| /* |
| * SLOB Allocator: Simple List Of Blocks |
| * |
| * Matt Mackall <mpm@selenic.com> 12/30/03 |
| * |
| * How SLOB works: |
| * |
| * The core of SLOB is a traditional K&R style heap allocator, with |
| * support for returning aligned objects. The granularity of this |
| * allocator is 4 bytes on 32-bit and 8 bytes on 64-bit, though it |
| * could be as low as 2 if the compiler alignment requirements allow. |
| * |
| * The slob heap is a linked list of pages from __get_free_page, and |
| * within each page, there is a singly-linked list of free blocks (slob_t). |
| * The heap is grown on demand and allocation from the heap is currently |
| * first-fit. |
| * |
| * Above this is an implementation of kmalloc/kfree. Blocks returned |
| * from kmalloc are 4-byte aligned and prepended with a 4-byte header. |
| * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls |
| * __get_free_pages directly so that it can return page-aligned blocks |
| * and keeps a linked list of such pages and their orders. These |
| * objects are detected in kfree() by their page alignment. |
| * |
| * SLAB is emulated on top of SLOB by simply calling constructors and |
| * destructors for every SLAB allocation. Objects are returned with the |
| * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which |
| * case the low-level allocator will fragment blocks to create the proper |
| * alignment. Again, objects of page-size or greater are allocated by |
| * calling __get_free_pages. As SLAB objects know their size, no separate |
| * size bookkeeping is necessary and there is essentially no allocation |
| * space overhead. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/cache.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/rcupdate.h> |
| #include <linux/list.h> |
| #include <asm/atomic.h> |
| |
| /* SLOB_MIN_ALIGN == sizeof(long) */ |
| #if BITS_PER_BYTE == 32 |
| #define SLOB_MIN_ALIGN 4 |
| #else |
| #define SLOB_MIN_ALIGN 8 |
| #endif |
| |
| /* |
| * slob_block has a field 'units', which indicates size of block if +ve, |
| * or offset of next block if -ve (in SLOB_UNITs). |
| * |
| * Free blocks of size 1 unit simply contain the offset of the next block. |
| * Those with larger size contain their size in the first SLOB_UNIT of |
| * memory, and the offset of the next free block in the second SLOB_UNIT. |
| */ |
| #if PAGE_SIZE <= (32767 * SLOB_MIN_ALIGN) |
| typedef s16 slobidx_t; |
| #else |
| typedef s32 slobidx_t; |
| #endif |
| |
| /* |
| * Align struct slob_block to long for now, but can some embedded |
| * architectures get away with less? |
| */ |
| struct slob_block { |
| slobidx_t units; |
| } __attribute__((aligned(SLOB_MIN_ALIGN))); |
| typedef struct slob_block slob_t; |
| |
| /* |
| * We use struct page fields to manage some slob allocation aspects, |
| * however to avoid the horrible mess in include/linux/mm_types.h, we'll |
| * just define our own struct page type variant here. |
| */ |
| struct slob_page { |
| union { |
| struct { |
| unsigned long flags; /* mandatory */ |
| atomic_t _count; /* mandatory */ |
| slobidx_t units; /* free units left in page */ |
| unsigned long pad[2]; |
| slob_t *free; /* first free slob_t in page */ |
| struct list_head list; /* linked list of free pages */ |
| }; |
| struct page page; |
| }; |
| }; |
| static inline void struct_slob_page_wrong_size(void) |
| { BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); } |
| |
| /* |
| * free_slob_page: call before a slob_page is returned to the page allocator. |
| */ |
| static inline void free_slob_page(struct slob_page *sp) |
| { |
| reset_page_mapcount(&sp->page); |
| sp->page.mapping = NULL; |
| } |
| |
| /* |
| * All (partially) free slob pages go on this list. |
| */ |
| static LIST_HEAD(free_slob_pages); |
| |
| /* |
| * slob_page: True for all slob pages (false for bigblock pages) |
| */ |
| static inline int slob_page(struct slob_page *sp) |
| { |
| return test_bit(PG_active, &sp->flags); |
| } |
| |
| static inline void set_slob_page(struct slob_page *sp) |
| { |
| __set_bit(PG_active, &sp->flags); |
| } |
| |
| static inline void clear_slob_page(struct slob_page *sp) |
| { |
| __clear_bit(PG_active, &sp->flags); |
| } |
| |
| /* |
| * slob_page_free: true for pages on free_slob_pages list. |
| */ |
| static inline int slob_page_free(struct slob_page *sp) |
| { |
| return test_bit(PG_private, &sp->flags); |
| } |
| |
| static inline void set_slob_page_free(struct slob_page *sp) |
| { |
| list_add(&sp->list, &free_slob_pages); |
| __set_bit(PG_private, &sp->flags); |
| } |
| |
| static inline void clear_slob_page_free(struct slob_page *sp) |
| { |
| list_del(&sp->list); |
| __clear_bit(PG_private, &sp->flags); |
| } |
| |
| #define SLOB_UNIT sizeof(slob_t) |
| #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT) |
| #define SLOB_ALIGN L1_CACHE_BYTES |
| |
| /* |
| * struct slob_rcu is inserted at the tail of allocated slob blocks, which |
| * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free |
| * the block using call_rcu. |
| */ |
| struct slob_rcu { |
| struct rcu_head head; |
| int size; |
| }; |
| |
| /* |
| * slob_lock protects all slob allocator structures. |
| */ |
| static DEFINE_SPINLOCK(slob_lock); |
| |
| /* |
| * Encode the given size and next info into a free slob block s. |
| */ |
| static void set_slob(slob_t *s, slobidx_t size, slob_t *next) |
| { |
| slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); |
| slobidx_t offset = next - base; |
| |
| if (size > 1) { |
| s[0].units = size; |
| s[1].units = offset; |
| } else |
| s[0].units = -offset; |
| } |
| |
| /* |
| * Return the size of a slob block. |
| */ |
| static slobidx_t slob_units(slob_t *s) |
| { |
| if (s->units > 0) |
| return s->units; |
| return 1; |
| } |
| |
| /* |
| * Return the next free slob block pointer after this one. |
| */ |
| static slob_t *slob_next(slob_t *s) |
| { |
| slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); |
| slobidx_t next; |
| |
| if (s[0].units < 0) |
| next = -s[0].units; |
| else |
| next = s[1].units; |
| return base+next; |
| } |
| |
| /* |
| * Returns true if s is the last free block in its page. |
| */ |
| static int slob_last(slob_t *s) |
| { |
| return !((unsigned long)slob_next(s) & ~PAGE_MASK); |
| } |
| |
| /* |
| * Allocate a slob block within a given slob_page sp. |
| */ |
| static void *slob_page_alloc(struct slob_page *sp, size_t size, int align) |
| { |
| slob_t *prev, *cur, *aligned = 0; |
| int delta = 0, units = SLOB_UNITS(size); |
| |
| for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) { |
| slobidx_t avail = slob_units(cur); |
| |
| if (align) { |
| aligned = (slob_t *)ALIGN((unsigned long)cur, align); |
| delta = aligned - cur; |
| } |
| if (avail >= units + delta) { /* room enough? */ |
