| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2005,2006,2007,2008 IBM Corporation |
| * |
| * Authors: |
| * Mimi Zohar <zohar@us.ibm.com> |
| * Kylene Hall <kjhall@us.ibm.com> |
| * |
| * File: ima_crypto.c |
| * Calculates md5/sha1 file hash, template hash, boot-aggreate hash |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/moduleparam.h> |
| #include <linux/ratelimit.h> |
| #include <linux/file.h> |
| #include <linux/crypto.h> |
| #include <linux/scatterlist.h> |
| #include <linux/err.h> |
| #include <linux/slab.h> |
| #include <crypto/hash.h> |
| |
| #include "ima.h" |
| |
| /* minimum file size for ahash use */ |
| static unsigned long ima_ahash_minsize; |
| module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644); |
| MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use"); |
| |
| /* default is 0 - 1 page. */ |
| static int ima_maxorder; |
| static unsigned int ima_bufsize = PAGE_SIZE; |
| |
| static int param_set_bufsize(const char *val, const struct kernel_param *kp) |
| { |
| unsigned long long size; |
| int order; |
| |
| size = memparse(val, NULL); |
| order = get_order(size); |
| if (order >= MAX_ORDER) |
| return -EINVAL; |
| ima_maxorder = order; |
| ima_bufsize = PAGE_SIZE << order; |
| return 0; |
| } |
| |
| static const struct kernel_param_ops param_ops_bufsize = { |
| .set = param_set_bufsize, |
| .get = param_get_uint, |
| }; |
| #define param_check_bufsize(name, p) __param_check(name, p, unsigned int) |
| |
| module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644); |
| MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size"); |
| |
| static struct crypto_shash *ima_shash_tfm; |
| static struct crypto_ahash *ima_ahash_tfm; |
| |
| struct ima_algo_desc { |
| struct crypto_shash *tfm; |
| enum hash_algo algo; |
| }; |
| |
| int ima_sha1_idx __ro_after_init; |
| int ima_hash_algo_idx __ro_after_init; |
| /* |
| * Additional number of slots reserved, as needed, for SHA1 |
| * and IMA default algo. |
| */ |
| int ima_extra_slots __ro_after_init; |
| |
| static struct ima_algo_desc *ima_algo_array; |
| |
| static int __init ima_init_ima_crypto(void) |
| { |
| long rc; |
| |
| ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0); |
| if (IS_ERR(ima_shash_tfm)) { |
| rc = PTR_ERR(ima_shash_tfm); |
| pr_err("Can not allocate %s (reason: %ld)\n", |
| hash_algo_name[ima_hash_algo], rc); |
| return rc; |
| } |
| pr_info("Allocated hash algorithm: %s\n", |
| hash_algo_name[ima_hash_algo]); |
| return 0; |
| } |
| |
| static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo) |
| { |
| struct crypto_shash *tfm = ima_shash_tfm; |
| int rc, i; |
| |
| if (algo < 0 || algo >= HASH_ALGO__LAST) |
| algo = ima_hash_algo; |
| |
| if (algo == ima_hash_algo) |
| return tfm; |
| |
| for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) |
| if (ima_algo_array[i].tfm && ima_algo_array[i].algo == algo) |
| return ima_algo_array[i].tfm; |
| |
| tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0); |
| if (IS_ERR(tfm)) { |
| rc = PTR_ERR(tfm); |
| pr_err("Can not allocate %s (reason: %d)\n", |
| hash_algo_name[algo], rc); |
| } |
| return tfm; |
| } |
| |
| int __init ima_init_crypto(void) |
| { |
| enum hash_algo algo; |
| long rc; |
| int i; |
| |
| rc = ima_init_ima_crypto(); |
