| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright (C) 2014 Emilio López |
| * Emilio López <emilio@elopez.com.ar> |
| */ |
| |
| #include <linux/bitmap.h> |
| #include <linux/bitops.h> |
| #include <linux/clk.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dmapool.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/of_dma.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| |
| #include "virt-dma.h" |
| |
| /** Common macros to normal and dedicated DMA registers **/ |
| |
| #define SUN4I_DMA_CFG_LOADING BIT(31) |
| #define SUN4I_DMA_CFG_DST_DATA_WIDTH(width) ((width) << 25) |
| #define SUN4I_DMA_CFG_DST_BURST_LENGTH(len) ((len) << 23) |
| #define SUN4I_DMA_CFG_DST_ADDR_MODE(mode) ((mode) << 21) |
| #define SUN4I_DMA_CFG_DST_DRQ_TYPE(type) ((type) << 16) |
| #define SUN4I_DMA_CFG_SRC_DATA_WIDTH(width) ((width) << 9) |
| #define SUN4I_DMA_CFG_SRC_BURST_LENGTH(len) ((len) << 7) |
| #define SUN4I_DMA_CFG_SRC_ADDR_MODE(mode) ((mode) << 5) |
| #define SUN4I_DMA_CFG_SRC_DRQ_TYPE(type) (type) |
| |
| /** Normal DMA register values **/ |
| |
| /* Normal DMA source/destination data request type values */ |
| #define SUN4I_NDMA_DRQ_TYPE_SDRAM 0x16 |
| #define SUN4I_NDMA_DRQ_TYPE_LIMIT (0x1F + 1) |
| |
| /** Normal DMA register layout **/ |
| |
| /* Dedicated DMA source/destination address mode values */ |
| #define SUN4I_NDMA_ADDR_MODE_LINEAR 0 |
| #define SUN4I_NDMA_ADDR_MODE_IO 1 |
| |
| /* Normal DMA configuration register layout */ |
| #define SUN4I_NDMA_CFG_CONT_MODE BIT(30) |
| #define SUN4I_NDMA_CFG_WAIT_STATE(n) ((n) << 27) |
| #define SUN4I_NDMA_CFG_DST_NON_SECURE BIT(22) |
| #define SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15) |
| #define SUN4I_NDMA_CFG_SRC_NON_SECURE BIT(6) |
| |
| /** Dedicated DMA register values **/ |
| |
| /* Dedicated DMA source/destination address mode values */ |
| #define SUN4I_DDMA_ADDR_MODE_LINEAR 0 |
| #define SUN4I_DDMA_ADDR_MODE_IO 1 |
| #define SUN4I_DDMA_ADDR_MODE_HORIZONTAL_PAGE 2 |
| #define SUN4I_DDMA_ADDR_MODE_VERTICAL_PAGE 3 |
| |
| /* Dedicated DMA source/destination data request type values */ |
| #define SUN4I_DDMA_DRQ_TYPE_SDRAM 0x1 |
| #define SUN4I_DDMA_DRQ_TYPE_LIMIT (0x1F + 1) |
| |
| /** Dedicated DMA register layout **/ |
| |
| /* Dedicated DMA configuration register layout */ |
| #define SUN4I_DDMA_CFG_BUSY BIT(30) |
| #define SUN4I_DDMA_CFG_CONT_MODE BIT(29) |
| #define SUN4I_DDMA_CFG_DST_NON_SECURE BIT(28) |
| #define SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15) |
| #define SUN4I_DDMA_CFG_SRC_NON_SECURE BIT(12) |
| |
| /* Dedicated DMA parameter register layout */ |
| #define SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(n) (((n) - 1) << 24) |
| #define SUN4I_DDMA_PARA_DST_WAIT_CYCLES(n) (((n) - 1) << 16) |
| #define SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(n) (((n) - 1) << 8) |
| #define SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(n) (((n) - 1) << 0) |
| |
| /** DMA register offsets **/ |
| |
| /* General register offsets */ |
| #define SUN4I_DMA_IRQ_ENABLE_REG 0x0 |
| #define SUN4I_DMA_IRQ_PENDING_STATUS_REG 0x4 |
| |
| /* Normal DMA register offsets */ |
| #define SUN4I_NDMA_CHANNEL_REG_BASE(n) (0x100 + (n) * 0x20) |
| #define SUN4I_NDMA_CFG_REG 0x0 |
| #define SUN4I_NDMA_SRC_ADDR_REG 0x4 |
| #define SUN4I_NDMA_DST_ADDR_REG 0x8 |
| #define SUN4I_NDMA_BYTE_COUNT_REG 0xC |
| |
| /* Dedicated DMA register offsets */ |
| #define SUN4I_DDMA_CHANNEL_REG_BASE(n) (0x300 + (n) * 0x20) |
| #define SUN4I_DDMA_CFG_REG 0x0 |
| #define SUN4I_DDMA_SRC_ADDR_REG 0x4 |
| #define SUN4I_DDMA_DST_ADDR_REG 0x8 |
| #define SUN4I_DDMA_BYTE_COUNT_REG 0xC |
| #define SUN4I_DDMA_PARA_REG 0x18 |
| |
| /** DMA Driver **/ |
| |
| /* |
| * Normal DMA has 8 channels, and Dedicated DMA has another 8, so |
| * that's 16 channels. As for endpoints, there's 29 and 21 |
| * respectively. Given that the Normal DMA endpoints (other than |
| * SDRAM) can be used as tx/rx, we need 78 vchans in total |
| */ |
| #define SUN4I_NDMA_NR_MAX_CHANNELS 8 |
| #define SUN4I_DDMA_NR_MAX_CHANNELS 8 |
| #define SUN4I_DMA_NR_MAX_CHANNELS \ |
| (SUN4I_NDMA_NR_MAX_CHANNELS + SUN4I_DDMA_NR_MAX_CHANNELS) |
| #define SUN4I_NDMA_NR_MAX_VCHANS (29 * 2 - 1) |
| #define SUN4I_DDMA_NR_MAX_VCHANS 21 |
| #define SUN4I_DMA_NR_MAX_VCHANS \ |
| (SUN4I_NDMA_NR_MAX_VCHANS + SUN4I_DDMA_NR_MAX_VCHANS) |
| |
| /* This set of SUN4I_DDMA timing parameters were found experimentally while |
| * working with the SPI driver and seem to make it behave correctly */ |
| #define SUN4I_DDMA_MAGIC_SPI_PARAMETERS \ |
| (SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(1) | \ |
| SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(1) | \ |
| SUN4I_DDMA_PARA_DST_WAIT_CYCLES(2) | \ |
| SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(2)) |
| |
| struct sun4i_dma_pchan { |
| /* Register base of channel */ |
| void __iomem *base; |
| /* vchan currently being serviced */ |
| struct sun4i_dma_vchan *vchan; |
| /* Is this a dedicated pchan? */ |
