| dv = a.value - b.value; |
| alpha = dv + a.mask; |
| beta = dv - b.mask; |
| chi = alpha ^ beta; |
| mu = chi | a.mask | b.mask; |
| return TNUM(dv & ~mu, mu); |
| } |
| |
| struct tnum tnum_and(struct tnum a, struct tnum b) |
| { |
| u64 alpha, beta, v; |
| |
| alpha = a.value | a.mask; |
| beta = b.value | b.mask; |
| v = a.value & b.value; |
| return TNUM(v, alpha & beta & ~v); |
| } |
| |
| struct tnum tnum_or(struct tnum a, struct tnum b) |
| { |
| u64 v, mu; |
| |
| v = a.value | b.value; |
| mu = a.mask | b.mask; |
| return TNUM(v, mu & ~v); |
| } |
| |
| struct tnum tnum_xor(struct tnum a, struct tnum b) |
| { |
| u64 v, mu; |
| |
| v = a.value ^ b.value; |
| mu = a.mask | b.mask; |
| return TNUM(v & ~mu, mu); |
| } |
| |
| /* Generate partial products by multiplying each bit in the multiplier (tnum a) |
| * with the multiplicand (tnum b), and add the partial products after |
| * appropriately bit-shifting them. Instead of directly performing tnum addition |
| * on the generated partial products, equivalenty, decompose each partial |
| * product into two tnums, consisting of the value-sum (acc_v) and the |
| * mask-sum (acc_m) and then perform tnum addition on them. The following paper |
| * explains the algorithm in more detail: https://arxiv.org/abs/2105.05398. |
| */ |
| struct tnum tnum_mul(struct tnum a, struct tnum b) |
| { |
| u64 acc_v = a.value * b.value; |
| struct tnum acc_m = TNUM(0, 0); |
| |
| while (a.value || a.mask) { |
| /* LSB of tnum a is a certain 1 */ |
| if (a.value & 1) |
| acc_m = tnum_add(acc_m, TNUM(0, b.mask)); |
| /* LSB of tnum a is uncertain */ |
| else if (a.mask & 1) |
| acc_m = tnum_add(acc_m, TNUM(0, b.value | b.mask)); |
| /* Note: no case for LSB is certain 0 */ |
| a = tnum_rshift(a, 1); |
| b = tnum_lshift(b, 1); |
| } |
| return tnum_add(TNUM(acc_v, 0), acc_m); |
| } |
| |
| /* Note that if a and b disagree - i.e. one has a 'known 1' where the other has |
| * a 'known 0' - this will return a 'known 1' for that bit. |
| */ |
| struct tnum tnum_intersect(struct tnum a, struct tnum b) |
| { |
| u64 v, mu; |
| |
| v = a.value | b.value; |
| mu = a.mask & b.mask; |
| return TNUM(v & ~mu, mu); |
| } |
| |
| struct tnum tnum_cast(struct tnum a, u8 size) |
| { |
| a.value &= (1ULL << (size * 8)) - 1; |
| a.mask &= (1ULL << (size * 8)) - 1; |
| return a; |
| } |
| |
| bool tnum_is_aligned(struct tnum a, u64 size) |
| { |
| if (!size) |
| return true; |
| return !((a.value | a.mask) & (size - 1)); |
| } |
| |
| bool tnum_in(struct tnum a, struct tnum b) |
| { |
| if (b.mask & ~a.mask) |
| return false; |
| b.value &= ~a.mask; |
| return a.value == b.value; |
| } |
| |
| int tnum_strn(char *str, size_t size, struct tnum a) |
| { |
| return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask); |
| } |
| EXPORT_SYMBOL_GPL(tnum_strn); |
| |
| int tnum_sbin(char *str, size_t size, struct tnum a) |
| { |
| size_t n; |
| |
| for (n = 64; n; n--) { |
| if (n < size) { |
| if (a.mask & 1) |
| str[n - 1] = 'x'; |
| else if (a.value & 1) |
| str[n - 1] = '1'; |
| else |
| str[n - 1] = '0'; |
| } |
| a.mask >>= 1; |
| a.value >>= 1; |
| } |
| str[min(size - 1, (size_t)64)] = 0; |
| return 64; |
| } |
| |
| struct tnum tnum_subreg(struct tnum a) |
| { |
| return tnum_cast(a, 4); |
| } |
| |
| struct tnum tnum_clear_subreg(struct tnum a) |
| { |
| return tnum_lshift(tnum_rshift(a, 32), 32); |
| } |
| |
| struct tnum tnum_const_subreg(struct tnum a, u32 value) |
| { |
| return tnum_or(tnum_clear_subreg(a), tnum_const(value)); |
| } |