| /* |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
| * |
| * Pentium III FXSR, SSE support |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| */ |
| |
| /* |
| * 'Traps.c' handles hardware traps and faults after we have saved some |
| * state in 'entry.S'. |
| */ |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/errno.h> |
| #include <linux/ptrace.h> |
| #include <linux/timer.h> |
| #include <linux/mm.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/spinlock.h> |
| #include <linux/interrupt.h> |
| #include <linux/kallsyms.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/nmi.h> |
| #include <linux/kprobes.h> |
| #include <linux/kexec.h> |
| #include <linux/unwind.h> |
| #include <linux/uaccess.h> |
| #include <linux/bug.h> |
| #include <linux/kdebug.h> |
| |
| #if defined(CONFIG_EDAC) |
| #include <linux/edac.h> |
| #endif |
| |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/atomic.h> |
| #include <asm/debugreg.h> |
| #include <asm/desc.h> |
| #include <asm/i387.h> |
| #include <asm/processor.h> |
| #include <asm/unwind.h> |
| #include <asm/smp.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pda.h> |
| #include <asm/proto.h> |
| #include <asm/nmi.h> |
| #include <asm/stacktrace.h> |
| |
| asmlinkage void divide_error(void); |
| asmlinkage void debug(void); |
| asmlinkage void nmi(void); |
| asmlinkage void int3(void); |
| asmlinkage void overflow(void); |
| asmlinkage void bounds(void); |
| asmlinkage void invalid_op(void); |
| asmlinkage void device_not_available(void); |
| asmlinkage void double_fault(void); |
| asmlinkage void coprocessor_segment_overrun(void); |
| asmlinkage void invalid_TSS(void); |
| asmlinkage void segment_not_present(void); |
| asmlinkage void stack_segment(void); |
| asmlinkage void general_protection(void); |
| asmlinkage void page_fault(void); |
| asmlinkage void coprocessor_error(void); |
| asmlinkage void simd_coprocessor_error(void); |
| asmlinkage void reserved(void); |
| asmlinkage void alignment_check(void); |
| asmlinkage void machine_check(void); |
| asmlinkage void spurious_interrupt_bug(void); |
| |
| static inline void conditional_sti(struct pt_regs *regs) |
| { |
| if (regs->eflags & X86_EFLAGS_IF) |
| local_irq_enable(); |
| } |
| |
| static inline void preempt_conditional_sti(struct pt_regs *regs) |
| { |
| preempt_disable(); |
| if (regs->eflags & X86_EFLAGS_IF) |
| local_irq_enable(); |
| } |
| |
| static inline void preempt_conditional_cli(struct pt_regs *regs) |
| { |
| if (regs->eflags & X86_EFLAGS_IF) |
| local_irq_disable(); |
| /* Make sure to not schedule here because we could be running |
| on an exception stack. */ |
| preempt_enable_no_resched(); |
| } |
| |
| int kstack_depth_to_print = 12; |
| |
| #ifdef CONFIG_KALLSYMS |
| void printk_address(unsigned long address) |
| { |
| unsigned long offset = 0, symsize; |
| const char *symname; |
| char *modname; |
| char *delim = ":"; |
| char namebuf[128]; |
| |
| symname = kallsyms_lookup(address, &symsize, &offset, |
| &modname, namebuf); |
| if (!symname) { |
| printk(" [<%016lx>]\n", address); |
| return; |
| } |
| if (!modname) |
| modname = delim = ""; |
| printk(" [<%016lx>] %s%s%s%s+0x%lx/0x%lx\n", |
| address, delim, modname, delim, symname, offset, symsize); |
| } |
| #else |
| void printk_address(unsigned long address) |
| { |
| printk(" [<%016lx>]\n", address); |
| } |
| #endif |
| |
| static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack, |
| unsigned *usedp, char **idp) |
| { |
| static char ids[][8] = { |
| [DEBUG_STACK - 1] = "#DB", |
| [NMI_STACK - 1] = "NMI", |
| [DOUBLEFAULT_STACK - 1] = "#DF", |
| [STACKFAULT_STACK - 1] = "#SS", |
| [MCE_STACK - 1] = "#MC", |
| #if DEBUG_STKSZ > EXCEPTION_STKSZ |
| [N_EXCEPTION_STACKS ... N_EXCEPTION_STACKS + DEBUG_STKSZ / EXCEPTION_STKSZ - 2] = "#DB[?]" |
| #endif |
| }; |
| unsigned k; |
| |
| /* |
| * Iterate over all exception stacks, and figure out whether |