| int is_dedicated; |
| }; |
| |
| struct sun4i_dma_vchan { |
| struct virt_dma_chan vc; |
| struct dma_slave_config cfg; |
| struct sun4i_dma_pchan *pchan; |
| struct sun4i_dma_promise *processing; |
| struct sun4i_dma_contract *contract; |
| u8 endpoint; |
| int is_dedicated; |
| }; |
| |
| struct sun4i_dma_promise { |
| u32 cfg; |
| u32 para; |
| dma_addr_t src; |
| dma_addr_t dst; |
| size_t len; |
| struct list_head list; |
| }; |
| |
| /* A contract is a set of promises */ |
| struct sun4i_dma_contract { |
| struct virt_dma_desc vd; |
| struct list_head demands; |
| struct list_head completed_demands; |
| int is_cyclic; |
| }; |
| |
| struct sun4i_dma_dev { |
| DECLARE_BITMAP(pchans_used, SUN4I_DMA_NR_MAX_CHANNELS); |
| struct dma_device slave; |
| struct sun4i_dma_pchan *pchans; |
| struct sun4i_dma_vchan *vchans; |
| void __iomem *base; |
| struct clk *clk; |
| int irq; |
| spinlock_t lock; |
| }; |
| |
| static struct sun4i_dma_dev *to_sun4i_dma_dev(struct dma_device *dev) |
| { |
| return container_of(dev, struct sun4i_dma_dev, slave); |
| } |
| |
| static struct sun4i_dma_vchan *to_sun4i_dma_vchan(struct dma_chan *chan) |
| { |
| return container_of(chan, struct sun4i_dma_vchan, vc.chan); |
| } |
| |
| static struct sun4i_dma_contract *to_sun4i_dma_contract(struct virt_dma_desc *vd) |
| { |
| return container_of(vd, struct sun4i_dma_contract, vd); |
| } |
| |
| static struct device *chan2dev(struct dma_chan *chan) |
| { |
| return &chan->dev->device; |
| } |
| |
| static int convert_burst(u32 maxburst) |
| { |
| if (maxburst > 8) |
| return -EINVAL; |
| |
| /* 1 -> 0, 4 -> 1, 8 -> 2 */ |
| return (maxburst >> 2); |
| } |
| |
| static int convert_buswidth(enum dma_slave_buswidth addr_width) |
| { |
| if (addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES) |
| return -EINVAL; |
| |
| /* 8 (1 byte) -> 0, 16 (2 bytes) -> 1, 32 (4 bytes) -> 2 */ |
| return (addr_width >> 1); |
| } |
| |
| static void sun4i_dma_free_chan_resources(struct dma_chan *chan) |
| { |
| struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); |
| |
| vchan_free_chan_resources(&vchan->vc); |
| } |
| |
| static struct sun4i_dma_pchan *find_and_use_pchan(struct sun4i_dma_dev *priv, |
| struct sun4i_dma_vchan *vchan) |
| { |
| struct sun4i_dma_pchan *pchan = NULL, *pchans = priv->pchans; |
| unsigned long flags; |
| int i, max; |
| |
| /* |
| * pchans 0-SUN4I_NDMA_NR_MAX_CHANNELS are normal, and |
| * SUN4I_NDMA_NR_MAX_CHANNELS+ are dedicated ones |
| */ |
| if (vchan->is_dedicated) { |
| i = SUN4I_NDMA_NR_MAX_CHANNELS; |
| max = SUN4I_DMA_NR_MAX_CHANNELS; |
| } else { |
| i = 0; |
| max = SUN4I_NDMA_NR_MAX_CHANNELS; |
| } |
| |
| spin_lock_irqsave(&priv->lock, flags); |
| for_each_clear_bit_from(i, priv->pchans_used, max) { |
| pchan = &pchans[i]; |
| pchan->vchan = vchan; |
| set_bit(i, priv->pchans_used); |
| break; |
| } |
| spin_unlock_irqrestore(&priv->lock, flags); |
| |
| return pchan; |
| } |
| |
| static void release_pchan(struct sun4i_dma_dev *priv, |
| struct sun4i_dma_pchan *pchan) |
| { |
| unsigned long flags; |
| int nr = pchan - priv->pchans; |
| |
| spin_lock_irqsave(&priv->lock, flags); |
| |
| pchan->vchan = NULL; |
| clear_bit(nr, priv->pchans_used); |
| |
| spin_unlock_irqrestore(&priv->lock, flags); |
| } |
| |
| static void configure_pchan(struct sun4i_dma_pchan *pchan, |
| struct sun4i_dma_promise *d) |
| { |
| /* |
| * Configure addresses and misc parameters depending on type |
| * SUN4I_DDMA has an extra field with timing parameters |
| */ |
| if (pchan->is_dedicated) { |
| writel_relaxed(d->src, pchan->base + SUN4I_DDMA_SRC_ADDR_REG); |
| writel_relaxed(d->dst, pchan->base + SUN4I_DDMA_DST_ADDR_REG); |
| writel_relaxed(d->len, pchan->base + SUN4I_DDMA_BYTE_COUNT_REG); |
| writel_relaxed(d->para, pchan->base + SUN4I_DDMA_PARA_REG); |
| writel_relaxed(d->cfg, pchan->base + SUN4I_DDMA_CFG_REG); |
| } else { |
| writel_relaxed(d->src, pchan->base + SUN4I_NDMA_SRC_ADDR_REG); |
| writel_relaxed(d->dst, pchan->base + SUN4I_NDMA_DST_ADDR_REG); |
| writel_relaxed(d->len, pchan->base + SUN4I_NDMA_BYTE_COUNT_REG); |
| writel_relaxed(d->cfg, pchan->base + SUN4I_NDMA_CFG_REG); |
| } |
| } |
| |
| static void set_pchan_interrupt(struct sun4i_dma_dev *priv, |
| struct sun4i_dma_pchan *pchan, |
| int half, int end) |
| { |
| u32 reg; |
| int pchan_number = pchan - priv->pchans; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&priv->lock, flags); |
| |
| reg = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG); |
| |
| if (half) |
| reg |= BIT(pchan_number * 2); |
| else |
| reg &= ~BIT(pchan_number * 2); |
| |
| if (end) |
| reg |= BIT(pchan_number * 2 + 1); |
| else |
| reg &= ~BIT(pchan_number * 2 + 1); |
| |
| writel_relaxed(reg, priv->base + SUN4I_DMA_IRQ_ENABLE_REG); |
| |
| spin_unlock_irqrestore(&priv->lock, flags); |
| } |
| |
| /** |
| * Execute pending operations on a vchan |
| * |
| * When given a vchan, this function will try to acquire a suitable |