| if (rc) |
| return rc; |
| |
| ima_sha1_idx = -1; |
| ima_hash_algo_idx = -1; |
| |
| for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) { |
| algo = ima_tpm_chip->allocated_banks[i].crypto_id; |
| if (algo == HASH_ALGO_SHA1) |
| ima_sha1_idx = i; |
| |
| if (algo == ima_hash_algo) |
| ima_hash_algo_idx = i; |
| } |
| |
| if (ima_sha1_idx < 0) { |
| ima_sha1_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++; |
| if (ima_hash_algo == HASH_ALGO_SHA1) |
| ima_hash_algo_idx = ima_sha1_idx; |
| } |
| |
| if (ima_hash_algo_idx < 0) |
| ima_hash_algo_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++; |
| |
| ima_algo_array = kcalloc(NR_BANKS(ima_tpm_chip) + ima_extra_slots, |
| sizeof(*ima_algo_array), GFP_KERNEL); |
| if (!ima_algo_array) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) { |
| algo = ima_tpm_chip->allocated_banks[i].crypto_id; |
| ima_algo_array[i].algo = algo; |
| |
| /* unknown TPM algorithm */ |
| if (algo == HASH_ALGO__LAST) |
| continue; |
| |
| if (algo == ima_hash_algo) { |
| ima_algo_array[i].tfm = ima_shash_tfm; |
| continue; |
| } |
| |
| ima_algo_array[i].tfm = ima_alloc_tfm(algo); |
| if (IS_ERR(ima_algo_array[i].tfm)) { |
| if (algo == HASH_ALGO_SHA1) { |
| rc = PTR_ERR(ima_algo_array[i].tfm); |
| ima_algo_array[i].tfm = NULL; |
| goto out_array; |
| } |
| |
| ima_algo_array[i].tfm = NULL; |
| } |
| } |
| |
| if (ima_sha1_idx >= NR_BANKS(ima_tpm_chip)) { |
| if (ima_hash_algo == HASH_ALGO_SHA1) { |
| ima_algo_array[ima_sha1_idx].tfm = ima_shash_tfm; |
| } else { |
| ima_algo_array[ima_sha1_idx].tfm = |
| ima_alloc_tfm(HASH_ALGO_SHA1); |
| if (IS_ERR(ima_algo_array[ima_sha1_idx].tfm)) { |
| rc = PTR_ERR(ima_algo_array[ima_sha1_idx].tfm); |
| goto out_array; |
| } |
| } |
| |
| ima_algo_array[ima_sha1_idx].algo = HASH_ALGO_SHA1; |
| } |
| |
| if (ima_hash_algo_idx >= NR_BANKS(ima_tpm_chip) && |
| ima_hash_algo_idx != ima_sha1_idx) { |
| ima_algo_array[ima_hash_algo_idx].tfm = ima_shash_tfm; |
| ima_algo_array[ima_hash_algo_idx].algo = ima_hash_algo; |
| } |
| |
| return 0; |
| out_array: |
| for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) { |
| if (!ima_algo_array[i].tfm || |
| ima_algo_array[i].tfm == ima_shash_tfm) |
| continue; |
| |
| crypto_free_shash(ima_algo_array[i].tfm); |
| } |
| kfree(ima_algo_array); |
| out: |
| crypto_free_shash(ima_shash_tfm); |
| return rc; |
| } |
| |
| static void ima_free_tfm(struct crypto_shash *tfm) |
| { |
| int i; |
| |
| if (tfm == ima_shash_tfm) |
| return; |
| |
| for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) |
| if (ima_algo_array[i].tfm == tfm) |
| return; |
| |
| crypto_free_shash(tfm); |
| } |
| |
| /** |
| * ima_alloc_pages() - Allocate contiguous pages. |
| * @max_size: Maximum amount of memory to allocate. |
| * @allocated_size: Returned size of actual allocation. |
| * @last_warn: Should the min_size allocation warn or not. |
| * |
| * Tries to do opportunistic allocation for memory first trying to allocate |
| * max_size amount of memory and then splitting that until zero order is |
| * reached. Allocation is tried without generating allocation warnings unless |
| * last_warn is set. Last_warn set affects only last allocation of zero order. |
| * |
| * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL) |