| * 'stack' is in one of them: |
| */ |
| for (k = 0; k < N_EXCEPTION_STACKS; k++) { |
| unsigned long end = per_cpu(orig_ist, cpu).ist[k]; |
| /* |
| * Is 'stack' above this exception frame's end? |
| * If yes then skip to the next frame. |
| */ |
| if (stack >= end) |
| continue; |
| /* |
| * Is 'stack' above this exception frame's start address? |
| * If yes then we found the right frame. |
| */ |
| if (stack >= end - EXCEPTION_STKSZ) { |
| /* |
| * Make sure we only iterate through an exception |
| * stack once. If it comes up for the second time |
| * then there's something wrong going on - just |
| * break out and return NULL: |
| */ |
| if (*usedp & (1U << k)) |
| break; |
| *usedp |= 1U << k; |
| *idp = ids[k]; |
| return (unsigned long *)end; |
| } |
| /* |
| * If this is a debug stack, and if it has a larger size than |
| * the usual exception stacks, then 'stack' might still |
| * be within the lower portion of the debug stack: |
| */ |
| #if DEBUG_STKSZ > EXCEPTION_STKSZ |
| if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) { |
| unsigned j = N_EXCEPTION_STACKS - 1; |
| |
| /* |
| * Black magic. A large debug stack is composed of |
| * multiple exception stack entries, which we |
| * iterate through now. Dont look: |
| */ |
| do { |
| ++j; |
| end -= EXCEPTION_STKSZ; |
| ids[j][4] = '1' + (j - N_EXCEPTION_STACKS); |
| } while (stack < end - EXCEPTION_STKSZ); |
| if (*usedp & (1U << j)) |
| break; |
| *usedp |= 1U << j; |
| *idp = ids[j]; |
| return (unsigned long *)end; |
| } |
| #endif |
| } |
| return NULL; |
| } |
| |
| #define MSG(txt) ops->warning(data, txt) |
| |
| /* |
| * x86-64 can have up to three kernel stacks: |
| * process stack |
| * interrupt stack |
| * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack |
| */ |
| |
| static inline int valid_stack_ptr(struct thread_info *tinfo, void *p) |
| { |
| void *t = (void *)tinfo; |
| return p > t && p < t + THREAD_SIZE - 3; |
| } |
| |
| void dump_trace(struct task_struct *tsk, struct pt_regs *regs, |
| unsigned long *stack, |
| const struct stacktrace_ops *ops, void *data) |
| { |
| const unsigned cpu = get_cpu(); |
| unsigned long *irqstack_end = (unsigned long*)cpu_pda(cpu)->irqstackptr; |
| unsigned used = 0; |
| struct thread_info *tinfo; |
| |
| if (!tsk) |
| tsk = current; |
| |
| if (!stack) { |
| unsigned long dummy; |
| stack = &dummy; |
| if (tsk && tsk != current) |
| stack = (unsigned long *)tsk->thread.rsp; |
| } |
| |
| /* |
| * Print function call entries within a stack. 'cond' is the |
| * "end of stackframe" condition, that the 'stack++' |
| * iteration will eventually trigger. |
| */ |
| #define HANDLE_STACK(cond) \ |
| do while (cond) { \ |
| unsigned long addr = *stack++; \ |
| /* Use unlocked access here because except for NMIs \ |
| we should be already protected against module unloads */ \ |
| if (__kernel_text_address(addr)) { \ |
| /* \ |
| * If the address is either in the text segment of the \ |
| * kernel, or in the region which contains vmalloc'ed \ |
| * memory, it *may* be the address of a calling \ |
| * routine; if so, print it so that someone tracing \ |
| * down the cause of the crash will be able to figure \ |
| * out the call path that was taken. \ |
| */ \ |
| ops->address(data, addr); \ |
| } \ |
| } while (0) |
| |
| /* |
| * Print function call entries in all stacks, starting at the |
| * current stack address. If the stacks consist of nested |
| * exceptions |
| */ |
| for (;;) { |
| char *id; |
| unsigned long *estack_end; |
| estack_end = in_exception_stack(cpu, (unsigned long)stack, |
| &used, &id); |
| |
| if (estack_end) { |
| if (ops->stack(data, id) < 0) |
| break; |
| HANDLE_STACK (stack < estack_end); |
| ops->stack(data, "<EOE>"); |
| /* |
| * We link to the next stack via the |
| * second-to-last pointer (index -2 to end) in the |
| * exception stack: |
| */ |
| stack = (unsigned long *) estack_end[-2]; |
| continue; |
| } |
| if (irqstack_end) { |