| * pchan and, if successful, will configure it to fulfill a promise |
| * from the next pending contract. |
| * |
| * This function must be called with &vchan->vc.lock held. |
| */ |
| static int __execute_vchan_pending(struct sun4i_dma_dev *priv, |
| struct sun4i_dma_vchan *vchan) |
| { |
| struct sun4i_dma_promise *promise = NULL; |
| struct sun4i_dma_contract *contract = NULL; |
| struct sun4i_dma_pchan *pchan; |
| struct virt_dma_desc *vd; |
| int ret; |
| |
| lockdep_assert_held(&vchan->vc.lock); |
| |
| /* We need a pchan to do anything, so secure one if available */ |
| pchan = find_and_use_pchan(priv, vchan); |
| if (!pchan) |
| return -EBUSY; |
| |
| /* |
| * Channel endpoints must not be repeated, so if this vchan |
| * has already submitted some work, we can't do anything else |
| */ |
| if (vchan->processing) { |
| dev_dbg(chan2dev(&vchan->vc.chan), |
| "processing something to this endpoint already\n"); |
| ret = -EBUSY; |
| goto release_pchan; |
| } |
| |
| do { |
| /* Figure out which contract we're working with today */ |
| vd = vchan_next_desc(&vchan->vc); |
| if (!vd) { |
| dev_dbg(chan2dev(&vchan->vc.chan), |
| "No pending contract found"); |
| ret = 0; |
| goto release_pchan; |
| } |
| |
| contract = to_sun4i_dma_contract(vd); |
| if (list_empty(&contract->demands)) { |
| /* The contract has been completed so mark it as such */ |
| list_del(&contract->vd.node); |
| vchan_cookie_complete(&contract->vd); |
| dev_dbg(chan2dev(&vchan->vc.chan), |
| "Empty contract found and marked complete"); |
| } |
| } while (list_empty(&contract->demands)); |
| |
| /* Now find out what we need to do */ |
| promise = list_first_entry(&contract->demands, |
| struct sun4i_dma_promise, list); |
| vchan->processing = promise; |
| |
| /* ... and make it reality */ |
| if (promise) { |
| vchan->contract = contract; |
| vchan->pchan = pchan; |
| set_pchan_interrupt(priv, pchan, contract->is_cyclic, 1); |
| configure_pchan(pchan, promise); |
| } |
| |
| return 0; |
| |
| release_pchan: |
| release_pchan(priv, pchan); |
| return ret; |
| } |
| |
| static int sanitize_config(struct dma_slave_config *sconfig, |
| enum dma_transfer_direction direction) |
| { |
| switch (direction) { |
| case DMA_MEM_TO_DEV: |
| if ((sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) || |
| !sconfig->dst_maxburst) |
| return -EINVAL; |
| |
| if (sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) |
| sconfig->src_addr_width = sconfig->dst_addr_width; |
| |
| if (!sconfig->src_maxburst) |
| sconfig->src_maxburst = sconfig->dst_maxburst; |
| |
| break; |
| |
| case DMA_DEV_TO_MEM: |
| if ((sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) || |
| !sconfig->src_maxburst) |
| return -EINVAL; |
| |
| if (sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) |
| sconfig->dst_addr_width = sconfig->src_addr_width; |
| |
| if (!sconfig->dst_maxburst) |
| sconfig->dst_maxburst = sconfig->src_maxburst; |
| |
| break; |
| default: |
| return 0; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Generate a promise, to be used in a normal DMA contract. |
| * |
| * A NDMA promise contains all the information required to program the |
| * normal part of the DMA Engine and get data copied. A non-executed |
| * promise will live in the demands list on a contract. Once it has been |
| * completed, it will be moved to the completed demands list for later freeing. |
| * All linked promises will be freed when the corresponding contract is freed |
| */ |
| static struct sun4i_dma_promise * |
| generate_ndma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest, |
| size_t len, struct dma_slave_config *sconfig, |
| enum dma_transfer_direction direction) |
| { |
| struct sun4i_dma_promise *promise; |
| int ret; |
| |
| ret = sanitize_config(sconfig, direction); |
| if (ret) |
| return NULL; |
| |
| promise = kzalloc(sizeof(*promise), GFP_NOWAIT); |
| if (!promise) |
| return NULL; |
| |
| promise->src = src; |
| promise->dst = dest; |
| promise->len = len; |
| promise->cfg = SUN4I_DMA_CFG_LOADING | |
| SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN; |
| |
| dev_dbg(chan2dev(chan), |
| "src burst %d, dst burst %d, src buswidth %d, dst buswidth %d", |
| sconfig->src_maxburst, sconfig->dst_maxburst, |
| sconfig->src_addr_width, sconfig->dst_addr_width); |
| |
| /* Source burst */ |
| ret = convert_burst(sconfig->src_maxburst); |
| if (ret < 0) |
| goto fail; |
| promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret); |
| |
| /* Destination burst */ |
| ret = convert_burst(sconfig->dst_maxburst); |
| if (ret < 0) |
| goto fail; |
| promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret); |
| |
| /* Source bus width */ |
| ret = convert_buswidth(sconfig->src_addr_width); |
| if (ret < 0) |
| goto fail; |
| promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret); |
| |
| /* Destination bus width */ |
| ret = convert_buswidth(sconfig->dst_addr_width); |
| if (ret < 0) |
| goto fail; |
| promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret); |
