| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * ip30-irq.c: Highlevel interrupt handling for IP30 architecture. |
| */ |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/percpu.h> |
| #include <linux/spinlock.h> |
| #include <linux/tick.h> |
| #include <linux/types.h> |
| |
| #include <asm/irq_cpu.h> |
| #include <asm/sgi/heart.h> |
| |
| struct heart_irq_data { |
| u64 *irq_mask; |
| int cpu; |
| }; |
| |
| static DECLARE_BITMAP(heart_irq_map, HEART_NUM_IRQS); |
| |
| static DEFINE_PER_CPU(unsigned long, irq_enable_mask); |
| |
| static inline int heart_alloc_int(void) |
| { |
| int bit; |
| |
| again: |
| bit = find_first_zero_bit(heart_irq_map, HEART_NUM_IRQS); |
| if (bit >= HEART_NUM_IRQS) |
| return -ENOSPC; |
| |
| if (test_and_set_bit(bit, heart_irq_map)) |
| goto again; |
| |
| return bit; |
| } |
| |
| static void ip30_error_irq(struct irq_desc *desc) |
| { |
| u64 pending, mask, cause, error_irqs, err_reg; |
| int cpu = smp_processor_id(); |
| int i; |
| |
| pending = heart_read(&heart_regs->isr); |
| mask = heart_read(&heart_regs->imr[cpu]); |
| cause = heart_read(&heart_regs->cause); |
| error_irqs = (pending & HEART_L4_INT_MASK & mask); |
| |
| /* Bail if there's nothing to process (how did we get here, then?) */ |
| if (unlikely(!error_irqs)) |
| return; |
| |
| /* Prevent any of the error IRQs from firing again. */ |
| heart_write(mask & ~(pending), &heart_regs->imr[cpu]); |
| |
| /* Ack all error IRQs. */ |
| heart_write(HEART_L4_INT_MASK, &heart_regs->clear_isr); |
| |
| /* |
| * If we also have a cause value, then something happened, so loop |
| * through the error IRQs and report a "heart attack" for each one |
| * and print the value of the HEART cause register. This is really |
| * primitive right now, but it should hopefully work until a more |
| * robust error handling routine can be put together. |
| * |
| * Refer to heart.h for the HC_* macros to work out the cause |
| * that got us here. |
| */ |
| if (cause) { |
| pr_alert("IP30: CPU%d: HEART ATTACK! ISR = 0x%.16llx, IMR = 0x%.16llx, CAUSE = 0x%.16llx\n", |
| cpu, pending, mask, cause); |
| |
| if (cause & HC_COR_MEM_ERR) { |
| err_reg = heart_read(&heart_regs->mem_err_addr); |
| pr_alert(" HEART_MEMERR_ADDR = 0x%.16llx\n", err_reg); |
| } |
| |
| /* i = 63; i >= 51; i-- */ |
| for (i = HEART_ERR_MASK_END; i >= HEART_ERR_MASK_START; i--) |
| if ((pending >> i) & 1) |
| pr_alert(" HEART Error IRQ #%d\n", i); |
| |
| /* XXX: Seems possible to loop forever here, so panic(). */ |
| panic("IP30: Fatal Error !\n"); |
| } |
| |
| /* Unmask the error IRQs. */ |
| heart_write(mask, &heart_regs->imr[cpu]); |
| } |
| |
| static void ip30_normal_irq(struct irq_desc *desc) |
| { |
| int cpu = smp_processor_id(); |
| struct irq_domain *domain; |
| u64 pend, mask; |
| int irq; |
| |
| pend = heart_read(&heart_regs->isr); |
| mask = (heart_read(&heart_regs->imr[cpu]) & |
| (HEART_L0_INT_MASK | HEART_L1_INT_MASK | HEART_L2_INT_MASK)); |
| |
| pend &= mask; |
| if (unlikely(!pend)) |
| return; |
| |
| #ifdef CONFIG_SMP |
| if (pend & BIT_ULL(HEART_L2_INT_RESCHED_CPU_0)) { |
| heart_write(BIT_ULL(HEART_L2_INT_RESCHED_CPU_0), |
| &heart_regs->clear_isr); |
| scheduler_ipi(); |
| } else if (pend & BIT_ULL(HEART_L2_INT_RESCHED_CPU_1)) { |
