| #ifndef _X86_SPINLOCK_H_ |
| #define _X86_SPINLOCK_H_ |
| |
| #include <asm/atomic.h> |
| #include <asm/rwlock.h> |
| #include <asm/page.h> |
| #include <asm/processor.h> |
| |
| /* |
| * Your basic SMP spinlocks, allowing only a single CPU anywhere |
| * |
| * Simple spin lock operations. There are two variants, one clears IRQ's |
| * on the local processor, one does not. |
| * |
| * We make no fairness assumptions. They have a cost. |
| * |
| * (the type definitions are in asm/spinlock_types.h) |
| */ |
| |
| #ifdef CONFIG_PARAVIRT |
| #include <asm/paravirt.h> |
| #else |
| #define CLI_STRING "cli" |
| #define STI_STRING "sti" |
| #define CLI_STI_CLOBBERS |
| #define CLI_STI_INPUT_ARGS |
| #endif /* CONFIG_PARAVIRT */ |
| |
| #ifdef CONFIG_X86_32 |
| typedef char _slock_t; |
| # define LOCK_INS_DEC "decb" |
| # define LOCK_INS_XCH "xchgb" |
| # define LOCK_INS_MOV "movb" |
| # define LOCK_INS_CMP "cmpb" |
| # define LOCK_PTR_REG "a" |
| #else |
| typedef int _slock_t; |
| # define LOCK_INS_DEC "decl" |
| # define LOCK_INS_XCH "xchgl" |
| # define LOCK_INS_MOV "movl" |
| # define LOCK_INS_CMP "cmpl" |
| # define LOCK_PTR_REG "D" |
| #endif |
| |
| static inline int __raw_spin_is_locked(raw_spinlock_t *lock) |
| { |
| return *(volatile _slock_t *)(&(lock)->slock) <= 0; |
| } |
| |
| static inline void __raw_spin_lock(raw_spinlock_t *lock) |
| { |
| asm volatile( |
| "\n1:\t" |
| LOCK_PREFIX " ; " LOCK_INS_DEC " %0\n\t" |
| "jns 3f\n" |
| "2:\t" |
| "rep;nop\n\t" |
| LOCK_INS_CMP " $0,%0\n\t" |
| "jle 2b\n\t" |
| "jmp 1b\n" |
| "3:\n\t" |
| : "+m" (lock->slock) : : "memory"); |
| } |
| |
| /* |
| * It is easier for the lock validator if interrupts are not re-enabled |
| * in the middle of a lock-acquire. This is a performance feature anyway |
| * so we turn it off: |
| * |
| * NOTE: there's an irqs-on section here, which normally would have to be |
| * irq-traced, but on CONFIG_TRACE_IRQFLAGS we never use this variant. |
| */ |
| #ifndef CONFIG_PROVE_LOCKING |
| static inline void __raw_spin_lock_flags(raw_spinlock_t *lock, |
| unsigned long flags) |
| { |
| asm volatile( |
| "\n1:\t" |
| LOCK_PREFIX " ; " LOCK_INS_DEC " %[slock]\n\t" |
| "jns 5f\n" |
| "testl $0x200, %[flags]\n\t" |
| "jz 4f\n\t" |
| STI_STRING "\n" |
| "3:\t" |
| "rep;nop\n\t" |
| LOCK_INS_CMP " $0, %[slock]\n\t" |
| "jle 3b\n\t" |
| CLI_STRING "\n\t" |
| "jmp 1b\n" |
| "4:\t" |
| "rep;nop\n\t" |
| LOCK_INS_CMP " $0, %[slock]\n\t" |
| "jg 1b\n\t" |
| "jmp 4b\n" |
| "5:\n\t" |
| : [slock] "+m" (lock->slock) |
| : [flags] "r" ((u32)flags) |
| CLI_STI_INPUT_ARGS |
| : "memory" CLI_STI_CLOBBERS); |
| } |
| #endif |
| |
| static inline int __raw_spin_trylock(raw_spinlock_t *lock) |
| { |
| _slock_t oldval; |
| |
| asm volatile( |
| LOCK_INS_XCH " %0,%1" |
| :"=q" (oldval), "+m" (lock->slock) |
| :"0" (0) : "memory"); |
| |
| return oldval > 0; |
| } |
| |
| /* |
| * __raw_spin_unlock based on writing $1 to the low byte. |