| * |
| * Return pointer to allocated memory, or NULL on failure. |
| */ |
| static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size, |
| int last_warn) |
| { |
| void *ptr; |
| int order = ima_maxorder; |
| gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY; |
| |
| if (order) |
| order = min(get_order(max_size), order); |
| |
| for (; order; order--) { |
| ptr = (void *)__get_free_pages(gfp_mask, order); |
| if (ptr) { |
| *allocated_size = PAGE_SIZE << order; |
| return ptr; |
| } |
| } |
| |
| /* order is zero - one page */ |
| |
| gfp_mask = GFP_KERNEL; |
| |
| if (!last_warn) |
| gfp_mask |= __GFP_NOWARN; |
| |
| ptr = (void *)__get_free_pages(gfp_mask, 0); |
| if (ptr) { |
| *allocated_size = PAGE_SIZE; |
| return ptr; |
| } |
| |
| *allocated_size = 0; |
| return NULL; |
| } |
| |
| /** |
| * ima_free_pages() - Free pages allocated by ima_alloc_pages(). |
| * @ptr: Pointer to allocated pages. |
| * @size: Size of allocated buffer. |
| */ |
| static void ima_free_pages(void *ptr, size_t size) |
| { |
| if (!ptr) |
| return; |
| free_pages((unsigned long)ptr, get_order(size)); |
| } |
| |
| static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo) |
| { |
| struct crypto_ahash *tfm = ima_ahash_tfm; |
| int rc; |
| |
| if (algo < 0 || algo >= HASH_ALGO__LAST) |
| algo = ima_hash_algo; |
| |
| if (algo != ima_hash_algo || !tfm) { |
| tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0); |
| if (!IS_ERR(tfm)) { |
| if (algo == ima_hash_algo) |
| ima_ahash_tfm = tfm; |
| } else { |
| rc = PTR_ERR(tfm); |
| pr_err("Can not allocate %s (reason: %d)\n", |
| hash_algo_name[algo], rc); |
| } |
| } |
| return tfm; |
| } |
| |
| static void ima_free_atfm(struct crypto_ahash *tfm) |
| { |
| if (tfm != ima_ahash_tfm) |
| crypto_free_ahash(tfm); |
| } |
| |
| static inline int ahash_wait(int err, struct crypto_wait *wait) |
| { |
| |
| err = crypto_wait_req(err, wait); |
| |
| if (err) |
| pr_crit_ratelimited("ahash calculation failed: err: %d\n", err); |
| |
| return err; |
| } |
| |
| static int ima_calc_file_hash_atfm(struct file *file, |
| struct ima_digest_data *hash, |
| struct crypto_ahash *tfm) |
| { |
| loff_t i_size, offset; |
| char *rbuf[2] = { NULL, }; |
| int rc, rbuf_len, active = 0, ahash_rc = 0; |
| struct ahash_request *req; |
| struct scatterlist sg[1]; |
| struct crypto_wait wait; |
| size_t rbuf_size[2]; |
| |
| hash->length = crypto_ahash_digestsize(tfm); |
| |
| req = ahash_request_alloc(tfm, GFP_KERNEL); |
| if (!req) |
| return -ENOMEM; |
| |
| crypto_init_wait(&wait); |
| ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | |
| CRYPTO_TFM_REQ_MAY_SLEEP, |
| crypto_req_done, &wait); |
| |
| rc = ahash_wait(crypto_ahash_init(req), &wait); |
| if (rc) |
| goto out1; |
| |
| i_size = i_size_read(file_inode(file)); |
| |
| if (i_size == 0) |
| goto out2; |
| |
| /* |
| * Try to allocate maximum size of memory. |
| * Fail if even a single page cannot be allocated. |
| */ |
| rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1); |
| if (!rbuf[0]) { |
| rc = -ENOMEM; |
| goto out1; |
| } |
| |
| /* Only allocate one buffer if that is enough. */ |
| if (i_size > rbuf_size[0]) { |
| /* |
| * Try to allocate secondary buffer. If that fails fallback to |
| * using single buffering. Use previous memory allocation size |
