blob: 587adcc12860bd96f1867cea9e4121aff2b0c07c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Common time routines among all ppc machines.
*
* Written by Cort Dougan (cort@cs.nmt.edu) to merge
* Paul Mackerras' version and mine for PReP and Pmac.
* MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
* Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
*
* First round of bugfixes by Gabriel Paubert (paubert@iram.es)
* to make clock more stable (2.4.0-test5). The only thing
* that this code assumes is that the timebases have been synchronized
* by firmware on SMP and are never stopped (never do sleep
* on SMP then, nap and doze are OK).
*
* Speeded up do_gettimeofday by getting rid of references to
* xtime (which required locks for consistency). (mikejc@us.ibm.com)
*
* TODO (not necessarily in this file):
* - improve precision and reproducibility of timebase frequency
* measurement at boot time.
* - for astronomical applications: add a new function to get
* non ambiguous timestamps even around leap seconds. This needs
* a new timestamp format and a good name.
*
* 1997-09-10 Updated NTP code according to technical memorandum Jan '96
* "A Kernel Model for Precision Timekeeping" by Dave Mills
*/
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <linux/sched/cputime.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
#include <linux/percpu.h>
#include <linux/rtc.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/irq_work.h>
#include <linux/of_clk.h>
#include <linux/suspend.h>
#include <linux/processor.h>
#include <linux/mc146818rtc.h>
#include <linux/platform_device.h>
#include <asm/trace.h>
#include <asm/interrupt.h>
#include <asm/io.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <linux/uaccess.h>
#include <asm/time.h>
#include <asm/irq.h>
#include <asm/div64.h>
#include <asm/smp.h>
#include <asm/vdso_datapage.h>
#include <asm/firmware.h>
#include <asm/mce.h>
/* powerpc clocksource/clockevent code */
#include <linux/clockchips.h>
#include <linux/timekeeper_internal.h>
static u64 timebase_read(struct clocksource *);
static struct clocksource clocksource_timebase = {
.name = "timebase",
.rating = 400,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
.mask = CLOCKSOURCE_MASK(64),
.read = timebase_read,
.vdso_clock_mode = VDSO_CLOCKMODE_ARCHTIMER,
};
#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
EXPORT_SYMBOL_GPL(decrementer_max); /* for KVM HDEC */
static int decrementer_set_next_event(unsigned long evt,
struct clock_event_device *dev);
static int decrementer_shutdown(struct clock_event_device *evt);
struct clock_event_device decrementer_clockevent = {
.name = "decrementer",
.rating = 200,
.irq = 0,
.set_next_event = decrementer_set_next_event,
.set_state_oneshot_stopped = decrementer_shutdown,
.set_state_shutdown = decrementer_shutdown,
.tick_resume = decrementer_shutdown,
.features = CLOCK_EVT_FEAT_ONESHOT |
CLOCK_EVT_FEAT_C3STOP,
};
EXPORT_SYMBOL(decrementer_clockevent);
/*
* This always puts next_tb beyond now, so the clock event will never fire
* with the usual comparison, no need for a separate test for stopped.
*/
#define DEC_CLOCKEVENT_STOPPED ~0ULL
DEFINE_PER_CPU(u64, decrementers_next_tb) = DEC_CLOCKEVENT_STOPPED;
EXPORT_SYMBOL_GPL(decrementers_next_tb);
static DEFINE_PER_CPU(struct clock_event_device, decrementers);
#define XSEC_PER_SEC (1024*1024)
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
#endif
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL_GPL(rtc_lock);
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
static u64 boot_tb __read_mostly;
extern struct timezone sys_tz;
static long timezone_offset;
unsigned long ppc_proc_freq;
EXPORT_SYMBOL_GPL(ppc_proc_freq);
unsigned long ppc_tb_freq;
EXPORT_SYMBOL_GPL(ppc_tb_freq);
bool tb_invalid;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
/*
* Factor for converting from cputime_t (timebase ticks) to
* microseconds. This is stored as 0.64 fixed-point binary fraction.