| * This method works. Despite all the confusion. |
| * (except on PPro SMP or if we are using OOSTORE, so we use xchgb there) |
| * (PPro errata 66, 92) |
| */ |
| #if defined(X86_64) || \ |
| (!defined(CONFIG_X86_OOSTORE) && !defined(CONFIG_X86_PPRO_FENCE)) |
| |
| static inline void __raw_spin_unlock(raw_spinlock_t *lock) |
| { |
| asm volatile(LOCK_INS_MOV " $1,%0" : "=m" (lock->slock) :: "memory"); |
| } |
| |
| #else |
| |
| static inline void __raw_spin_unlock(raw_spinlock_t *lock) |
| { |
| unsigned char oldval = 1; |
| |
| asm volatile("xchgb %b0, %1" |
| : "=q" (oldval), "+m" (lock->slock) |
| : "0" (oldval) : "memory"); |
| } |
| |
| #endif |
| |
| static inline void __raw_spin_unlock_wait(raw_spinlock_t *lock) |
| { |
| while (__raw_spin_is_locked(lock)) |
| cpu_relax(); |
| } |
| |
| /* |
| * Read-write spinlocks, allowing multiple readers |
| * but only one writer. |
| * |
| * NOTE! it is quite common to have readers in interrupts |
| * but no interrupt writers. For those circumstances we |
| * can "mix" irq-safe locks - any writer needs to get a |
| * irq-safe write-lock, but readers can get non-irqsafe |
| * read-locks. |
| * |
| * On x86, we implement read-write locks as a 32-bit counter |
| * with the high bit (sign) being the "contended" bit. |
| */ |
| |
| static inline int __raw_read_can_lock(raw_rwlock_t *lock) |
| { |
| return (int)(lock)->lock > 0; |
| } |
| |
| static inline int __raw_write_can_lock(raw_rwlock_t *lock) |
| { |
| return (lock)->lock == RW_LOCK_BIAS; |
| } |
| |
| static inline void __raw_read_lock(raw_rwlock_t *rw) |
| { |
| asm volatile(LOCK_PREFIX " subl $1,(%0)\n\t" |
| "jns 1f\n" |
| "call __read_lock_failed\n\t" |
| "1:\n" |
| ::LOCK_PTR_REG (rw) : "memory"); |
| } |
| |
| static inline void __raw_write_lock(raw_rwlock_t *rw) |
| { |
| asm volatile(LOCK_PREFIX " subl %1,(%0)\n\t" |
| "jz 1f\n" |
| "call __write_lock_failed\n\t" |
| "1:\n" |
| ::LOCK_PTR_REG (rw), "i" (RW_LOCK_BIAS) : "memory"); |
| } |
| |
| static inline int __raw_read_trylock(raw_rwlock_t *lock) |
| { |
| atomic_t *count = (atomic_t *)lock; |
| |
| atomic_dec(count); |
| if (atomic_read(count) >= 0) |
| return 1; |
| atomic_inc(count); |
| return 0; |
| } |
| |
| static inline int __raw_write_trylock(raw_rwlock_t *lock) |
| { |
| atomic_t *count = (atomic_t *)lock; |
| |
| if (atomic_sub_and_test(RW_LOCK_BIAS, count)) |
| return 1; |
| atomic_add(RW_LOCK_BIAS, count); |
| return 0; |
| } |
| |
| static inline void __raw_read_unlock(raw_rwlock_t *rw) |
| { |
| asm volatile(LOCK_PREFIX "incl %0" :"+m" (rw->lock) : : "memory"); |
| } |
| |
| static inline void __raw_write_unlock(raw_rwlock_t *rw) |
| { |
| asm volatile(LOCK_PREFIX "addl %1, %0" |
| : "+m" (rw->lock) : "i" (RW_LOCK_BIAS) : "memory"); |
| } |
| |
| #define _raw_spin_relax(lock) cpu_relax() |
| #define _raw_read_relax(lock) cpu_relax() |
| #define _raw_write_relax(lock) cpu_relax() |
| |
| #endif |