| * as baseline for possible allocation size. |
| */ |
| rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0], |
| &rbuf_size[1], 0); |
| } |
| |
| for (offset = 0; offset < i_size; offset += rbuf_len) { |
| if (!rbuf[1] && offset) { |
| /* Not using two buffers, and it is not the first |
| * read/request, wait for the completion of the |
| * previous ahash_update() request. |
| */ |
| rc = ahash_wait(ahash_rc, &wait); |
| if (rc) |
| goto out3; |
| } |
| /* read buffer */ |
| rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]); |
| rc = integrity_kernel_read(file, offset, rbuf[active], |
| rbuf_len); |
| if (rc != rbuf_len) { |
| if (rc >= 0) |
| rc = -EINVAL; |
| /* |
| * Forward current rc, do not overwrite with return value |
| * from ahash_wait() |
| */ |
| ahash_wait(ahash_rc, &wait); |
| goto out3; |
| } |
| |
| if (rbuf[1] && offset) { |
| /* Using two buffers, and it is not the first |
| * read/request, wait for the completion of the |
| * previous ahash_update() request. |
| */ |
| rc = ahash_wait(ahash_rc, &wait); |
| if (rc) |
| goto out3; |
| } |
| |
| sg_init_one(&sg[0], rbuf[active], rbuf_len); |
| ahash_request_set_crypt(req, sg, NULL, rbuf_len); |
| |
| ahash_rc = crypto_ahash_update(req); |
| |
| if (rbuf[1]) |
| active = !active; /* swap buffers, if we use two */ |
| } |
| /* wait for the last update request to complete */ |
| rc = ahash_wait(ahash_rc, &wait); |
| out3: |
| ima_free_pages(rbuf[0], rbuf_size[0]); |
| ima_free_pages(rbuf[1], rbuf_size[1]); |
| out2: |
| if (!rc) { |
| ahash_request_set_crypt(req, NULL, hash->digest, 0); |
| rc = ahash_wait(crypto_ahash_final(req), &wait); |
| } |
| out1: |
| ahash_request_free(req); |
| return rc; |
| } |
| |
| static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash) |
| { |
| struct crypto_ahash *tfm; |
| int rc; |
| |
| tfm = ima_alloc_atfm(hash->algo); |
| if (IS_ERR(tfm)) |
| return PTR_ERR(tfm); |
| |
| rc = ima_calc_file_hash_atfm(file, hash, tfm); |
| |
| ima_free_atfm(tfm); |
| |
| return rc; |
| } |
| |
| static int ima_calc_file_hash_tfm(struct file *file, |
| struct ima_digest_data *hash, |
| struct crypto_shash *tfm) |
| { |
| loff_t i_size, offset = 0; |
| char *rbuf; |
| int rc; |
| SHASH_DESC_ON_STACK(shash, tfm); |
| |
| shash->tfm = tfm; |
| |
| hash->length = crypto_shash_digestsize(tfm); |
| |
| rc = crypto_shash_init(shash); |
| if (rc != 0) |
| return rc; |
| |
| i_size = i_size_read(file_inode(file)); |
| |
| if (i_size == 0) |
| goto out; |
| |
| rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!rbuf) |
| return -ENOMEM; |
| |
| while (offset < i_size) { |
| int rbuf_len; |
| |
| rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE); |
| if (rbuf_len < 0) { |
| rc = rbuf_len; |
| break; |
| } |
| if (rbuf_len == 0) { /* unexpected EOF */ |
| rc = -EINVAL; |
| break; |
| } |
| offset += rbuf_len; |
| |
| rc = crypto_shash_update(shash, rbuf, rbuf_len); |
| if (rc) |
| break; |
| } |
| kfree(rbuf); |
| out: |
| if (!rc) |
| rc = crypto_shash_final(shash, hash->digest); |
| return rc; |
| } |
| |
| static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash) |
| { |
| struct crypto_shash *tfm; |
| int rc; |
| |
| tfm = ima_alloc_tfm(hash->algo); |
| if (IS_ERR(tfm)) |