| slob_t *next; |
| |
| if (delta) { /* need to fragment head to align? */ |
| next = slob_next(cur); |
| set_slob(aligned, avail - delta, next); |
| set_slob(cur, delta, aligned); |
| prev = cur; |
| cur = aligned; |
| avail = slob_units(cur); |
| } |
| |
| next = slob_next(cur); |
| if (avail == units) { /* exact fit? unlink. */ |
| if (prev) |
| set_slob(prev, slob_units(prev), next); |
| else |
| sp->free = next; |
| } else { /* fragment */ |
| if (prev) |
| set_slob(prev, slob_units(prev), cur + units); |
| else |
| sp->free = cur + units; |
| set_slob(cur + units, avail - units, next); |
| } |
| |
| sp->units -= units; |
| if (!sp->units) |
| clear_slob_page_free(sp); |
| return cur; |
| } |
| if (slob_last(cur)) |
| return NULL; |
| } |
| } |
| |
| /* |
| * slob_alloc: entry point into the slob allocator. |
| */ |
| static void *slob_alloc(size_t size, gfp_t gfp, int align) |
| { |
| struct slob_page *sp; |
| slob_t *b = NULL; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&slob_lock, flags); |
| /* Iterate through each partially free page, try to find room */ |
| list_for_each_entry(sp, &free_slob_pages, list) { |
| if (sp->units >= SLOB_UNITS(size)) { |
| b = slob_page_alloc(sp, size, align); |
| if (b) |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&slob_lock, flags); |
| |
| /* Not enough space: must allocate a new page */ |
| if (!b) { |
| b = (slob_t *)__get_free_page(gfp); |
| if (!b) |
| return 0; |
| sp = (struct slob_page *)virt_to_page(b); |
| set_slob_page(sp); |
| |
| spin_lock_irqsave(&slob_lock, flags); |
| sp->units = SLOB_UNITS(PAGE_SIZE); |
| sp->free = b; |
| INIT_LIST_HEAD(&sp->list); |
| set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE)); |
| set_slob_page_free(sp); |
| b = slob_page_alloc(sp, size, align); |
| BUG_ON(!b); |
| spin_unlock_irqrestore(&slob_lock, flags); |
| } |
| return b; |
| } |
| |
| /* |
| * slob_free: entry point into the slob allocator. |
| */ |
| static void slob_free(void *block, int size) |
| { |
| struct slob_page *sp; |
| slob_t *prev, *next, *b = (slob_t *)block; |
| slobidx_t units; |
| unsigned long flags; |
| |
| if (!block) |
| return; |
| BUG_ON(!size); |
| |
| sp = (struct slob_page *)virt_to_page(block); |
| units = SLOB_UNITS(size); |
| |
| spin_lock_irqsave(&slob_lock, flags); |
| |
| if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) { |
| /* Go directly to page allocator. Do not pass slob allocator */ |
| if (slob_page_free(sp)) |
| clear_slob_page_free(sp); |
| clear_slob_page(sp); |
| free_slob_page(sp); |
| free_page((unsigned long)b); |
| goto out; |
| } |
| |
| if (!slob_page_free(sp)) { |
| /* This slob page is about to become partially free. Easy! */ |
| sp->units = units; |
| sp->free = b; |
| set_slob(b, units, |
| (void *)((unsigned long)(b + |
| SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); |
| set_slob_page_free(sp); |
| goto out; |
| } |
| |
| /* |
| * Otherwise the page is already partially free, so find reinsertion |
| * point. |
| */ |
| sp->units += units; |
| |
| if (b < sp->free) { |
| set_slob(b, units, sp->free); |
| sp->free = b; |
| } else { |
| prev = sp->free; |
| next = slob_next(prev); |
| while (b > next) { |
| prev = next; |
| next = slob_next(prev); |
| } |
| |
| if (!slob_last(prev) && b + units == next) { |
| units += slob_units(next); |