| |
| return promise; |
| |
| fail: |
| kfree(promise); |
| return NULL; |
| } |
| |
| /** |
| * Generate a promise, to be used in a dedicated DMA contract. |
| * |
| * A DDMA promise contains all the information required to program the |
| * Dedicated part of the DMA Engine and get data copied. A non-executed |
| * promise will live in the demands list on a contract. Once it has been |
| * completed, it will be moved to the completed demands list for later freeing. |
| * All linked promises will be freed when the corresponding contract is freed |
| */ |
| static struct sun4i_dma_promise * |
| generate_ddma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest, |
| size_t len, struct dma_slave_config *sconfig) |
| { |
| struct sun4i_dma_promise *promise; |
| int ret; |
| |
| promise = kzalloc(sizeof(*promise), GFP_NOWAIT); |
| if (!promise) |
| return NULL; |
| |
| promise->src = src; |
| promise->dst = dest; |
| promise->len = len; |
| promise->cfg = SUN4I_DMA_CFG_LOADING | |
| SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN; |
| |
| /* Source burst */ |
| ret = convert_burst(sconfig->src_maxburst); |
| if (ret < 0) |
| goto fail; |
| promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret); |
| |
| /* Destination burst */ |
| ret = convert_burst(sconfig->dst_maxburst); |
| if (ret < 0) |
| goto fail; |
| promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret); |
| |
| /* Source bus width */ |
| ret = convert_buswidth(sconfig->src_addr_width); |
| if (ret < 0) |
| goto fail; |
| promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret); |
| |
| /* Destination bus width */ |
| ret = convert_buswidth(sconfig->dst_addr_width); |
| if (ret < 0) |
| goto fail; |
| promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret); |
| |
| return promise; |
| |
| fail: |
| kfree(promise); |
| return NULL; |
| } |
| |
| /** |
| * Generate a contract |
| * |
| * Contracts function as DMA descriptors. As our hardware does not support |
| * linked lists, we need to implement SG via software. We use a contract |
| * to hold all the pieces of the request and process them serially one |
| * after another. Each piece is represented as a promise. |
| */ |
| static struct sun4i_dma_contract *generate_dma_contract(void) |
| { |
| struct sun4i_dma_contract *contract; |
| |
| contract = kzalloc(sizeof(*contract), GFP_NOWAIT); |
| if (!contract) |
| return NULL; |
| |
| INIT_LIST_HEAD(&contract->demands); |
| INIT_LIST_HEAD(&contract->completed_demands); |
| |
| return contract; |
| } |
| |
| /** |
| * Get next promise on a cyclic transfer |
| * |
| * Cyclic contracts contain a series of promises which are executed on a |
| * loop. This function returns the next promise from a cyclic contract, |
| * so it can be programmed into the hardware. |
| */ |
| static struct sun4i_dma_promise * |
| get_next_cyclic_promise(struct sun4i_dma_contract *contract) |
| { |
| struct sun4i_dma_promise *promise; |
| |
| promise = list_first_entry_or_null(&contract->demands, |
| struct sun4i_dma_promise, list); |
| if (!promise) { |
| list_splice_init(&contract->completed_demands, |
| &contract->demands); |
| promise = list_first_entry(&contract->demands, |
| struct sun4i_dma_promise, list); |
| } |
| |
| return promise; |
| } |
| |
| /** |
| * Free a contract and all its associated promises |
| */ |
| static void sun4i_dma_free_contract(struct virt_dma_desc *vd) |
| { |
| struct sun4i_dma_contract *contract = to_sun4i_dma_contract(vd); |
| struct sun4i_dma_promise *promise, *tmp; |
| |
| /* Free all the demands and completed demands */ |
| list_for_each_entry_safe(promise, tmp, &contract->demands, list) |
| kfree(promise); |
| |
| list_for_each_entry_safe(promise, tmp, &contract->completed_demands, list) |
| kfree(promise); |
| |
| kfree(contract); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| sun4i_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, |
| dma_addr_t src, size_t len, unsigned long flags) |
| { |
| struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); |
| struct dma_slave_config *sconfig = &vchan->cfg; |
| struct sun4i_dma_promise *promise; |
| struct sun4i_dma_contract *contract; |
| |
| contract = generate_dma_contract(); |
| if (!contract) |
| return NULL; |
| |
| /* |
| * We can only do the copy to bus aligned addresses, so |
| * choose the best one so we get decent performance. We also |
| * maximize the burst size for this same reason. |
| */ |
| sconfig->src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| sconfig->dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| sconfig->src_maxburst = 8; |
| sconfig->dst_maxburst = 8; |
| |
| if (vchan->is_dedicated) |
| promise = generate_ddma_promise(chan, src, dest, len, sconfig); |
| else |
| promise = generate_ndma_promise(chan, src, dest, len, sconfig, |
| DMA_MEM_TO_MEM); |
| |
| if (!promise) { |
| kfree(contract); |
| return NULL; |
| } |
| |
| /* Configure memcpy mode */ |
| if (vchan->is_dedicated) { |
| promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM) | |
| SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM); |
| } else { |
| promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) | |
| SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM); |
| } |
| |
| /* Fill the contract with our only promise */ |
| list_add_tail(&promise->list, &contract->demands); |
| |
| /* And add it to the vchan */ |
| return vchan_tx_prep(&vchan->vc, &contract->vd, flags); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| sun4i_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t len, |
| size_t period_len, enum dma_transfer_direction dir, |
| unsigned long flags) |
| { |
| struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); |
| struct dma_slave_config *sconfig = &vchan->cfg; |
| struct sun4i_dma_promise *promise; |
| struct sun4i_dma_contract *contract; |
| dma_addr_t src, dest; |
| u32 endpoints; |
| int nr_periods, offset, plength, i; |
| |
| if (!is_slave_direction(dir)) { |
| dev_err(chan2dev(chan), "Invalid DMA direction\n"); |
| return NULL; |
| } |
| |
| if (vchan->is_dedicated) { |
| /* |
| * As we are using this just for audio data, we need to use |
| * normal DMA. There is nothing stopping us from supporting |
| * dedicated DMA here as well, so if a client comes up and |
| * requires it, it will be simple to implement it. |
| */ |
| dev_err(chan2dev(chan), |
| "Cyclic transfers are only supported on Normal DMA\n"); |
| return NULL; |
| } |
| |
| contract = generate_dma_contract(); |
| if (!contract) |
| return NULL; |
| |
| contract->is_cyclic = 1; |
| |
| /* Figure out the endpoints and the address we need */ |
| if (dir == DMA_MEM_TO_DEV) { |
| src = buf; |
| dest = sconfig->dst_addr; |
| endpoints = SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) | |
| SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) | |
| SUN4I_DMA_CFG_DST_ADDR_MODE(SUN4I_NDMA_ADDR_MODE_IO); |
| } else { |
| src = sconfig->src_addr; |
| dest = buf; |
| endpoints = SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) | |
| SUN4I_DMA_CFG_SRC_ADDR_MODE(SUN4I_NDMA_ADDR_MODE_IO) | |
| SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM); |
| } |
| |
| /* |
| * We will be using half done interrupts to make two periods |
| * out of a promise, so we need to program the DMA engine less |
| * often |
| */ |
| |
| /* |
| * The engine can interrupt on half-transfer, so we can use |
| * this feature to program the engine half as often as if we |
| * didn't use it (keep in mind the hardware doesn't support |
| * linked lists). |
| * |
| * Say you have a set of periods (| marks the start/end, I for |
| * interrupt, P for programming the engine to do a new |
| * transfer), the easy but slow way would be to do |
| * |
| * |---|---|---|---| (periods / promises) |
| * P I,P I,P I,P I |
| * |
| * Using half transfer interrupts you can do |
| * |
| * |-------|-------| (promises as configured on hw) |
| * |---|---|---|---| (periods) |
| * P I I,P I I |
| * |
| * Which requires half the engine programming for the same |
| * functionality. |
| */ |
| nr_periods = DIV_ROUND_UP(len / period_len, 2); |
| for (i = 0; i < nr_periods; i++) { |
| /* Calculate the offset in the buffer and the length needed */ |
| offset = i * period_len * 2; |
| plength = min((len - offset), (period_len * 2)); |
| if (dir == DMA_MEM_TO_DEV) |
| src = buf + offset; |
| else |
| dest = buf + offset; |
| |
| /* Make the promise */ |
| promise = generate_ndma_promise(chan, src, dest, |
| plength, sconfig, dir); |
| if (!promise) { |
| /* TODO: should we free everything? */ |
| return NULL; |
| } |
| promise->cfg |= endpoints; |
| |
| /* Then add it to the contract */ |
| list_add_tail(&promise->list, &contract->demands); |
| } |
| |
| /* And add it to the vchan */ |
| return vchan_tx_prep(&vchan->vc, &contract->vd, flags); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| sun4i_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, |
| unsigned int sg_len, enum dma_transfer_direction dir, |
| unsigned long flags, void *context) |
| { |
| struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); |
| struct dma_slave_config *sconfig = &vchan->cfg; |
| struct sun4i_dma_promise *promise; |
| struct sun4i_dma_contract *contract; |
| u8 ram_type, io_mode, linear_mode; |
| struct scatterlist *sg; |
| dma_addr_t srcaddr, dstaddr; |
| u32 endpoints, para; |
| int i; |
| |
| if (!sgl) |
| return NULL; |
| |
| if (!is_slave_direction(dir)) { |
| dev_err(chan2dev(chan), "Invalid DMA direction\n"); |
| return NULL; |
| } |
| |
| contract = generate_dma_contract(); |
| if (!contract) |
| return NULL; |
| |
| if (vchan->is_dedicated) { |
| io_mode = SUN4I_DDMA_ADDR_MODE_IO; |
| linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR; |
| ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM; |
| } else { |
| io_mode = SUN4I_NDMA_ADDR_MODE_IO; |
| linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR; |
| ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM; |