| return PTR_ERR(tfm); |
| |
| rc = ima_calc_file_hash_tfm(file, hash, tfm); |
| |
| ima_free_tfm(tfm); |
| |
| return rc; |
| } |
| |
| /* |
| * ima_calc_file_hash - calculate file hash |
| * |
| * Asynchronous hash (ahash) allows using HW acceleration for calculating |
| * a hash. ahash performance varies for different data sizes on different |
| * crypto accelerators. shash performance might be better for smaller files. |
| * The 'ima.ahash_minsize' module parameter allows specifying the best |
| * minimum file size for using ahash on the system. |
| * |
| * If the ima.ahash_minsize parameter is not specified, this function uses |
| * shash for the hash calculation. If ahash fails, it falls back to using |
| * shash. |
| */ |
| int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash) |
| { |
| loff_t i_size; |
| int rc; |
| struct file *f = file; |
| bool new_file_instance = false; |
| |
| /* |
| * For consistency, fail file's opened with the O_DIRECT flag on |
| * filesystems mounted with/without DAX option. |
| */ |
| if (file->f_flags & O_DIRECT) { |
| hash->length = hash_digest_size[ima_hash_algo]; |
| hash->algo = ima_hash_algo; |
| return -EINVAL; |
| } |
| |
| /* Open a new file instance in O_RDONLY if we cannot read */ |
| if (!(file->f_mode & FMODE_READ)) { |
| int flags = file->f_flags & ~(O_WRONLY | O_APPEND | |
| O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL); |
| flags |= O_RDONLY; |
| f = dentry_open(&file->f_path, flags, file->f_cred); |
| if (IS_ERR(f)) |
| return PTR_ERR(f); |
| |
| new_file_instance = true; |
| } |
| |
| i_size = i_size_read(file_inode(f)); |
| |
| if (ima_ahash_minsize && i_size >= ima_ahash_minsize) { |
| rc = ima_calc_file_ahash(f, hash); |
| if (!rc) |
| goto out; |
| } |
| |
| rc = ima_calc_file_shash(f, hash); |
| out: |
| if (new_file_instance) |
| fput(f); |
| return rc; |
| } |
| |
| /* |
| * Calculate the hash of template data |
| */ |
| static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data, |
| struct ima_template_entry *entry, |
| int tfm_idx) |
| { |
| SHASH_DESC_ON_STACK(shash, ima_algo_array[tfm_idx].tfm); |
| struct ima_template_desc *td = entry->template_desc; |
| int num_fields = entry->template_desc->num_fields; |
| int rc, i; |
| |
| shash->tfm = ima_algo_array[tfm_idx].tfm; |
| |
| rc = crypto_shash_init(shash); |
| if (rc != 0) |
| return rc; |
| |
| for (i = 0; i < num_fields; i++) { |
| u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 }; |
| u8 *data_to_hash = field_data[i].data; |
| u32 datalen = field_data[i].len; |
| u32 datalen_to_hash = !ima_canonical_fmt ? |
| datalen : (__force u32)cpu_to_le32(datalen); |
| |
| if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) { |
| rc = crypto_shash_update(shash, |
| (const u8 *) &datalen_to_hash, |
| sizeof(datalen_to_hash)); |
| if (rc) |
| break; |
| } else if (strcmp(td->fields[i]->field_id, "n") == 0) { |
| memcpy(buffer, data_to_hash, datalen); |
| data_to_hash = buffer; |
| datalen = IMA_EVENT_NAME_LEN_MAX + 1; |
| } |
| rc = crypto_shash_update(shash, data_to_hash, datalen); |
| if (rc) |
| break; |
| } |
| |
| if (!rc) |
| rc = crypto_shash_final(shash, entry->digests[tfm_idx].digest); |
| |
| return rc; |
| } |
| |
| int ima_calc_field_array_hash(struct ima_field_data *field_data, |