*/
u64 __cputime_usec_factor;
EXPORT_SYMBOL(__cputime_usec_factor);
static void calc_cputime_factors(void)
{
struct div_result res;
div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
__cputime_usec_factor = res.result_low;
}
/*
* Read the SPURR on systems that have it, otherwise the PURR,
* or if that doesn't exist return the timebase value passed in.
*/
static inline unsigned long read_spurr(unsigned long tb)
{
if (cpu_has_feature(CPU_FTR_SPURR))
return mfspr(SPRN_SPURR);
if (cpu_has_feature(CPU_FTR_PURR))
return mfspr(SPRN_PURR);
return tb;
}
#ifdef CONFIG_PPC_SPLPAR
#include <asm/dtl.h>
void (*dtl_consumer)(struct dtl_entry *, u64);
/*
* Scan the dispatch trace log and count up the stolen time.
* Should be called with interrupts disabled.
*/
static u64 scan_dispatch_log(u64 stop_tb)
{
u64 i = local_paca->dtl_ridx;
struct dtl_entry *dtl = local_paca->dtl_curr;
struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
struct lppaca *vpa = local_paca->lppaca_ptr;
u64 tb_delta;
u64 stolen = 0;
u64 dtb;
if (!dtl)
return 0;
if (i == be64_to_cpu(vpa->dtl_idx))
return 0;
while (i < be64_to_cpu(vpa->dtl_idx)) {
dtb = be64_to_cpu(dtl->timebase);
tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
be32_to_cpu(dtl->ready_to_enqueue_time);
barrier();
if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
/* buffer has overflowed */
i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
continue;
}
if (dtb > stop_tb)
break;
if (dtl_consumer)
dtl_consumer(dtl, i);
stolen += tb_delta;
++i;
++dtl;
if (dtl == dtl_end)
dtl = local_paca->dispatch_log;
}
local_paca->dtl_ridx = i;
local_paca->dtl_curr = dtl;
return stolen;
}
/*
* Accumulate stolen time by scanning the dispatch trace log.
* Called on entry from user mode.
*/
void notrace accumulate_stolen_time(void)
{
u64 sst, ust;
struct cpu_accounting_data *acct = &local_paca->accounting;
sst = scan_dispatch_log(acct->starttime_user);
ust = scan_dispatch_log(acct->starttime);
acct->stime -= sst;
acct->utime -= ust;
acct->steal_time += ust + sst;
}
static inline u64 calculate_stolen_time(u64 stop_tb)
{
if (!firmware_has_feature(FW_FEATURE_SPLPAR))
return 0;
if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
return scan_dispatch_log(stop_tb);
return 0;
}
#else /* CONFIG_PPC_SPLPAR */
static inline u64 calculate_stolen_time(u64 stop_tb)
{
return 0;
}
#endif /* CONFIG_PPC_SPLPAR */
/*
* Account time for a transition between system, hard irq
* or soft irq state.
*/
static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
unsigned long now, unsigned long stime)
{
unsigned long stime_scaled = 0;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
unsigned long nowscaled, deltascaled;
unsigned long utime, utime_scaled;
nowscaled = read_spurr(now);
deltascaled = nowscaled - acct->startspurr;
acct->startspurr = nowscaled;
utime = acct->utime - acct->utime_sspurr;
acct->utime_sspurr = acct->utime;
/*
* Because we don't read the SPURR on every kernel entry/exit,
* deltascaled includes both user and system SPURR ticks.
* Apportion these ticks to system SPURR ticks and user
* SPURR ticks in the same ratio as the system time (delta)
* and user time (udelta) values obtained from the timebase
* over the same interval. The system ticks get accounted here;
* the user ticks get saved up in paca->user_time_scaled to be
* used by account_process_tick.