| set_slob(b, units, slob_next(next)); |
| } else |
| set_slob(b, units, next); |
| |
| if (prev + slob_units(prev) == b) { |
| units = slob_units(b) + slob_units(prev); |
| set_slob(prev, units, slob_next(b)); |
| } else |
| set_slob(prev, slob_units(prev), b); |
| } |
| out: |
| spin_unlock_irqrestore(&slob_lock, flags); |
| } |
| |
| /* |
| * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend. |
| */ |
| |
| struct bigblock { |
| int order; |
| void *pages; |
| struct bigblock *next; |
| }; |
| typedef struct bigblock bigblock_t; |
| |
| static bigblock_t *bigblocks; |
| |
| static DEFINE_SPINLOCK(block_lock); |
| |
| |
| void *__kmalloc(size_t size, gfp_t gfp) |
| { |
| slob_t *m; |
| bigblock_t *bb; |
| unsigned long flags; |
| |
| if (size < PAGE_SIZE - SLOB_UNIT) { |
| m = slob_alloc(size + SLOB_UNIT, gfp, 0); |
| if (m) |
| m->units = size; |
| return m+1; |
| } |
| |
| bb = slob_alloc(sizeof(bigblock_t), gfp, 0); |
| if (!bb) |
| return 0; |
| |
| bb->order = get_order(size); |
| bb->pages = (void *)__get_free_pages(gfp, bb->order); |
| |
| if (bb->pages) { |
| spin_lock_irqsave(&block_lock, flags); |
| bb->next = bigblocks; |
| bigblocks = bb; |
| spin_unlock_irqrestore(&block_lock, flags); |
| return bb->pages; |
| } |
| |
| slob_free(bb, sizeof(bigblock_t)); |
| return 0; |
| } |
| EXPORT_SYMBOL(__kmalloc); |
| |
| /** |
| * krealloc - reallocate memory. The contents will remain unchanged. |
| * |
| * @p: object to reallocate memory for. |
| * @new_size: how many bytes of memory are required. |
| * @flags: the type of memory to allocate. |
| * |
| * The contents of the object pointed to are preserved up to the |
| * lesser of the new and old sizes. If @p is %NULL, krealloc() |
| * behaves exactly like kmalloc(). If @size is 0 and @p is not a |
| * %NULL pointer, the object pointed to is freed. |
| */ |
| void *krealloc(const void *p, size_t new_size, gfp_t flags) |
| { |
| void *ret; |
| |
| if (unlikely(!p)) |
| return kmalloc_track_caller(new_size, flags); |
| |
| if (unlikely(!new_size)) { |
| kfree(p); |
| return NULL; |
| } |
| |
| ret = kmalloc_track_caller(new_size, flags); |
| if (ret) { |
| memcpy(ret, p, min(new_size, ksize(p))); |
| kfree(p); |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(krealloc); |
| |
| void kfree(const void *block) |
| { |
| struct slob_page *sp; |
| slob_t *m; |
| bigblock_t *bb, **last = &bigblocks; |
| unsigned long flags; |
| |
| if (!block) |
| return; |
| |
| sp = (struct slob_page *)virt_to_page(block); |
| if (!slob_page(sp)) { |
| /* on the big block list */ |
| spin_lock_irqsave(&block_lock, flags); |
| for (bb = bigblocks; bb; last = &bb->next, bb = bb->next) { |
| if (bb->pages == block) { |
| *last = bb->next; |
| spin_unlock_irqrestore(&block_lock, flags); |
| free_pages((unsigned long)block, bb->order); |
| slob_free(bb, sizeof(bigblock_t)); |
| return; |
| } |
| } |
| spin_unlock_irqrestore(&block_lock, flags); |
| WARN_ON(1); |
| return; |
| } |
| |
| m = (slob_t *)block - 1; |
| slob_free(m, m->units + SLOB_UNIT); |
| return; |
| } |
| |
| EXPORT_SYMBOL(kfree); |
| |
| size_t ksize(const void *block) |
| { |
| struct slob_page *sp; |
| bigblock_t *bb; |
| unsigned long flags; |
| |
| if (!block) |
| return 0; |
| |
| sp = (struct slob_page *)virt_to_page(block); |
| if (!slob_page(sp)) { |
| spin_lock_irqsave(&block_lock, flags); |
| for (bb = bigblocks; bb; bb = bb->next) |