| } |
| |
| if (dir == DMA_MEM_TO_DEV) |
| endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) | |
| SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) | |
| SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) | |
| SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode); |
| else |
| endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) | |
| SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) | |
| SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) | |
| SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode); |
| |
| for_each_sg(sgl, sg, sg_len, i) { |
| /* Figure out addresses */ |
| if (dir == DMA_MEM_TO_DEV) { |
| srcaddr = sg_dma_address(sg); |
| dstaddr = sconfig->dst_addr; |
| } else { |
| srcaddr = sconfig->src_addr; |
| dstaddr = sg_dma_address(sg); |
| } |
| |
| /* |
| * These are the magic DMA engine timings that keep SPI going. |
| * I haven't seen any interface on DMAEngine to configure |
| * timings, and so far they seem to work for everything we |
| * support, so I've kept them here. I don't know if other |
| * devices need different timings because, as usual, we only |
| * have the "para" bitfield meanings, but no comment on what |
| * the values should be when doing a certain operation :| |
| */ |
| para = SUN4I_DDMA_MAGIC_SPI_PARAMETERS; |
| |
| /* And make a suitable promise */ |
| if (vchan->is_dedicated) |
| promise = generate_ddma_promise(chan, srcaddr, dstaddr, |
| sg_dma_len(sg), |
| sconfig); |
| else |
| promise = generate_ndma_promise(chan, srcaddr, dstaddr, |
| sg_dma_len(sg), |
| sconfig, dir); |
| |
| if (!promise) |
| return NULL; /* TODO: should we free everything? */ |
| |
| promise->cfg |= endpoints; |
| promise->para = para; |
| |
| /* Then add it to the contract */ |
| list_add_tail(&promise->list, &contract->demands); |
| } |
| |
| /* |
| * Once we've got all the promises ready, add the contract |
| * to the pending list on the vchan |
| */ |
| return vchan_tx_prep(&vchan->vc, &contract->vd, flags); |
| } |
| |
| static int sun4i_dma_terminate_all(struct dma_chan *chan) |
| { |
| struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device); |
| struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); |
| struct sun4i_dma_pchan *pchan = vchan->pchan; |
| LIST_HEAD(head); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&vchan->vc.lock, flags); |
| vchan_get_all_descriptors(&vchan->vc, &head); |
| spin_unlock_irqrestore(&vchan->vc.lock, flags); |
| |
| /* |
| * Clearing the configuration register will halt the pchan. Interrupts |
| * may still trigger, so don't forget to disable them. |
| */ |
| if (pchan) { |
| if (pchan->is_dedicated) |
| writel(0, pchan->base + SUN4I_DDMA_CFG_REG); |
| else |
| writel(0, pchan->base + SUN4I_NDMA_CFG_REG); |
| set_pchan_interrupt(priv, pchan, 0, 0); |
| release_pchan(priv, pchan); |
| } |
| |
| spin_lock_irqsave(&vchan->vc.lock, flags); |
| vchan_dma_desc_free_list(&vchan->vc, &head); |
| /* Clear these so the vchan is usable again */ |
| vchan->processing = NULL; |
| vchan->pchan = NULL; |
| spin_unlock_irqrestore(&vchan->vc.lock, flags); |
| |
| return 0; |
| } |
| |
| static int sun4i_dma_config(struct dma_chan *chan, |
| struct dma_slave_config *config) |
| { |
| struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); |
| |
| memcpy(&vchan->cfg, config, sizeof(*config)); |
| |
| return 0; |
| } |
| |
| static struct dma_chan *sun4i_dma_of_xlate(struct of_phandle_args *dma_spec, |
| struct of_dma *ofdma) |
| { |
| struct sun4i_dma_dev *priv = ofdma->of_dma_data; |
| struct sun4i_dma_vchan *vchan; |
| struct dma_chan *chan; |
| u8 is_dedicated = dma_spec->args[0]; |
| u8 endpoint = dma_spec->args[1]; |
| |
| /* Check if type is Normal or Dedicated */ |
| if (is_dedicated != 0 && is_dedicated != 1) |
| return NULL; |
| |
| /* Make sure the endpoint looks sane */ |
| if ((is_dedicated && endpoint >= SUN4I_DDMA_DRQ_TYPE_LIMIT) || |
| (!is_dedicated && endpoint >= SUN4I_NDMA_DRQ_TYPE_LIMIT)) |
| return NULL; |
| |
| chan = dma_get_any_slave_channel(&priv->slave); |
| if (!chan) |
| return NULL; |
| |
| /* Assign the endpoint to the vchan */ |
| vchan = to_sun4i_dma_vchan(chan); |
| vchan->is_dedicated = is_dedicated; |
| vchan->endpoint = endpoint; |
| |
| return chan; |
| } |
| |
| static enum dma_status sun4i_dma_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, |
| struct dma_tx_state *state) |
| { |
| struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); |
| struct sun4i_dma_pchan *pchan = vchan->pchan; |
| struct sun4i_dma_contract *contract; |
| struct sun4i_dma_promise *promise; |
| struct virt_dma_desc *vd; |
| unsigned long flags; |
| enum dma_status ret; |
| size_t bytes = 0; |
| |
| ret = dma_cookie_status(chan, cookie, state); |
| if (!state || (ret == DMA_COMPLETE)) |
| return ret; |
| |
| spin_lock_irqsave(&vchan->vc.lock, flags); |
| vd = vchan_find_desc(&vchan->vc, cookie); |
| if (!vd) |
| goto exit; |
| contract = to_sun4i_dma_contract(vd); |