| unsigned long *irqstack; |
| irqstack = irqstack_end - |
| (IRQSTACKSIZE - 64) / sizeof(*irqstack); |
| |
| if (stack >= irqstack && stack < irqstack_end) { |
| if (ops->stack(data, "IRQ") < 0) |
| break; |
| HANDLE_STACK (stack < irqstack_end); |
| /* |
| * We link to the next stack (which would be |
| * the process stack normally) the last |
| * pointer (index -1 to end) in the IRQ stack: |
| */ |
| stack = (unsigned long *) (irqstack_end[-1]); |
| irqstack_end = NULL; |
| ops->stack(data, "EOI"); |
| continue; |
| } |
| } |
| break; |
| } |
| |
| /* |
| * This handles the process stack: |
| */ |
| tinfo = task_thread_info(tsk); |
| HANDLE_STACK (valid_stack_ptr(tinfo, stack)); |
| #undef HANDLE_STACK |
| put_cpu(); |
| } |
| EXPORT_SYMBOL(dump_trace); |
| |
| static void |
| print_trace_warning_symbol(void *data, char *msg, unsigned long symbol) |
| { |
| print_symbol(msg, symbol); |
| printk("\n"); |
| } |
| |
| static void print_trace_warning(void *data, char *msg) |
| { |
| printk("%s\n", msg); |
| } |
| |
| static int print_trace_stack(void *data, char *name) |
| { |
| printk(" <%s> ", name); |
| return 0; |
| } |
| |
| static void print_trace_address(void *data, unsigned long addr) |
| { |
| touch_nmi_watchdog(); |
| printk_address(addr); |
| } |
| |
| static const struct stacktrace_ops print_trace_ops = { |
| .warning = print_trace_warning, |
| .warning_symbol = print_trace_warning_symbol, |
| .stack = print_trace_stack, |
| .address = print_trace_address, |
| }; |
| |
| void |
| show_trace(struct task_struct *tsk, struct pt_regs *regs, unsigned long *stack) |
| { |
| printk("\nCall Trace:\n"); |
| dump_trace(tsk, regs, stack, &print_trace_ops, NULL); |
| printk("\n"); |
| } |
| |
| static void |
| _show_stack(struct task_struct *tsk, struct pt_regs *regs, unsigned long *rsp) |
| { |
| unsigned long *stack; |
| int i; |
| const int cpu = smp_processor_id(); |
| unsigned long *irqstack_end = (unsigned long *) (cpu_pda(cpu)->irqstackptr); |
| unsigned long *irqstack = (unsigned long *) (cpu_pda(cpu)->irqstackptr - IRQSTACKSIZE); |
| |
| // debugging aid: "show_stack(NULL, NULL);" prints the |
| // back trace for this cpu. |
| |
| if (rsp == NULL) { |
| if (tsk) |
| rsp = (unsigned long *)tsk->thread.rsp; |
| else |
| rsp = (unsigned long *)&rsp; |
| } |
| |
| stack = rsp; |
| for(i=0; i < kstack_depth_to_print; i++) { |
| if (stack >= irqstack && stack <= irqstack_end) { |
| if (stack == irqstack_end) { |
| stack = (unsigned long *) (irqstack_end[-1]); |
| printk(" <EOI> "); |
| } |
| } else { |
| if (((long) stack & (THREAD_SIZE-1)) == 0) |
| break; |
| } |
| if (i && ((i % 4) == 0)) |
| printk("\n"); |
| printk(" %016lx", *stack++); |
| touch_nmi_watchdog(); |
| } |
| show_trace(tsk, regs, rsp); |
| } |
| |
| void show_stack(struct task_struct *tsk, unsigned long * rsp) |
| { |
| _show_stack(tsk, NULL, rsp); |
| } |
| |
| /* |
| * The architecture-independent dump_stack generator |
| */ |
| void dump_stack(void) |
| { |
| unsigned long dummy; |
| show_trace(NULL, NULL, &dummy); |
| } |
| |
| EXPORT_SYMBOL(dump_stack); |
| |
| void show_registers(struct pt_regs *regs) |
| { |
| int i; |
| int in_kernel = !user_mode(regs); |
| unsigned long rsp; |
| const int cpu = smp_processor_id(); |
| struct task_struct *cur = cpu_pda(cpu)->pcurrent; |
| |
| rsp = regs->rsp; |
| printk("CPU %d ", cpu); |
| __show_regs(regs); |
| printk("Process %s (pid: %d, threadinfo %p, task %p)\n", |
| cur->comm, cur->pid, task_thread_info(cur), cur); |
| |
| /* |
| * When in-kernel, we also print out the stack and code at the |
| * time of the fault.. |
| */ |
| if (in_kernel) { |
| printk("Stack: "); |
| _show_stack(NULL, regs, (unsigned long*)rsp); |
| |
| printk("\nCode: "); |
| if (regs->rip < PAGE_OFFSET) |
| goto bad; |
| |
| for (i=0; i<20; i++) { |
| unsigned char c; |
| if (__get_user(c, &((unsigned char*)regs->rip)[i])) { |
| bad: |
| printk(" Bad RIP value."); |
| break; |