*/
stime_scaled = stime;
utime_scaled = utime;
if (deltascaled != stime + utime) {
if (utime) {
stime_scaled = deltascaled * stime / (stime + utime);
utime_scaled = deltascaled - stime_scaled;
} else {
stime_scaled = deltascaled;
}
}
acct->utime_scaled += utime_scaled;
#endif
return stime_scaled;
}
static unsigned long vtime_delta(struct cpu_accounting_data *acct,
unsigned long *stime_scaled,
unsigned long *steal_time)
{
unsigned long now, stime;
WARN_ON_ONCE(!irqs_disabled());
now = mftb();
stime = now - acct->starttime;
acct->starttime = now;
*stime_scaled = vtime_delta_scaled(acct, now, stime);
*steal_time = calculate_stolen_time(now);
return stime;
}
static void vtime_delta_kernel(struct cpu_accounting_data *acct,
unsigned long *stime, unsigned long *stime_scaled)
{
unsigned long steal_time;
*stime = vtime_delta(acct, stime_scaled, &steal_time);
*stime -= min(*stime, steal_time);
acct->steal_time += steal_time;
}
void vtime_account_kernel(struct task_struct *tsk)
{
struct cpu_accounting_data *acct = get_accounting(tsk);
unsigned long stime, stime_scaled;
vtime_delta_kernel(acct, &stime, &stime_scaled);
if (tsk->flags & PF_VCPU) {
acct->gtime += stime;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
acct->utime_scaled += stime_scaled;
#endif
} else {
acct->stime += stime;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
acct->stime_scaled += stime_scaled;
#endif
}
}
EXPORT_SYMBOL_GPL(vtime_account_kernel);
void vtime_account_idle(struct task_struct *tsk)
{
unsigned long stime, stime_scaled, steal_time;
struct cpu_accounting_data *acct = get_accounting(tsk);
stime = vtime_delta(acct, &stime_scaled, &steal_time);
acct->idle_time += stime + steal_time;
}
static void vtime_account_irq_field(struct cpu_accounting_data *acct,
unsigned long *field)
{
unsigned long stime, stime_scaled;
vtime_delta_kernel(acct, &stime, &stime_scaled);
*field += stime;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
acct->stime_scaled += stime_scaled;
#endif
}
void vtime_account_softirq(struct task_struct *tsk)
{
struct cpu_accounting_data *acct = get_accounting(tsk);
vtime_account_irq_field(acct, &acct->softirq_time);
}
void vtime_account_hardirq(struct task_struct *tsk)
{
struct cpu_accounting_data *acct = get_accounting(tsk);
vtime_account_irq_field(acct, &acct->hardirq_time);
}
static void vtime_flush_scaled(struct task_struct *tsk,
struct cpu_accounting_data *acct)
{
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
if (acct->utime_scaled)
tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
if (acct->stime_scaled)
tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
acct->utime_scaled = 0;
acct->utime_sspurr = 0;
acct->stime_scaled = 0;
#endif
}
/*
* Account the whole cputime accumulated in the paca
* Must be called with interrupts disabled.
* Assumes that vtime_account_kernel/idle() has been called
* recently (i.e. since the last entry from usermode) so that
* get_paca()->user_time_scaled is up to date.
*/
void vtime_flush(struct task_struct *tsk)
{
struct cpu_accounting_data *acct = get_accounting(tsk);
if (acct->utime)
account_user_time(tsk, cputime_to_nsecs(acct->utime));
if (acct->gtime)
account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
account_steal_time(cputime_to_nsecs(acct->steal_time));
acct->steal_time = 0;
}
if (acct->idle_time)
account_idle_time(cputime_to_nsecs(acct->idle_time));
if (acct->stime)
account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
CPUTIME_SYSTEM);
if (acct->hardirq_time)
account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
CPUTIME_IRQ);
if (acct->softirq_time)
account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
CPUTIME_SOFTIRQ);
vtime_flush_scaled(tsk, acct);
acct->utime = 0;
acct->gtime = 0;
acct->idle_time = 0;
acct->stime = 0;
acct->hardirq_time = 0;
acct->softirq_time = 0;
}
#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
#define calc_cputime_factors()
#endif
void __delay(unsigned long loops)
{
unsigned long start;
spin_begin();
if (tb_invalid) {
/*
* TB is in error state and isn't ticking anymore.