| heart_write(BIT_ULL(HEART_L2_INT_RESCHED_CPU_1), |
| &heart_regs->clear_isr); |
| scheduler_ipi(); |
| } else if (pend & BIT_ULL(HEART_L2_INT_CALL_CPU_0)) { |
| heart_write(BIT_ULL(HEART_L2_INT_CALL_CPU_0), |
| &heart_regs->clear_isr); |
| generic_smp_call_function_interrupt(); |
| } else if (pend & BIT_ULL(HEART_L2_INT_CALL_CPU_1)) { |
| heart_write(BIT_ULL(HEART_L2_INT_CALL_CPU_1), |
| &heart_regs->clear_isr); |
| generic_smp_call_function_interrupt(); |
| } else |
| #endif |
| { |
| domain = irq_desc_get_handler_data(desc); |
| irq = irq_linear_revmap(domain, __ffs(pend)); |
| if (irq) |
| generic_handle_irq(irq); |
| else |
| spurious_interrupt(); |
| } |
| } |
| |
| static void ip30_ack_heart_irq(struct irq_data *d) |
| { |
| heart_write(BIT_ULL(d->hwirq), &heart_regs->clear_isr); |
| } |
| |
| static void ip30_mask_heart_irq(struct irq_data *d) |
| { |
| struct heart_irq_data *hd = irq_data_get_irq_chip_data(d); |
| unsigned long *mask = &per_cpu(irq_enable_mask, hd->cpu); |
| |
| clear_bit(d->hwirq, mask); |
| heart_write(*mask, &heart_regs->imr[hd->cpu]); |
| } |
| |
| static void ip30_mask_and_ack_heart_irq(struct irq_data *d) |
| { |
| struct heart_irq_data *hd = irq_data_get_irq_chip_data(d); |
| unsigned long *mask = &per_cpu(irq_enable_mask, hd->cpu); |
| |
| clear_bit(d->hwirq, mask); |
| heart_write(*mask, &heart_regs->imr[hd->cpu]); |
| heart_write(BIT_ULL(d->hwirq), &heart_regs->clear_isr); |
| } |
| |
| static void ip30_unmask_heart_irq(struct irq_data *d) |
| { |
| struct heart_irq_data *hd = irq_data_get_irq_chip_data(d); |
| unsigned long *mask = &per_cpu(irq_enable_mask, hd->cpu); |
| |
| set_bit(d->hwirq, mask); |
| heart_write(*mask, &heart_regs->imr[hd->cpu]); |
| } |
| |
| static int ip30_set_heart_irq_affinity(struct irq_data *d, |
| const struct cpumask *mask, bool force) |
| { |
| struct heart_irq_data *hd = irq_data_get_irq_chip_data(d); |
| |
| if (!hd) |
| return -EINVAL; |
| |
| if (irqd_is_started(d)) |
| ip30_mask_and_ack_heart_irq(d); |
| |
| hd->cpu = cpumask_first_and(mask, cpu_online_mask); |
| |
| if (irqd_is_started(d)) |
| ip30_unmask_heart_irq(d); |
| |
| irq_data_update_effective_affinity(d, cpumask_of(hd->cpu)); |
| |
| return 0; |
| } |
| |
| static struct irq_chip heart_irq_chip = { |
| .name = "HEART", |
| .irq_ack = ip30_ack_heart_irq, |
| .irq_mask = ip30_mask_heart_irq, |
| .irq_mask_ack = ip30_mask_and_ack_heart_irq, |
| .irq_unmask = ip30_unmask_heart_irq, |
| .irq_set_affinity = ip30_set_heart_irq_affinity, |
| }; |
| |
| static int heart_domain_alloc(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs, void *arg) |
| { |
| struct irq_alloc_info *info = arg; |
| struct heart_irq_data *hd; |
| int hwirq; |
| |
| if (nr_irqs > 1 || !info) |
| return -EINVAL; |
| |
| hd = kzalloc(sizeof(*hd), GFP_KERNEL); |
| if (!hd) |
| return -ENOMEM; |
| |
| hwirq = heart_alloc_int(); |
| if (hwirq < 0) { |
| kfree(hd); |
| return -EAGAIN; |
| } |
| irq_domain_set_info(domain, virq, hwirq, &heart_irq_chip, hd, |
| handle_level_irq, NULL, NULL); |
| |
| return 0; |
| } |
| |
| static void heart_domain_free(struct irq_domain *domain, |
| unsigned int virq, unsigned int nr_irqs) |
| { |
| struct irq_data *irqd; |