| } |
| printk("%02x ", c); |
| } |
| } |
| printk("\n"); |
| } |
| |
| int is_valid_bugaddr(unsigned long rip) |
| { |
| unsigned short ud2; |
| |
| if (__copy_from_user(&ud2, (const void __user *) rip, sizeof(ud2))) |
| return 0; |
| |
| return ud2 == 0x0b0f; |
| } |
| |
| #ifdef CONFIG_BUG |
| void out_of_line_bug(void) |
| { |
| BUG(); |
| } |
| EXPORT_SYMBOL(out_of_line_bug); |
| #endif |
| |
| static DEFINE_SPINLOCK(die_lock); |
| static int die_owner = -1; |
| static unsigned int die_nest_count; |
| |
| unsigned __kprobes long oops_begin(void) |
| { |
| int cpu; |
| unsigned long flags; |
| |
| oops_enter(); |
| |
| /* racy, but better than risking deadlock. */ |
| local_irq_save(flags); |
| cpu = smp_processor_id(); |
| if (!spin_trylock(&die_lock)) { |
| if (cpu == die_owner) |
| /* nested oops. should stop eventually */; |
| else |
| spin_lock(&die_lock); |
| } |
| die_nest_count++; |
| die_owner = cpu; |
| console_verbose(); |
| bust_spinlocks(1); |
| return flags; |
| } |
| |
| void __kprobes oops_end(unsigned long flags) |
| { |
| die_owner = -1; |
| bust_spinlocks(0); |
| die_nest_count--; |
| if (die_nest_count) |
| /* We still own the lock */ |
| local_irq_restore(flags); |
| else |
| /* Nest count reaches zero, release the lock. */ |
| spin_unlock_irqrestore(&die_lock, flags); |
| if (panic_on_oops) |
| panic("Fatal exception"); |
| oops_exit(); |
| } |
| |
| void __kprobes __die(const char * str, struct pt_regs * regs, long err) |
| { |
| static int die_counter; |
| printk(KERN_EMERG "%s: %04lx [%u] ", str, err & 0xffff,++die_counter); |
| #ifdef CONFIG_PREEMPT |
| printk("PREEMPT "); |
| #endif |
| #ifdef CONFIG_SMP |
| printk("SMP "); |
| #endif |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| printk("DEBUG_PAGEALLOC"); |
| #endif |
| printk("\n"); |
| notify_die(DIE_OOPS, str, regs, err, current->thread.trap_no, SIGSEGV); |
| show_registers(regs); |
| add_taint(TAINT_DIE); |
| /* Executive summary in case the oops scrolled away */ |
| printk(KERN_ALERT "RIP "); |
| printk_address(regs->rip); |
| printk(" RSP <%016lx>\n", regs->rsp); |
| if (kexec_should_crash(current)) |
| crash_kexec(regs); |
| } |
| |
| void die(const char * str, struct pt_regs * regs, long err) |
| { |
| unsigned long flags = oops_begin(); |
| |
| if (!user_mode(regs)) |
| report_bug(regs->rip, regs); |
| |
| __die(str, regs, err); |
| oops_end(flags); |
| do_exit(SIGSEGV); |
| } |
| |
| void __kprobes die_nmi(char *str, struct pt_regs *regs, int do_panic) |
| { |
| unsigned long flags = oops_begin(); |
| |
| /* |
| * We are in trouble anyway, lets at least try |
| * to get a message out. |
| */ |
| printk(str, smp_processor_id()); |
| show_registers(regs); |
| if (kexec_should_crash(current)) |
| crash_kexec(regs); |
| if (do_panic || panic_on_oops) |
| panic("Non maskable interrupt"); |
| oops_end(flags); |
| nmi_exit(); |
| local_irq_enable(); |
| do_exit(SIGSEGV); |
| } |
| |
| static void __kprobes do_trap(int trapnr, int signr, char *str, |
| struct pt_regs * regs, long error_code, |
| siginfo_t *info) |
| { |
| struct task_struct *tsk = current; |
| |
| if (user_mode(regs)) { |
| /* |
| * We want error_code and trap_no set for userspace |
| * faults and kernelspace faults which result in |
| * die(), but not kernelspace faults which are fixed |
| * up. die() gives the process no chance to handle |
| * the signal and notice the kernel fault information, |
| * so that won't result in polluting the information |
| * about previously queued, but not yet delivered, |
| * faults. See also do_general_protection below. |
| */ |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_no = trapnr; |
| |
| if (show_unhandled_signals && unhandled_signal(tsk, signr) && |
| printk_ratelimit()) |
| printk(KERN_INFO |
| "%s[%d] trap %s rip:%lx rsp:%lx error:%lx\n", |
| tsk->comm, tsk->pid, str, |
| regs->rip, regs->rsp, error_code); |
| |
| if (info) |
| force_sig_info(signr, info, tsk); |