* HMI handler was unable to recover from TB error.
* Return immediately, so that kernel won't get stuck here.
*/
spin_cpu_relax();
} else {
start = mftb();
while (mftb() - start < loops)
spin_cpu_relax();
}
spin_end();
}
EXPORT_SYMBOL(__delay);
void udelay(unsigned long usecs)
{
__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
unsigned long pc = instruction_pointer(regs);
if (in_lock_functions(pc))
return regs->link;
return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif
#ifdef CONFIG_IRQ_WORK
/*
* 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
*/
#ifdef CONFIG_PPC64
static inline unsigned long test_irq_work_pending(void)
{
unsigned long x;
asm volatile("lbz %0,%1(13)"
: "=r" (x)
: "i" (offsetof(struct paca_struct, irq_work_pending)));
return x;
}
static inline void set_irq_work_pending_flag(void)
{
asm volatile("stb %0,%1(13)" : :
"r" (1),
"i" (offsetof(struct paca_struct, irq_work_pending)));
}
static inline void clear_irq_work_pending(void)
{
asm volatile("stb %0,%1(13)" : :
"r" (0),
"i" (offsetof(struct paca_struct, irq_work_pending)));
}
#else /* 32-bit */
DEFINE_PER_CPU(u8, irq_work_pending);
#define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
#define test_irq_work_pending() __this_cpu_read(irq_work_pending)
#define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
#endif /* 32 vs 64 bit */
void arch_irq_work_raise(void)
{
/*
* 64-bit code that uses irq soft-mask can just cause an immediate
* interrupt here that gets soft masked, if this is called under
* local_irq_disable(). It might be possible to prevent that happening
* by noticing interrupts are disabled and setting decrementer pending
* to be replayed when irqs are enabled. The problem there is that
* tracing can call irq_work_raise, including in code that does low
* level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
* which could get tangled up if we're messing with the same state
* here.
*/
preempt_disable();
set_irq_work_pending_flag();
set_dec(1);
preempt_enable();
}
static void set_dec_or_work(u64 val)
{
set_dec(val);
/* We may have raced with new irq work */
if (unlikely(test_irq_work_pending()))
set_dec(1);
}
#else /* CONFIG_IRQ_WORK */
#define test_irq_work_pending() 0
#define clear_irq_work_pending()
static void set_dec_or_work(u64 val)
{
set_dec(val);
}
#endif /* CONFIG_IRQ_WORK */
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
void timer_rearm_host_dec(u64 now)
{
u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
WARN_ON_ONCE(!arch_irqs_disabled());
WARN_ON_ONCE(mfmsr() & MSR_EE);
if (now >= *next_tb) {
local_paca->irq_happened |= PACA_IRQ_DEC;
} else {
now = *next_tb - now;
if (now > decrementer_max)
now = decrementer_max;
set_dec_or_work(now);
}
}
EXPORT_SYMBOL_GPL(timer_rearm_host_dec);
#endif
/*
* timer_interrupt - gets called when the decrementer overflows,
* with interrupts disabled.
*/
DEFINE_INTERRUPT_HANDLER_ASYNC(timer_interrupt)
{
struct clock_event_device *evt = this_cpu_ptr(&decrementers);
u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
struct pt_regs *old_regs;
u64 now;
/*
* Some implementations of hotplug will get timer interrupts while
* offline, just ignore these.
*/
if (unlikely(!cpu_online(smp_processor_id()))) {
set_dec(decrementer_max);
return;
}
/*
* Ensure a positive value is written to the decrementer, or
* else some CPUs will continue to take decrementer exceptions.
* When the PPC_WATCHDOG (decrementer based) is configured,
* keep this at most 31 bits, which is about 4 seconds on most
* systems, which gives the watchdog a chance of catching timer
* interrupt hard lockups.