| |
| if (nr_irqs > 1) |
| return; |
| |
| irqd = irq_domain_get_irq_data(domain, virq); |
| clear_bit(irqd->hwirq, heart_irq_map); |
| if (irqd && irqd->chip_data) |
| kfree(irqd->chip_data); |
| } |
| |
| static const struct irq_domain_ops heart_domain_ops = { |
| .alloc = heart_domain_alloc, |
| .free = heart_domain_free, |
| }; |
| |
| void __init ip30_install_ipi(void) |
| { |
| int cpu = smp_processor_id(); |
| unsigned long *mask = &per_cpu(irq_enable_mask, cpu); |
| |
| set_bit(HEART_L2_INT_RESCHED_CPU_0 + cpu, mask); |
| heart_write(BIT_ULL(HEART_L2_INT_RESCHED_CPU_0 + cpu), |
| &heart_regs->clear_isr); |
| set_bit(HEART_L2_INT_CALL_CPU_0 + cpu, mask); |
| heart_write(BIT_ULL(HEART_L2_INT_CALL_CPU_0 + cpu), |
| &heart_regs->clear_isr); |
| |
| heart_write(*mask, &heart_regs->imr[cpu]); |
| } |
| |
| void __init arch_init_irq(void) |
| { |
| struct irq_domain *domain; |
| struct fwnode_handle *fn; |
| unsigned long *mask; |
| int i; |
| |
| mips_cpu_irq_init(); |
| |
| /* Mask all IRQs. */ |
| heart_write(HEART_CLR_ALL_MASK, &heart_regs->imr[0]); |
| heart_write(HEART_CLR_ALL_MASK, &heart_regs->imr[1]); |
| heart_write(HEART_CLR_ALL_MASK, &heart_regs->imr[2]); |
| heart_write(HEART_CLR_ALL_MASK, &heart_regs->imr[3]); |
| |
| /* Ack everything. */ |
| heart_write(HEART_ACK_ALL_MASK, &heart_regs->clear_isr); |
| |
| /* Enable specific HEART error IRQs for each CPU. */ |
| mask = &per_cpu(irq_enable_mask, 0); |
| *mask |= HEART_CPU0_ERR_MASK; |
| heart_write(*mask, &heart_regs->imr[0]); |
| mask = &per_cpu(irq_enable_mask, 1); |
| *mask |= HEART_CPU1_ERR_MASK; |
| heart_write(*mask, &heart_regs->imr[1]); |
| |
| /* |
| * Some HEART bits are reserved by hardware or by software convention. |
| * Mark these as reserved right away so they won't be accidentally |
| * used later. |
| */ |
| set_bit(HEART_L0_INT_GENERIC, heart_irq_map); |
| set_bit(HEART_L0_INT_FLOW_CTRL_HWTR_0, heart_irq_map); |
| set_bit(HEART_L0_INT_FLOW_CTRL_HWTR_1, heart_irq_map); |
| set_bit(HEART_L2_INT_RESCHED_CPU_0, heart_irq_map); |
| set_bit(HEART_L2_INT_RESCHED_CPU_1, heart_irq_map); |
| set_bit(HEART_L2_INT_CALL_CPU_0, heart_irq_map); |
| set_bit(HEART_L2_INT_CALL_CPU_1, heart_irq_map); |
| set_bit(HEART_L3_INT_TIMER, heart_irq_map); |
| |
| /* Reserve the error interrupts (#51 to #63). */ |
| for (i = HEART_L4_INT_XWID_ERR_9; i <= HEART_L4_INT_HEART_EXCP; i++) |
| set_bit(i, heart_irq_map); |
| |
| fn = irq_domain_alloc_named_fwnode("HEART"); |
| WARN_ON(fn == NULL); |
| if (!fn) |
| return; |
| domain = irq_domain_create_linear(fn, HEART_NUM_IRQS, |
| &heart_domain_ops, NULL); |
| WARN_ON(domain == NULL); |
| if (!domain) |
| return; |
| |
| irq_set_default_host(domain); |
| |
| irq_set_percpu_devid(IP30_HEART_L0_IRQ); |
| irq_set_chained_handler_and_data(IP30_HEART_L0_IRQ, ip30_normal_irq, |
| domain); |
| irq_set_percpu_devid(IP30_HEART_L1_IRQ); |
| irq_set_chained_handler_and_data(IP30_HEART_L1_IRQ, ip30_normal_irq, |
| domain); |
| irq_set_percpu_devid(IP30_HEART_L2_IRQ); |
| irq_set_chained_handler_and_data(IP30_HEART_L2_IRQ, ip30_normal_irq, |
| domain); |
| irq_set_percpu_devid(IP30_HEART_ERR_IRQ); |
| irq_set_chained_handler_and_data(IP30_HEART_ERR_IRQ, ip30_error_irq, |
| domain); |
| } |