| else |
| force_sig(signr, tsk); |
| return; |
| } |
| |
| |
| /* kernel trap */ |
| { |
| const struct exception_table_entry *fixup; |
| fixup = search_exception_tables(regs->rip); |
| if (fixup) |
| regs->rip = fixup->fixup; |
| else { |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_no = trapnr; |
| die(str, regs, error_code); |
| } |
| return; |
| } |
| } |
| |
| #define DO_ERROR(trapnr, signr, str, name) \ |
| asmlinkage void do_##name(struct pt_regs * regs, long error_code) \ |
| { \ |
| if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ |
| == NOTIFY_STOP) \ |
| return; \ |
| conditional_sti(regs); \ |
| do_trap(trapnr, signr, str, regs, error_code, NULL); \ |
| } |
| |
| #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \ |
| asmlinkage void do_##name(struct pt_regs * regs, long error_code) \ |
| { \ |
| siginfo_t info; \ |
| info.si_signo = signr; \ |
| info.si_errno = 0; \ |
| info.si_code = sicode; \ |
| info.si_addr = (void __user *)siaddr; \ |
| if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ |
| == NOTIFY_STOP) \ |
| return; \ |
| conditional_sti(regs); \ |
| do_trap(trapnr, signr, str, regs, error_code, &info); \ |
| } |
| |
| DO_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->rip) |
| DO_ERROR( 4, SIGSEGV, "overflow", overflow) |
| DO_ERROR( 5, SIGSEGV, "bounds", bounds) |
| DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->rip) |
| DO_ERROR( 7, SIGSEGV, "device not available", device_not_available) |
| DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun) |
| DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS) |
| DO_ERROR(11, SIGBUS, "segment not present", segment_not_present) |
| DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0) |
| DO_ERROR(18, SIGSEGV, "reserved", reserved) |
| |
| /* Runs on IST stack */ |
| asmlinkage void do_stack_segment(struct pt_regs *regs, long error_code) |
| { |
| if (notify_die(DIE_TRAP, "stack segment", regs, error_code, |
| 12, SIGBUS) == NOTIFY_STOP) |
| return; |
| preempt_conditional_sti(regs); |
| do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL); |
| preempt_conditional_cli(regs); |
| } |
| |
| asmlinkage void do_double_fault(struct pt_regs * regs, long error_code) |
| { |
| static const char str[] = "double fault"; |
| struct task_struct *tsk = current; |
| |
| /* Return not checked because double check cannot be ignored */ |
| notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV); |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_no = 8; |
| |
| /* This is always a kernel trap and never fixable (and thus must |
| never return). */ |
| for (;;) |
| die(str, regs, error_code); |
| } |
| |
| asmlinkage void __kprobes do_general_protection(struct pt_regs * regs, |
| long error_code) |
| { |
| struct task_struct *tsk = current; |
| |
| conditional_sti(regs); |
| |
| if (user_mode(regs)) { |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_no = 13; |
| |
| if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && |
| printk_ratelimit()) |
| printk(KERN_INFO |
| "%s[%d] general protection rip:%lx rsp:%lx error:%lx\n", |
| tsk->comm, tsk->pid, |
| regs->rip, regs->rsp, error_code); |
| |
| force_sig(SIGSEGV, tsk); |
| return; |
| } |
| |
| /* kernel gp */ |
| { |
| const struct exception_table_entry *fixup; |
| fixup = search_exception_tables(regs->rip); |
| if (fixup) { |
| regs->rip = fixup->fixup; |
| return; |
| } |
| |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_no = 13; |
| if (notify_die(DIE_GPF, "general protection fault", regs, |
| error_code, 13, SIGSEGV) == NOTIFY_STOP) |
| return; |
| die("general protection fault", regs, error_code); |
| } |
| } |
| |
| static __kprobes void |
| mem_parity_error(unsigned char reason, struct pt_regs * regs) |
| { |
| printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n", |
| reason); |
| printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n"); |
| |
| #if defined(CONFIG_EDAC) |