| struct ima_template_entry *entry) |
| { |
| u16 alg_id; |
| int rc, i; |
| |
| rc = ima_calc_field_array_hash_tfm(field_data, entry, ima_sha1_idx); |
| if (rc) |
| return rc; |
| |
| entry->digests[ima_sha1_idx].alg_id = TPM_ALG_SHA1; |
| |
| for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) { |
| if (i == ima_sha1_idx) |
| continue; |
| |
| if (i < NR_BANKS(ima_tpm_chip)) { |
| alg_id = ima_tpm_chip->allocated_banks[i].alg_id; |
| entry->digests[i].alg_id = alg_id; |
| } |
| |
| /* for unmapped TPM algorithms digest is still a padded SHA1 */ |
| if (!ima_algo_array[i].tfm) { |
| memcpy(entry->digests[i].digest, |
| entry->digests[ima_sha1_idx].digest, |
| TPM_DIGEST_SIZE); |
| continue; |
| } |
| |
| rc = ima_calc_field_array_hash_tfm(field_data, entry, i); |
| if (rc) |
| return rc; |
| } |
| return rc; |
| } |
| |
| static int calc_buffer_ahash_atfm(const void *buf, loff_t len, |
| struct ima_digest_data *hash, |
| struct crypto_ahash *tfm) |
| { |
| struct ahash_request *req; |
| struct scatterlist sg; |
| struct crypto_wait wait; |
| int rc, ahash_rc = 0; |
| |
| hash->length = crypto_ahash_digestsize(tfm); |
| |
| req = ahash_request_alloc(tfm, GFP_KERNEL); |
| if (!req) |
| return -ENOMEM; |
| |
| crypto_init_wait(&wait); |
| ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | |
| CRYPTO_TFM_REQ_MAY_SLEEP, |
| crypto_req_done, &wait); |
| |
| rc = ahash_wait(crypto_ahash_init(req), &wait); |
| if (rc) |
| goto out; |
| |
| sg_init_one(&sg, buf, len); |
| ahash_request_set_crypt(req, &sg, NULL, len); |
| |
| ahash_rc = crypto_ahash_update(req); |
| |
| /* wait for the update request to complete */ |
| rc = ahash_wait(ahash_rc, &wait); |
| if (!rc) { |
| ahash_request_set_crypt(req, NULL, hash->digest, 0); |
| rc = ahash_wait(crypto_ahash_final(req), &wait); |
| } |
| out: |
| ahash_request_free(req); |
| return rc; |
| } |
| |
| static int calc_buffer_ahash(const void *buf, loff_t len, |
| struct ima_digest_data *hash) |
| { |
| struct crypto_ahash *tfm; |
| int rc; |
| |
| tfm = ima_alloc_atfm(hash->algo); |
| if (IS_ERR(tfm)) |
| return PTR_ERR(tfm); |
| |
| rc = calc_buffer_ahash_atfm(buf, len, hash, tfm); |
| |
| ima_free_atfm(tfm); |
| |
| return rc; |
| } |
| |
| static int calc_buffer_shash_tfm(const void *buf, loff_t size, |
| struct ima_digest_data *hash, |
| struct crypto_shash *tfm) |
| { |
| SHASH_DESC_ON_STACK(shash, tfm); |
| unsigned int len; |
| int rc; |
| |
| shash->tfm = tfm; |
| |
| hash->length = crypto_shash_digestsize(tfm); |
| |
| rc = crypto_shash_init(shash); |
| if (rc != 0) |
| return rc; |
| |
| while (size) { |
| len = size < PAGE_SIZE ? size : PAGE_SIZE; |
| rc = crypto_shash_update(shash, buf, len); |
| if (rc) |
| break; |
| buf += len; |
| size -= len; |
| } |
| |
| if (!rc) |
| rc = crypto_shash_final(shash, hash->digest); |
| return rc; |
| } |
| |
| static int calc_buffer_shash(const void *buf, loff_t len, |
| struct ima_digest_data *hash) |
| { |
| struct crypto_shash *tfm; |
| int rc; |
| |
| tfm = ima_alloc_tfm(hash->algo); |
| if (IS_ERR(tfm)) |
| return PTR_ERR(tfm); |
| |
| rc = calc_buffer_shash_tfm(buf, len, hash, tfm); |
| |
| ima_free_tfm(tfm); |
| return rc; |
| } |
| |
| int ima_calc_buffer_hash(const void *buf, loff_t len, |
| struct ima_digest_data *hash) |
