| /* |
| * linux/arch/alpha/kernel/core_tsunami.c |
| * |
| * Based on code written by David A. Rusling (david.rusling@reo.mts.dec.com). |
| * |
| * Code common to all TSUNAMI core logic chips. |
| */ |
| |
| #define __EXTERN_INLINE inline |
| #include <asm/io.h> |
| #include <asm/core_tsunami.h> |
| #undef __EXTERN_INLINE |
| |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/bootmem.h> |
| |
| #include <asm/ptrace.h> |
| #include <asm/smp.h> |
| |
| #include "proto.h" |
| #include "pci_impl.h" |
| |
| /* Save Tsunami configuration data as the console had it set up. */ |
| |
| struct |
| { |
| unsigned long wsba[4]; |
| unsigned long wsm[4]; |
| unsigned long tba[4]; |
| } saved_config[2] __attribute__((common)); |
| |
| /* |
| * NOTE: Herein lie back-to-back mb instructions. They are magic. |
| * One plausible explanation is that the I/O controller does not properly |
| * handle the system transaction. Another involves timing. Ho hum. |
| */ |
| |
| /* |
| * BIOS32-style PCI interface: |
| */ |
| |
| #define DEBUG_CONFIG 0 |
| |
| #if DEBUG_CONFIG |
| # define DBG_CFG(args) printk args |
| #else |
| # define DBG_CFG(args) |
| #endif |
| |
| |
| /* |
| * Given a bus, device, and function number, compute resulting |
| * configuration space address |
| * accordingly. It is therefore not safe to have concurrent |
| * invocations to configuration space access routines, but there |
| * really shouldn't be any need for this. |
| * |
| * Note that all config space accesses use Type 1 address format. |
| * |
| * Note also that type 1 is determined by non-zero bus number. |
| * |
| * Type 1: |
| * |
| * 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 |
| * 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0 |
| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1| |
| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| * |
| * 31:24 reserved |
| * 23:16 bus number (8 bits = 128 possible buses) |
| * 15:11 Device number (5 bits) |
| * 10:8 function number |
| * 7:2 register number |
| * |
| * Notes: |
| * The function number selects which function of a multi-function device |
| * (e.g., SCSI and Ethernet). |
| * |
| * The register selects a DWORD (32 bit) register offset. Hence it |
| * doesn't get shifted by 2 bits as we want to "drop" the bottom two |
| * bits. |
| */ |
| |
| static int |
| mk_conf_addr(struct pci_bus *pbus, unsigned int device_fn, int where, |
| unsigned long *pci_addr, unsigned char *type1) |
| { |
| struct pci_controller *hose = pbus->sysdata; |
| unsigned long addr; |
| u8 bus = pbus->number; |
| |
| DBG_CFG(("mk_conf_addr(bus=%d ,device_fn=0x%x, where=0x%x, " |
| "pci_addr=0x%p, type1=0x%p)\n", |
| bus, device_fn, where, pci_addr, type1)); |
| |
| if (!pbus->parent) /* No parent means peer PCI bus. */ |
| bus = 0; |
| *type1 = (bus != 0); |
| |
| addr = (bus << 16) | (device_fn << 8) | where; |
| addr |= hose->config_space_base; |
| |
| *pci_addr = addr; |
| DBG_CFG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr)); |
| return 0; |
| } |
| |
| static int |
| tsunami_read_config(struct pci_bus *bus, unsigned int devfn, int where, |
| int size, u32 *value) |
| { |
| unsigned long addr; |
| unsigned char type1; |
| |
| if (mk_conf_addr(bus, devfn, where, &addr, &type1)) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| |
| switch (size) { |
| case 1: |
| *value = __kernel_ldbu(*(vucp)addr); |
| break; |
| case 2: |
| *value = __kernel_ldwu(*(vusp)addr); |
| break; |
| case 4: |
| *value = *(vuip)addr; |
| break; |
| } |
| |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| static int |
| tsunami_write_config(struct pci_bus *bus, unsigned int devfn, int where, |
| int size, u32 value) |
| { |
| unsigned long addr; |
| unsigned char type1; |
| |
| if (mk_conf_addr(bus, devfn, where, &addr, &type1)) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| |
| switch (size) { |
| case 1: |
| __kernel_stb(value, *(vucp)addr); |
| mb(); |
| __kernel_ldbu(*(vucp)addr); |
| break; |
| case 2: |
| __kernel_stw(value, *(vusp)addr); |
| mb(); |
| __kernel_ldwu(*(vusp)addr); |
| break; |
| case 4: |
| *(vuip)addr = value; |
| mb(); |
| *(vuip)addr; |
| break; |
| } |
| |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| struct pci_ops tsunami_pci_ops = |
| { |
| .read = tsunami_read_config, |
| .write = tsunami_write_config, |
| }; |
| |
| void |
| tsunami_pci_tbi(struct pci_controller *hose, dma_addr_t start, dma_addr_t end) |
| { |
| tsunami_pchip *pchip = hose->index ? TSUNAMI_pchip1 : TSUNAMI_pchip0; |