| |
| list_for_each_entry(promise, &contract->demands, list) |
| bytes += promise->len; |
| |
| /* |
| * The hardware is configured to return the remaining byte |
| * quantity. If possible, replace the first listed element's |
| * full size with the actual remaining amount |
| */ |
| promise = list_first_entry_or_null(&contract->demands, |
| struct sun4i_dma_promise, list); |
| if (promise && pchan) { |
| bytes -= promise->len; |
| if (pchan->is_dedicated) |
| bytes += readl(pchan->base + SUN4I_DDMA_BYTE_COUNT_REG); |
| else |
| bytes += readl(pchan->base + SUN4I_NDMA_BYTE_COUNT_REG); |
| } |
| |
| exit: |
| |
| dma_set_residue(state, bytes); |
| spin_unlock_irqrestore(&vchan->vc.lock, flags); |
| |
| return ret; |
| } |
| |
| static void sun4i_dma_issue_pending(struct dma_chan *chan) |
| { |
| struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device); |
| struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&vchan->vc.lock, flags); |
| |
| /* |
| * If there are pending transactions for this vchan, push one of |
| * them into the engine to get the ball rolling. |
| */ |
| if (vchan_issue_pending(&vchan->vc)) |
| __execute_vchan_pending(priv, vchan); |
| |
| spin_unlock_irqrestore(&vchan->vc.lock, flags); |
| } |
| |
| static irqreturn_t sun4i_dma_interrupt(int irq, void *dev_id) |
| { |
| struct sun4i_dma_dev *priv = dev_id; |
| struct sun4i_dma_pchan *pchans = priv->pchans, *pchan; |
| struct sun4i_dma_vchan *vchan; |
| struct sun4i_dma_contract *contract; |
| struct sun4i_dma_promise *promise; |
| unsigned long pendirq, irqs, disableirqs; |
| int bit, i, free_room, allow_mitigation = 1; |
| |
| pendirq = readl_relaxed(priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG); |
| |
| handle_pending: |
| |
| disableirqs = 0; |
| free_room = 0; |
| |
| for_each_set_bit(bit, &pendirq, 32) { |
| pchan = &pchans[bit >> 1]; |
| vchan = pchan->vchan; |
| if (!vchan) /* a terminated channel may still interrupt */ |
| continue; |
| contract = vchan->contract; |
| |
| /* |
| * Disable the IRQ and free the pchan if it's an end |
| * interrupt (odd bit) |
| */ |
| if (bit & 1) { |
| spin_lock(&vchan->vc.lock); |
| |
| /* |
| * Move the promise into the completed list now that |
| * we're done with it |
| */ |
| list_del(&vchan->processing->list); |
| list_add_tail(&vchan->processing->list, |
| &contract->completed_demands); |
| |
| /* |
| * Cyclic DMA transfers are special: |
| * - There's always something we can dispatch |
| * - We need to run the callback |
| * - Latency is very important, as this is used by audio |
| * We therefore just cycle through the list and dispatch |
| * whatever we have here, reusing the pchan. There's |
| * no need to run the thread after this. |
| * |
| * For non-cyclic transfers we need to look around, |
| * so we can program some more work, or notify the |
| * client that their transfers have been completed. |
| */ |
| if (contract->is_cyclic) { |
| promise = get_next_cyclic_promise(contract); |
| vchan->processing = promise; |
| configure_pchan(pchan, promise); |
| vchan_cyclic_callback(&contract->vd); |
| } else { |
| vchan->processing = NULL; |
| vchan->pchan = NULL; |
| |
| free_room = 1; |
| disableirqs |= BIT(bit); |
| release_pchan(priv, pchan); |
| } |
| |
| spin_unlock(&vchan->vc.lock); |
| } else { |
| /* Half done interrupt */ |
| if (contract->is_cyclic) |
| vchan_cyclic_callback(&contract->vd); |
| else |
| disableirqs |= BIT(bit); |
| } |
| } |
| |
| /* Disable the IRQs for events we handled */ |
| spin_lock(&priv->lock); |
| irqs = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG); |
| writel_relaxed(irqs & ~disableirqs, |
| priv->base + SUN4I_DMA_IRQ_ENABLE_REG); |
| spin_unlock(&priv->lock); |
| |
| /* Writing 1 to the pending field will clear the pending interrupt */ |
| writel_relaxed(pendirq, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG); |
| |
| /* |
| * If a pchan was freed, we may be able to schedule something else, |
| * so have a look around |
| */ |
| if (free_room) { |
| for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) { |
| vchan = &priv->vchans[i]; |
| spin_lock(&vchan->vc.lock); |
| __execute_vchan_pending(priv, vchan); |
| spin_unlock(&vchan->vc.lock); |
| } |
| } |
| |
| /* |
| * Handle newer interrupts if some showed up, but only do it once |
| * to avoid a too long a loop |
| */ |
| if (allow_mitigation) { |
| pendirq = readl_relaxed(priv->base + |
| SUN4I_DMA_IRQ_PENDING_STATUS_REG); |
| if (pendirq) { |
| allow_mitigation = 0; |
| goto handle_pending; |
| } |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int sun4i_dma_probe(struct platform_device *pdev) |
| { |
| struct sun4i_dma_dev *priv; |
| struct resource *res; |
| int i, j, ret; |
| |
| priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); |
| if (!priv) |
| return -ENOMEM; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| priv->base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(priv->base)) |
| return PTR_ERR(priv->base); |