| { |
| int rc; |
| |
| if (ima_ahash_minsize && len >= ima_ahash_minsize) { |
| rc = calc_buffer_ahash(buf, len, hash); |
| if (!rc) |
| return 0; |
| } |
| |
| return calc_buffer_shash(buf, len, hash); |
| } |
| |
| static void ima_pcrread(u32 idx, struct tpm_digest *d) |
| { |
| if (!ima_tpm_chip) |
| return; |
| |
| if (tpm_pcr_read(ima_tpm_chip, idx, d) != 0) |
| pr_err("Error Communicating to TPM chip\n"); |
| } |
| |
| /* |
| * The boot_aggregate is a cumulative hash over TPM registers 0 - 7. With |
| * TPM 1.2 the boot_aggregate was based on reading the SHA1 PCRs, but with |
| * TPM 2.0 hash agility, TPM chips could support multiple TPM PCR banks, |
| * allowing firmware to configure and enable different banks. |
| * |
| * Knowing which TPM bank is read to calculate the boot_aggregate digest |
| * needs to be conveyed to a verifier. For this reason, use the same |
| * hash algorithm for reading the TPM PCRs as for calculating the boot |
| * aggregate digest as stored in the measurement list. |
| */ |
| static int ima_calc_boot_aggregate_tfm(char *digest, u16 alg_id, |
| struct crypto_shash *tfm) |
| { |
| struct tpm_digest d = { .alg_id = alg_id, .digest = {0} }; |
| int rc; |
| u32 i; |
| SHASH_DESC_ON_STACK(shash, tfm); |
| |
| shash->tfm = tfm; |
| |
| pr_devel("calculating the boot-aggregate based on TPM bank: %04x\n", |
| d.alg_id); |
| |
| rc = crypto_shash_init(shash); |
| if (rc != 0) |
| return rc; |
| |
| /* cumulative digest over TPM registers 0-7 */ |
| for (i = TPM_PCR0; i < TPM_PCR8; i++) { |
| ima_pcrread(i, &d); |
| /* now accumulate with current aggregate */ |
| rc = crypto_shash_update(shash, d.digest, |
| crypto_shash_digestsize(tfm)); |
| if (rc != 0) |
| return rc; |
| } |
| /* |
| * Extend cumulative digest over TPM registers 8-9, which contain |
| * measurement for the kernel command line (reg. 8) and image (reg. 9) |
| * in a typical PCR allocation. Registers 8-9 are only included in |
| * non-SHA1 boot_aggregate digests to avoid ambiguity. |
| */ |
| if (alg_id != TPM_ALG_SHA1) { |
| for (i = TPM_PCR8; i < TPM_PCR10; i++) { |
| ima_pcrread(i, &d); |
| rc = crypto_shash_update(shash, d.digest, |
| crypto_shash_digestsize(tfm)); |
| } |
| } |
| if (!rc) |
| crypto_shash_final(shash, digest); |
| return rc; |
| } |
| |
| int ima_calc_boot_aggregate(struct ima_digest_data *hash) |
| { |
| struct crypto_shash *tfm; |
| u16 crypto_id, alg_id; |
| int rc, i, bank_idx = -1; |
| |
| for (i = 0; i < ima_tpm_chip->nr_allocated_banks; i++) { |
| crypto_id = ima_tpm_chip->allocated_banks[i].crypto_id; |
| if (crypto_id == hash->algo) { |
| bank_idx = i; |
| break; |
| } |
| |
| if (crypto_id == HASH_ALGO_SHA256) |
| bank_idx = i; |
| |
| if (bank_idx == -1 && crypto_id == HASH_ALGO_SHA1) |
| bank_idx = i; |
| } |
| |
| if (bank_idx == -1) { |
| pr_err("No suitable TPM algorithm for boot aggregate\n"); |
| return 0; |
| } |
| |
| hash->algo = ima_tpm_chip->allocated_banks[bank_idx].crypto_id; |
| |
| tfm = ima_alloc_tfm(hash->algo); |
| if (IS_ERR(tfm)) |
| return PTR_ERR(tfm); |
| |
| hash->length = crypto_shash_digestsize(tfm); |
| alg_id = ima_tpm_chip->allocated_banks[bank_idx].alg_id; |
| rc = ima_calc_boot_aggregate_tfm(hash->digest, alg_id, tfm); |
| |
| ima_free_tfm(tfm); |
| |
| return rc; |
| } |