| if (bb->pages == block) { |
| spin_unlock_irqrestore(&slob_lock, flags); |
| return PAGE_SIZE << bb->order; |
| } |
| spin_unlock_irqrestore(&block_lock, flags); |
| } |
| |
| return ((slob_t *)block - 1)->units + SLOB_UNIT; |
| } |
| |
| struct kmem_cache { |
| unsigned int size, align; |
| unsigned long flags; |
| const char *name; |
| void (*ctor)(void *, struct kmem_cache *, unsigned long); |
| }; |
| |
| struct kmem_cache *kmem_cache_create(const char *name, size_t size, |
| size_t align, unsigned long flags, |
| void (*ctor)(void*, struct kmem_cache *, unsigned long), |
| void (*dtor)(void*, struct kmem_cache *, unsigned long)) |
| { |
| struct kmem_cache *c; |
| |
| c = slob_alloc(sizeof(struct kmem_cache), flags, 0); |
| |
| if (c) { |
| c->name = name; |
| c->size = size; |
| if (flags & SLAB_DESTROY_BY_RCU) { |
| /* leave room for rcu footer at the end of object */ |
| c->size += sizeof(struct slob_rcu); |
| } |
| c->flags = flags; |
| c->ctor = ctor; |
| /* ignore alignment unless it's forced */ |
| c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0; |
| if (c->align < align) |
| c->align = align; |
| } else if (flags & SLAB_PANIC) |
| panic("Cannot create slab cache %s\n", name); |
| |
| return c; |
| } |
| EXPORT_SYMBOL(kmem_cache_create); |
| |
| void kmem_cache_destroy(struct kmem_cache *c) |
| { |
| slob_free(c, sizeof(struct kmem_cache)); |
| } |
| EXPORT_SYMBOL(kmem_cache_destroy); |
| |
| void *kmem_cache_alloc(struct kmem_cache *c, gfp_t flags) |
| { |
| void *b; |
| |
| if (c->size < PAGE_SIZE) |
| b = slob_alloc(c->size, flags, c->align); |
| else |
| b = (void *)__get_free_pages(flags, get_order(c->size)); |
| |
| if (c->ctor) |
| c->ctor(b, c, 0); |
| |
| return b; |
| } |
| EXPORT_SYMBOL(kmem_cache_alloc); |
| |
| void *kmem_cache_zalloc(struct kmem_cache *c, gfp_t flags) |
| { |
| void *ret = kmem_cache_alloc(c, flags); |
| if (ret) |
| memset(ret, 0, c->size); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(kmem_cache_zalloc); |
| |
| static void __kmem_cache_free(void *b, int size) |
| { |
| if (size < PAGE_SIZE) |
| slob_free(b, size); |
| else |
| free_pages((unsigned long)b, get_order(size)); |
| } |
| |
| static void kmem_rcu_free(struct rcu_head *head) |
| { |
| struct slob_rcu *slob_rcu = (struct slob_rcu *)head; |
| void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu)); |
| |
| __kmem_cache_free(b, slob_rcu->size); |
| } |
| |
| void kmem_cache_free(struct kmem_cache *c, void *b) |
| { |
| if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) { |
| struct slob_rcu *slob_rcu; |
| slob_rcu = b + (c->size - sizeof(struct slob_rcu)); |
| INIT_RCU_HEAD(&slob_rcu->head); |
| slob_rcu->size = c->size; |
| call_rcu(&slob_rcu->head, kmem_rcu_free); |
| } else { |
| __kmem_cache_free(b, c->size); |
| } |
| } |
| EXPORT_SYMBOL(kmem_cache_free); |
| |
| unsigned int kmem_cache_size(struct kmem_cache *c) |
| { |
| return c->size; |
| } |
| EXPORT_SYMBOL(kmem_cache_size); |
| |
| const char *kmem_cache_name(struct kmem_cache *c) |
| { |
| return c->name; |
| } |
| EXPORT_SYMBOL(kmem_cache_name); |
| |
| int kmem_cache_shrink(struct kmem_cache *d) |
| { |
| return 0; |
| } |
| EXPORT_SYMBOL(kmem_cache_shrink); |
| |
| int kmem_ptr_validate(struct kmem_cache *a, const void *b) |
| { |
| return 0; |
| } |
| |
| void __init kmem_cache_init(void) |
| { |
| } |