*/
if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
set_dec(0x7fffffff);
else
set_dec(decrementer_max);
/* Conditionally hard-enable interrupts. */
if (should_hard_irq_enable())
do_hard_irq_enable();
#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
if (atomic_read(&ppc_n_lost_interrupts) != 0)
__do_IRQ(regs);
#endif
old_regs = set_irq_regs(regs);
trace_timer_interrupt_entry(regs);
if (test_irq_work_pending()) {
clear_irq_work_pending();
mce_run_irq_context_handlers();
irq_work_run();
}
now = get_tb();
if (now >= *next_tb) {
evt->event_handler(evt);
__this_cpu_inc(irq_stat.timer_irqs_event);
} else {
now = *next_tb - now;
if (now > decrementer_max)
now = decrementer_max;
set_dec_or_work(now);
__this_cpu_inc(irq_stat.timer_irqs_others);
}
trace_timer_interrupt_exit(regs);
set_irq_regs(old_regs);
}
EXPORT_SYMBOL(timer_interrupt);
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
void timer_broadcast_interrupt(void)
{
tick_receive_broadcast();
__this_cpu_inc(irq_stat.broadcast_irqs_event);
}
#endif
#ifdef CONFIG_SUSPEND
/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_disable_irqs(void)
{
if (ppc_md.suspend_disable_irqs)
ppc_md.suspend_disable_irqs();
/* Disable the decrementer, so that it doesn't interfere
* with suspending.
*/
set_dec(decrementer_max);
local_irq_disable();
set_dec(decrementer_max);
}
/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_enable_irqs(void)
{
local_irq_enable();
if (ppc_md.suspend_enable_irqs)
ppc_md.suspend_enable_irqs();
}
#endif
unsigned long long tb_to_ns(unsigned long long ticks)
{
return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
}
EXPORT_SYMBOL_GPL(tb_to_ns);
/*
* Scheduler clock - returns current time in nanosec units.
*
* Note: mulhdu(a, b) (multiply high double unsigned) returns
* the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
* are 64-bit unsigned numbers.
*/
notrace unsigned long long sched_clock(void)
{
return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
}
#ifdef CONFIG_PPC_PSERIES
/*
* Running clock - attempts to give a view of time passing for a virtualised
* kernels.
* Uses the VTB register if available otherwise a next best guess.
*/
unsigned long long running_clock(void)
{
/*
* Don't read the VTB as a host since KVM does not switch in host
* timebase into the VTB when it takes a guest off the CPU, reading the
* VTB would result in reading 'last switched out' guest VTB.
*
* Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
* would be unsafe to rely only on the #ifdef above.
*/
if (firmware_has_feature(FW_FEATURE_LPAR) &&
cpu_has_feature(CPU_FTR_ARCH_207S))
return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
/*
* This is a next best approximation without a VTB.
* On a host which is running bare metal there should never be any stolen
* time and on a host which doesn't do any virtualisation TB *should* equal
* VTB so it makes no difference anyway.
*/
return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
}
#endif
static int __init get_freq(char *name, int cells, unsigned long *val)
{
struct device_node *cpu;
const __be32 *fp;
int found = 0;
/* The cpu node should have timebase and clock frequency properties */
cpu = of_find_node_by_type(NULL, "cpu");
if (cpu) {
fp = of_get_property(cpu, name, NULL);
if (fp) {
found = 1;
*val = of_read_ulong(fp, cells);
}
of_node_put(cpu);
}
return found;
}
static void start_cpu_decrementer(void)
{
#ifdef CONFIG_BOOKE_OR_40x
unsigned int tcr;
/* Clear any pending timer interrupts */
mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
tcr = mfspr(SPRN_TCR);
/*
* The watchdog may have already been enabled by u-boot. So leave
* TRC[WP] (Watchdog Period) alone.