| |
| priv->irq = platform_get_irq(pdev, 0); |
| if (priv->irq < 0) |
| return priv->irq; |
| |
| priv->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(priv->clk)) { |
| dev_err(&pdev->dev, "No clock specified\n"); |
| return PTR_ERR(priv->clk); |
| } |
| |
| platform_set_drvdata(pdev, priv); |
| spin_lock_init(&priv->lock); |
| |
| dma_cap_zero(priv->slave.cap_mask); |
| dma_cap_set(DMA_PRIVATE, priv->slave.cap_mask); |
| dma_cap_set(DMA_MEMCPY, priv->slave.cap_mask); |
| dma_cap_set(DMA_CYCLIC, priv->slave.cap_mask); |
| dma_cap_set(DMA_SLAVE, priv->slave.cap_mask); |
| |
| INIT_LIST_HEAD(&priv->slave.channels); |
| priv->slave.device_free_chan_resources = sun4i_dma_free_chan_resources; |
| priv->slave.device_tx_status = sun4i_dma_tx_status; |
| priv->slave.device_issue_pending = sun4i_dma_issue_pending; |
| priv->slave.device_prep_slave_sg = sun4i_dma_prep_slave_sg; |
| priv->slave.device_prep_dma_memcpy = sun4i_dma_prep_dma_memcpy; |
| priv->slave.device_prep_dma_cyclic = sun4i_dma_prep_dma_cyclic; |
| priv->slave.device_config = sun4i_dma_config; |
| priv->slave.device_terminate_all = sun4i_dma_terminate_all; |
| priv->slave.copy_align = 2; |
| priv->slave.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | |
| BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | |
| BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); |
| priv->slave.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | |
| BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | |
| BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); |
| priv->slave.directions = BIT(DMA_DEV_TO_MEM) | |
| BIT(DMA_MEM_TO_DEV); |
| priv->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; |
| |
| priv->slave.dev = &pdev->dev; |
| |
| priv->pchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_CHANNELS, |
| sizeof(struct sun4i_dma_pchan), GFP_KERNEL); |
| priv->vchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_VCHANS, |
| sizeof(struct sun4i_dma_vchan), GFP_KERNEL); |
| if (!priv->vchans || !priv->pchans) |
| return -ENOMEM; |
| |
| /* |
| * [0..SUN4I_NDMA_NR_MAX_CHANNELS) are normal pchans, and |
| * [SUN4I_NDMA_NR_MAX_CHANNELS..SUN4I_DMA_NR_MAX_CHANNELS) are |
| * dedicated ones |
| */ |
| for (i = 0; i < SUN4I_NDMA_NR_MAX_CHANNELS; i++) |
| priv->pchans[i].base = priv->base + |
| SUN4I_NDMA_CHANNEL_REG_BASE(i); |
| |
| for (j = 0; i < SUN4I_DMA_NR_MAX_CHANNELS; i++, j++) { |
| priv->pchans[i].base = priv->base + |
| SUN4I_DDMA_CHANNEL_REG_BASE(j); |
| priv->pchans[i].is_dedicated = 1; |
| } |
| |
| for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) { |
| struct sun4i_dma_vchan *vchan = &priv->vchans[i]; |
| |
| spin_lock_init(&vchan->vc.lock); |
| vchan->vc.desc_free = sun4i_dma_free_contract; |
| vchan_init(&vchan->vc, &priv->slave); |
| } |
| |
| ret = clk_prepare_enable(priv->clk); |
| if (ret) { |
| dev_err(&pdev->dev, "Couldn't enable the clock\n"); |
| return ret; |
| } |
| |
| /* |
| * Make sure the IRQs are all disabled and accounted for. The bootloader |
| * likes to leave these dirty |
| */ |
| writel(0, priv->base + SUN4I_DMA_IRQ_ENABLE_REG); |
| writel(0xFFFFFFFF, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG); |
| |
| ret = devm_request_irq(&pdev->dev, priv->irq, sun4i_dma_interrupt, |
| 0, dev_name(&pdev->dev), priv); |
| if (ret) { |
| dev_err(&pdev->dev, "Cannot request IRQ\n"); |
| goto err_clk_disable; |
| } |
| |
| ret = dma_async_device_register(&priv->slave); |
| if (ret) { |
| dev_warn(&pdev->dev, "Failed to register DMA engine device\n"); |
| goto err_clk_disable; |
| } |
| |
| ret = of_dma_controller_register(pdev->dev.of_node, sun4i_dma_of_xlate, |
| priv); |
| if (ret) { |
| dev_err(&pdev->dev, "of_dma_controller_register failed\n"); |
| goto err_dma_unregister; |
| } |
| |
| dev_dbg(&pdev->dev, "Successfully probed SUN4I_DMA\n"); |
| |
| return 0; |
| |
| err_dma_unregister: |
| dma_async_device_unregister(&priv->slave); |
| err_clk_disable: |
| clk_disable_unprepare(priv->clk); |
| return ret; |
| } |
| |
| static int sun4i_dma_remove(struct platform_device *pdev) |
| { |
| struct sun4i_dma_dev *priv = platform_get_drvdata(pdev); |
| |
| /* Disable IRQ so no more work is scheduled */ |
| disable_irq(priv->irq); |
| |
| of_dma_controller_free(pdev->dev.of_node); |
| dma_async_device_unregister(&priv->slave); |
| |
| clk_disable_unprepare(priv->clk); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id sun4i_dma_match[] = { |
| { .compatible = "allwinner,sun4i-a10-dma" }, |
| { /* sentinel */ }, |
| }; |
| MODULE_DEVICE_TABLE(of, sun4i_dma_match); |
| |
| static struct platform_driver sun4i_dma_driver = { |
| .probe = sun4i_dma_probe, |
| .remove = sun4i_dma_remove, |
| .driver = { |
| .name = "sun4i-dma", |
| .of_match_table = sun4i_dma_match, |
| }, |
| }; |
| |
| module_platform_driver(sun4i_dma_driver); |
| |
| MODULE_DESCRIPTION("Allwinner A10 Dedicated DMA Controller Driver"); |
| MODULE_AUTHOR("Emilio López <emilio@elopez.com.ar>"); |
| MODULE_LICENSE("GPL"); |