| if(edac_handler_set()) { |
| edac_atomic_assert_error(); |
| return; |
| } |
| #endif |
| |
| if (panic_on_unrecovered_nmi) |
| panic("NMI: Not continuing"); |
| |
| printk(KERN_EMERG "Dazed and confused, but trying to continue\n"); |
| |
| /* Clear and disable the memory parity error line. */ |
| reason = (reason & 0xf) | 4; |
| outb(reason, 0x61); |
| } |
| |
| static __kprobes void |
| io_check_error(unsigned char reason, struct pt_regs * regs) |
| { |
| printk("NMI: IOCK error (debug interrupt?)\n"); |
| show_registers(regs); |
| |
| /* Re-enable the IOCK line, wait for a few seconds */ |
| reason = (reason & 0xf) | 8; |
| outb(reason, 0x61); |
| mdelay(2000); |
| reason &= ~8; |
| outb(reason, 0x61); |
| } |
| |
| static __kprobes void |
| unknown_nmi_error(unsigned char reason, struct pt_regs * regs) |
| { |
| printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n", |
| reason); |
| printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n"); |
| |
| if (panic_on_unrecovered_nmi) |
| panic("NMI: Not continuing"); |
| |
| printk(KERN_EMERG "Dazed and confused, but trying to continue\n"); |
| } |
| |
| /* Runs on IST stack. This code must keep interrupts off all the time. |
| Nested NMIs are prevented by the CPU. */ |
| asmlinkage __kprobes void default_do_nmi(struct pt_regs *regs) |
| { |
| unsigned char reason = 0; |
| int cpu; |
| |
| cpu = smp_processor_id(); |
| |
| /* Only the BSP gets external NMIs from the system. */ |
| if (!cpu) |
| reason = get_nmi_reason(); |
| |
| if (!(reason & 0xc0)) { |
| if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT) |
| == NOTIFY_STOP) |
| return; |
| /* |
| * Ok, so this is none of the documented NMI sources, |
| * so it must be the NMI watchdog. |
| */ |
| if (nmi_watchdog_tick(regs,reason)) |
| return; |
| if (!do_nmi_callback(regs,cpu)) |
| unknown_nmi_error(reason, regs); |
| |
| return; |
| } |
| if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP) |
| return; |
| |
| /* AK: following checks seem to be broken on modern chipsets. FIXME */ |
| |
| if (reason & 0x80) |
| mem_parity_error(reason, regs); |
| if (reason & 0x40) |
| io_check_error(reason, regs); |
| } |
| |
| /* runs on IST stack. */ |
| asmlinkage void __kprobes do_int3(struct pt_regs * regs, long error_code) |
| { |
| if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) == NOTIFY_STOP) { |
| return; |
| } |
| preempt_conditional_sti(regs); |
| do_trap(3, SIGTRAP, "int3", regs, error_code, NULL); |
| preempt_conditional_cli(regs); |
| } |
| |
| /* Help handler running on IST stack to switch back to user stack |
| for scheduling or signal handling. The actual stack switch is done in |
| entry.S */ |
| asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs) |
| { |
| struct pt_regs *regs = eregs; |
| /* Did already sync */ |
| if (eregs == (struct pt_regs *)eregs->rsp) |
| ; |
| /* Exception from user space */ |
| else if (user_mode(eregs)) |
| regs = task_pt_regs(current); |
| /* Exception from kernel and interrupts are enabled. Move to |
| kernel process stack. */ |
| else if (eregs->eflags & X86_EFLAGS_IF) |
| regs = (struct pt_regs *)(eregs->rsp -= sizeof(struct pt_regs)); |
| if (eregs != regs) |
| *regs = *eregs; |
| return regs; |
| } |
| |
| /* runs on IST stack. */ |
| asmlinkage void __kprobes do_debug(struct pt_regs * regs, |
| unsigned long error_code) |
| { |
| unsigned long condition; |
| struct task_struct *tsk = current; |
| siginfo_t info; |
| |
| get_debugreg(condition, 6); |
| |
| if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code, |
| SIGTRAP) == NOTIFY_STOP) |
| return; |
| |
| preempt_conditional_sti(regs); |
| |
| /* Mask out spurious debug traps due to lazy DR7 setting */ |
| if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) { |
| if (!tsk->thread.debugreg7) { |
| goto clear_dr7; |
| } |
| } |
| |
| tsk->thread.debugreg6 = condition; |
| |
| /* Mask out spurious TF errors due to lazy TF clearing */ |