*/
tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */
tcr |= TCR_DIE; /* Enable decrementer */
mtspr(SPRN_TCR, tcr);
#endif
}
void __init generic_calibrate_decr(void)
{
ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
!get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
printk(KERN_ERR "WARNING: Estimating decrementer frequency "
"(not found)\n");
}
ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
!get_freq("clock-frequency", 1, &ppc_proc_freq)) {
printk(KERN_ERR "WARNING: Estimating processor frequency "
"(not found)\n");
}
}
int update_persistent_clock64(struct timespec64 now)
{
struct rtc_time tm;
if (!ppc_md.set_rtc_time)
return -ENODEV;
rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
return ppc_md.set_rtc_time(&tm);
}
static void __read_persistent_clock(struct timespec64 *ts)
{
struct rtc_time tm;
static int first = 1;
ts->tv_nsec = 0;
/* XXX this is a little fragile but will work okay in the short term */
if (first) {
first = 0;
if (ppc_md.time_init)
timezone_offset = ppc_md.time_init();
/* get_boot_time() isn't guaranteed to be safe to call late */
if (ppc_md.get_boot_time) {
ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
return;
}
}
if (!ppc_md.get_rtc_time) {
ts->tv_sec = 0;
return;
}
ppc_md.get_rtc_time(&tm);
ts->tv_sec = rtc_tm_to_time64(&tm);
}
void read_persistent_clock64(struct timespec64 *ts)
{
__read_persistent_clock(ts);
/* Sanitize it in case real time clock is set below EPOCH */
if (ts->tv_sec < 0) {
ts->tv_sec = 0;
ts->tv_nsec = 0;
}
}
/* clocksource code */
static notrace u64 timebase_read(struct clocksource *cs)
{
return (u64)get_tb();
}
static void __init clocksource_init(void)
{
struct clocksource *clock = &clocksource_timebase;
if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
printk(KERN_ERR "clocksource: %s is already registered\n",
clock->name);
return;
}
printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
clock->name, clock->mult, clock->shift);
}
static int decrementer_set_next_event(unsigned long evt,
struct clock_event_device *dev)
{
__this_cpu_write(decrementers_next_tb, get_tb() + evt);
set_dec_or_work(evt);
return 0;
}
static int decrementer_shutdown(struct clock_event_device *dev)
{
__this_cpu_write(decrementers_next_tb, DEC_CLOCKEVENT_STOPPED);
set_dec_or_work(decrementer_max);
return 0;
}
static void register_decrementer_clockevent(int cpu)
{
struct clock_event_device *dec = &per_cpu(decrementers, cpu);
*dec = decrementer_clockevent;
dec->cpumask = cpumask_of(cpu);
clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
dec->name, dec->mult, dec->shift, cpu);
/* Set values for KVM, see kvm_emulate_dec() */
decrementer_clockevent.mult = dec->mult;
decrementer_clockevent.shift = dec->shift;
}
static void enable_large_decrementer(void)
{
if (!cpu_has_feature(CPU_FTR_ARCH_300))
return;
if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
return;
/*
* If we're running as the hypervisor we need to enable the LD manually
* otherwise firmware should have done it for us.
*/
if (cpu_has_feature(CPU_FTR_HVMODE))
mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
}
static void __init set_decrementer_max(void)
{
struct device_node *cpu;
u32 bits = 32;
/* Prior to ISAv3 the decrementer is always 32 bit */
if (!cpu_has_feature(CPU_FTR_ARCH_300))
return;
cpu = of_find_node_by_type(NULL, "cpu");
if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
if (bits > 64 || bits < 32) {
pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
bits = 32;
}
/* calculate the signed maximum given this many bits */
decrementer_max = (1ul << (bits - 1)) - 1;
}
of_node_put(cpu);
pr_info("time_init: %u bit decrementer (max: %llx)\n",
bits, decrementer_max);
}
static void __init init_decrementer_clockevent(void)
{
register_decrementer_clockevent(smp_processor_id());
}
void secondary_cpu_time_init(void)
{
/* Enable and test the large decrementer for this cpu */
enable_large_decrementer();
/* Start the decrementer on CPUs that have manual control
* such as BookE
*/
start_cpu_decrementer();
/* FIME: Should make unrelated change to move snapshot_timebase
* call here ! */
register_decrementer_clockevent(smp_processor_id());
}
/* This function is only called on the boot processor */
void __init time_init(void)
{
struct div_result res;
u64 scale;
unsigned shift;
/* Normal PowerPC with timebase register */
ppc_md.calibrate_decr();
printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
tb_ticks_per_jiffy = ppc_tb_freq / HZ;
tb_ticks_per_sec = ppc_tb_freq;
tb_ticks_per_usec = ppc_tb_freq / 1000000;
calc_cputime_factors();
/*
* Compute scale factor for sched_clock.