| if (condition & DR_STEP) { |
| /* |
| * The TF error should be masked out only if the current |
| * process is not traced and if the TRAP flag has been set |
| * previously by a tracing process (condition detected by |
| * the PT_DTRACE flag); remember that the i386 TRAP flag |
| * can be modified by the process itself in user mode, |
| * allowing programs to debug themselves without the ptrace() |
| * interface. |
| */ |
| if (!user_mode(regs)) |
| goto clear_TF_reenable; |
| /* |
| * Was the TF flag set by a debugger? If so, clear it now, |
| * so that register information is correct. |
| */ |
| if (tsk->ptrace & PT_DTRACE) { |
| regs->eflags &= ~TF_MASK; |
| tsk->ptrace &= ~PT_DTRACE; |
| } |
| } |
| |
| /* Ok, finally something we can handle */ |
| tsk->thread.trap_no = 1; |
| tsk->thread.error_code = error_code; |
| info.si_signo = SIGTRAP; |
| info.si_errno = 0; |
| info.si_code = TRAP_BRKPT; |
| info.si_addr = user_mode(regs) ? (void __user *)regs->rip : NULL; |
| force_sig_info(SIGTRAP, &info, tsk); |
| |
| clear_dr7: |
| set_debugreg(0UL, 7); |
| preempt_conditional_cli(regs); |
| return; |
| |
| clear_TF_reenable: |
| set_tsk_thread_flag(tsk, TIF_SINGLESTEP); |
| regs->eflags &= ~TF_MASK; |
| preempt_conditional_cli(regs); |
| } |
| |
| static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr) |
| { |
| const struct exception_table_entry *fixup; |
| fixup = search_exception_tables(regs->rip); |
| if (fixup) { |
| regs->rip = fixup->fixup; |
| return 1; |
| } |
| notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE); |
| /* Illegal floating point operation in the kernel */ |
| current->thread.trap_no = trapnr; |
| die(str, regs, 0); |
| return 0; |
| } |
| |
| /* |
| * Note that we play around with the 'TS' bit in an attempt to get |
| * the correct behaviour even in the presence of the asynchronous |
| * IRQ13 behaviour |
| */ |
| asmlinkage void do_coprocessor_error(struct pt_regs *regs) |
| { |
| void __user *rip = (void __user *)(regs->rip); |
| struct task_struct * task; |
| siginfo_t info; |
| unsigned short cwd, swd; |
| |
| conditional_sti(regs); |
| if (!user_mode(regs) && |
| kernel_math_error(regs, "kernel x87 math error", 16)) |
| return; |
| |
| /* |
| * Save the info for the exception handler and clear the error. |
| */ |
| task = current; |
| save_init_fpu(task); |
| task->thread.trap_no = 16; |
| task->thread.error_code = 0; |
| info.si_signo = SIGFPE; |
| info.si_errno = 0; |
| info.si_code = __SI_FAULT; |
| info.si_addr = rip; |
| /* |
| * (~cwd & swd) will mask out exceptions that are not set to unmasked |
| * status. 0x3f is the exception bits in these regs, 0x200 is the |
| * C1 reg you need in case of a stack fault, 0x040 is the stack |
| * fault bit. We should only be taking one exception at a time, |
| * so if this combination doesn't produce any single exception, |
| * then we have a bad program that isn't synchronizing its FPU usage |
| * and it will suffer the consequences since we won't be able to |
| * fully reproduce the context of the exception |
| */ |
| cwd = get_fpu_cwd(task); |
| swd = get_fpu_swd(task); |
| switch (swd & ~cwd & 0x3f) { |
| case 0x000: |
| default: |
| break; |
| case 0x001: /* Invalid Op */ |
| /* |
| * swd & 0x240 == 0x040: Stack Underflow |
| * swd & 0x240 == 0x240: Stack Overflow |
| * User must clear the SF bit (0x40) if set |
| */ |
| info.si_code = FPE_FLTINV; |
| break; |
| case 0x002: /* Denormalize */ |
| case 0x010: /* Underflow */ |
| info.si_code = FPE_FLTUND; |
| break; |
| case 0x004: /* Zero Divide */ |
| info.si_code = FPE_FLTDIV; |
| break; |
| case 0x008: /* Overflow */ |
| info.si_code = FPE_FLTOVF; |
| break; |
| case 0x020: /* Precision */ |
| info.si_code = FPE_FLTRES; |
| break; |
| } |
| force_sig_info(SIGFPE, &info, task); |
| } |
| |
| asmlinkage void bad_intr(void) |
| { |
| printk("bad interrupt"); |
| } |
| |
| asmlinkage void do_simd_coprocessor_error(struct pt_regs *regs) |
| { |
| void __user *rip = (void __user *)(regs->rip); |
| struct task_struct * task; |
| siginfo_t info; |
| unsigned short mxcsr; |
| |
| conditional_sti(regs); |
| if (!user_mode(regs) && |
| kernel_math_error(regs, "kernel simd math error", 19)) |
| return; |
| |
| /* |
| * Save the info for the exception handler and clear the error. |
| */ |
| task = current; |
| save_init_fpu(task); |
| task->thread.trap_no = 19; |
| task->thread.error_code = 0; |
| info.si_signo = SIGFPE; |
| info.si_errno = 0; |
| info.si_code = __SI_FAULT; |
| info.si_addr = rip; |
| /* |
| * The SIMD FPU exceptions are handled a little differently, as there |
| * is only a single status/control register. Thus, to determine which |
| * unmasked exception was caught we must mask the exception mask bits |
| * at 0x1f80, and then use these to mask the exception bits at 0x3f. |
| */ |
| mxcsr = get_fpu_mxcsr(task); |
| switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) { |
| case 0x000: |
| default: |
| break; |
| case 0x001: /* Invalid Op */ |
| info.si_code = FPE_FLTINV; |
| break; |
| case 0x002: /* Denormalize */ |
| case 0x010: /* Underflow */ |
| info.si_code = FPE_FLTUND; |
| break; |
| case 0x004: /* Zero Divide */ |
| info.si_code = FPE_FLTDIV; |
| break; |
| case 0x008: /* Overflow */ |
| info.si_code = FPE_FLTOVF; |
| break; |
| case 0x020: /* Precision */ |
| info.si_code = FPE_FLTRES; |
| break; |
| } |
| force_sig_info(SIGFPE, &info, task); |
| } |
| |
| asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs) |
| { |
| } |
| |
| asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void) |
| { |
| } |
| |
| asmlinkage void __attribute__((weak)) mce_threshold_interrupt(void) |
| { |
| } |
| |
| /* |
| * 'math_state_restore()' saves the current math information in the |
| * old math state array, and gets the new ones from the current task |
| * |
| * Careful.. There are problems with IBM-designed IRQ13 behaviour. |
| * Don't touch unless you *really* know how it works. |
| */ |
| asmlinkage void math_state_restore(void) |
| { |
| struct task_struct *me = current; |
| clts(); /* Allow maths ops (or we recurse) */ |
| |
| if (!used_math()) |
| init_fpu(me); |
| restore_fpu_checking(&me->thread.i387.fxsave); |
| task_thread_info(me)->status |= TS_USEDFPU; |
| me->fpu_counter++; |
| } |
| |
| void __init trap_init(void) |
| { |
| set_intr_gate(0,÷_error); |
| set_intr_gate_ist(1,&debug,DEBUG_STACK); |
| set_intr_gate_ist(2,&nmi,NMI_STACK); |
| set_system_gate_ist(3,&int3,DEBUG_STACK); /* int3 can be called from all */ |
| set_system_gate(4,&overflow); /* int4 can be called from all */ |
| set_intr_gate(5,&bounds); |
| set_intr_gate(6,&invalid_op); |
| set_intr_gate(7,&device_not_available); |
| set_intr_gate_ist(8,&double_fault, DOUBLEFAULT_STACK); |
| set_intr_gate(9,&coprocessor_segment_overrun); |
| set_intr_gate(10,&invalid_TSS); |
| set_intr_gate(11,&segment_not_present); |
| set_intr_gate_ist(12,&stack_segment,STACKFAULT_STACK); |
| set_intr_gate(13,&general_protection); |
| set_intr_gate(14,&page_fault); |
| set_intr_gate(15,&spurious_interrupt_bug); |
| set_intr_gate(16,&coprocessor_error); |
| set_intr_gate(17,&alignment_check); |
| #ifdef CONFIG_X86_MCE |
| set_intr_gate_ist(18,&machine_check, MCE_STACK); |
| #endif |
| set_intr_gate(19,&simd_coprocessor_error); |
| |
| #ifdef CONFIG_IA32_EMULATION |
| set_system_gate(IA32_SYSCALL_VECTOR, ia32_syscall); |
| #endif |
| |
| /* |
| * Should be a barrier for any external CPU state. |
| */ |
| cpu_init(); |
| } |
| |
| |
| static int __init oops_setup(char *s) |
| { |
| if (!s) |
| return -EINVAL; |
| if (!strcmp(s, "panic")) |
| panic_on_oops = 1; |
| return 0; |
| } |
| early_param("oops", oops_setup); |
| |
| static int __init kstack_setup(char *s) |
| { |
| if (!s) |
| return -EINVAL; |
| kstack_depth_to_print = simple_strtoul(s,NULL,0); |
| return 0; |
| } |
| early_param("kstack", kstack_setup); |