* The calibrate_decr() function has set tb_ticks_per_sec,
* which is the timebase frequency.
* We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
* the 128-bit result as a 64.64 fixed-point number.
* We then shift that number right until it is less than 1.0,
* giving us the scale factor and shift count to use in
* sched_clock().
*/
div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
scale = res.result_low;
for (shift = 0; res.result_high != 0; ++shift) {
scale = (scale >> 1) | (res.result_high << 63);
res.result_high >>= 1;
}
tb_to_ns_scale = scale;
tb_to_ns_shift = shift;
/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
boot_tb = get_tb();
/* If platform provided a timezone (pmac), we correct the time */
if (timezone_offset) {
sys_tz.tz_minuteswest = -timezone_offset / 60;
sys_tz.tz_dsttime = 0;
}
vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
/* initialise and enable the large decrementer (if we have one) */
set_decrementer_max();
enable_large_decrementer();
/* Start the decrementer on CPUs that have manual control
* such as BookE
*/
start_cpu_decrementer();
/* Register the clocksource */
clocksource_init();
init_decrementer_clockevent();
tick_setup_hrtimer_broadcast();
of_clk_init(NULL);
enable_sched_clock_irqtime();
}
/*
* Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
* result.
*/
void div128_by_32(u64 dividend_high, u64 dividend_low,
unsigned divisor, struct div_result *dr)
{
unsigned long a, b, c, d;
unsigned long w, x, y, z;
u64 ra, rb, rc;
a = dividend_high >> 32;
b = dividend_high & 0xffffffff;
c = dividend_low >> 32;
d = dividend_low & 0xffffffff;
w = a / divisor;
ra = ((u64)(a - (w * divisor)) << 32) + b;
rb = ((u64) do_div(ra, divisor) << 32) + c;
x = ra;
rc = ((u64) do_div(rb, divisor) << 32) + d;
y = rb;
do_div(rc, divisor);
z = rc;
dr->result_high = ((u64)w << 32) + x;
dr->result_low = ((u64)y << 32) + z;
}
/* We don't need to calibrate delay, we use the CPU timebase for that */
void calibrate_delay(void)
{
/* Some generic code (such as spinlock debug) use loops_per_jiffy
* as the number of __delay(1) in a jiffy, so make it so
*/
loops_per_jiffy = tb_ticks_per_jiffy;
}
#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
{
ppc_md.get_rtc_time(tm);
return 0;
}
static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
{
if (!ppc_md.set_rtc_time)
return -EOPNOTSUPP;
if (ppc_md.set_rtc_time(tm) < 0)
return -EOPNOTSUPP;
return 0;
}
static const struct rtc_class_ops rtc_generic_ops = {
.read_time = rtc_generic_get_time,
.set_time = rtc_generic_set_time,
};
static int __init rtc_init(void)
{
struct platform_device *pdev;
if (!ppc_md.get_rtc_time)
return -ENODEV;
pdev = platform_device_register_data(NULL, "rtc-generic", -1,
&rtc_generic_ops,
sizeof(rtc_generic_ops));
return PTR_ERR_OR_ZERO(pdev);
}
device_initcall(rtc_init);
#endif