| volatile unsigned long *csr; |
| unsigned long value; |
| |
| /* We can invalidate up to 8 tlb entries in a go. The flush |
| matches against <31:16> in the pci address. */ |
| csr = &pchip->tlbia.csr; |
| if (((start ^ end) & 0xffff0000) == 0) |
| csr = &pchip->tlbiv.csr; |
| |
| /* For TBIA, it doesn't matter what value we write. For TBI, |
| it's the shifted tag bits. */ |
| value = (start & 0xffff0000) >> 12; |
| |
| *csr = value; |
| mb(); |
| *csr; |
| } |
| |
| #ifdef NXM_MACHINE_CHECKS_ON_TSUNAMI |
| static long __init |
| tsunami_probe_read(volatile unsigned long *vaddr) |
| { |
| long dont_care, probe_result; |
| int cpu = smp_processor_id(); |
| int s = swpipl(IPL_MCHECK - 1); |
| |
| mcheck_taken(cpu) = 0; |
| mcheck_expected(cpu) = 1; |
| mb(); |
| dont_care = *vaddr; |
| draina(); |
| mcheck_expected(cpu) = 0; |
| probe_result = !mcheck_taken(cpu); |
| mcheck_taken(cpu) = 0; |
| setipl(s); |
| |
| printk("dont_care == 0x%lx\n", dont_care); |
| |
| return probe_result; |
| } |
| |
| static long __init |
| tsunami_probe_write(volatile unsigned long *vaddr) |
| { |
| long true_contents, probe_result = 1; |
| |
| TSUNAMI_cchip->misc.csr |= (1L << 28); /* clear NXM... */ |
| true_contents = *vaddr; |
| *vaddr = 0; |
| draina(); |
| if (TSUNAMI_cchip->misc.csr & (1L << 28)) { |
| int source = (TSUNAMI_cchip->misc.csr >> 29) & 7; |
| TSUNAMI_cchip->misc.csr |= (1L << 28); /* ...and unlock NXS. */ |
| probe_result = 0; |
| printk("tsunami_probe_write: unit %d at 0x%016lx\n", source, |
| (unsigned long)vaddr); |
| } |
| if (probe_result) |
| *vaddr = true_contents; |
| return probe_result; |
| } |
| #else |
| #define tsunami_probe_read(ADDR) 1 |
| #endif /* NXM_MACHINE_CHECKS_ON_TSUNAMI */ |
| |
| #define FN __FUNCTION__ |
| |
| static void __init |
| tsunami_init_one_pchip(tsunami_pchip *pchip, int index) |
| { |
| struct pci_controller *hose; |
| |
| if (tsunami_probe_read(&pchip->pctl.csr) == 0) |
| return; |
| |
| hose = alloc_pci_controller(); |
| if (index == 0) |
| pci_isa_hose = hose; |
| hose->io_space = alloc_resource(); |
| hose->mem_space = alloc_resource(); |
| |
| /* This is for userland consumption. For some reason, the 40-bit |
| PIO bias that we use in the kernel through KSEG didn't work for |
| the page table based user mappings. So make sure we get the |
| 43-bit PIO bias. */ |
| hose->sparse_mem_base = 0; |
| hose->sparse_io_base = 0; |
| hose->dense_mem_base |
| = (TSUNAMI_MEM(index) & 0xffffffffffL) | 0x80000000000L; |
| hose->dense_io_base |
| = (TSUNAMI_IO(index) & 0xffffffffffL) | 0x80000000000L; |
| |
| hose->config_space_base = TSUNAMI_CONF(index); |
| hose->index = index; |
| |
| hose->io_space->start = TSUNAMI_IO(index) - TSUNAMI_IO_BIAS; |
| hose->io_space->end = hose->io_space->start + TSUNAMI_IO_SPACE - 1; |
| hose->io_space->name = pci_io_names[index]; |
| hose->io_space->flags = IORESOURCE_IO; |
| |
| hose->mem_space->start = TSUNAMI_MEM(index) - TSUNAMI_MEM_BIAS; |
| hose->mem_space->end = hose->mem_space->start + 0xffffffff; |
| hose->mem_space->name = pci_mem_names[index]; |
| hose->mem_space->flags = IORESOURCE_MEM; |
| |
| if (request_resource(&ioport_resource, hose->io_space) < 0) |
| printk(KERN_ERR "Failed to request IO on hose %d\n", index); |
| if (request_resource(&iomem_resource, hose->mem_space) < 0) |
| printk(KERN_ERR "Failed to request MEM on hose %d\n", index); |
| |
| /* |
| * Save the existing PCI window translations. SRM will |
| * need them when we go to reboot. |
| */ |
| |
| saved_config[index].wsba[0] = pchip->wsba[0].csr; |
| saved_config[index].wsm[0] = pchip->wsm[0].csr; |
| saved_config[index].tba[0] = pchip->tba[0].csr; |
| |
| saved_config[index].wsba[1] = pchip->wsba[1].csr; |
| saved_config[index].wsm[1] = pchip->wsm[1].csr; |
| saved_config[index].tba[1] = pchip->tba[1].csr; |
| |
| saved_config[index].wsba[2] = pchip->wsba[2].csr; |
| saved_config[index].wsm[2] = pchip->wsm[2].csr; |
| saved_config[index].tba[2] = pchip->tba[2].csr; |
| |
| saved_config[index].wsba[3] = pchip->wsba[3].csr; |
| saved_config[index].wsm[3] = pchip->wsm[3].csr; |
| saved_config[index].tba[3] = pchip->tba[3].csr; |
| |
| /* |
| * Set up the PCI to main memory translation windows. |
| * |
| * Note: Window 3 is scatter-gather only |
| * |
| * Window 0 is scatter-gather 8MB at 8MB (for isa) |
| * Window 1 is scatter-gather (up to) 1GB at 1GB |
| * Window 2 is direct access 2GB at 2GB |
| * |
| * NOTE: we need the align_entry settings for Acer devices on ES40, |
| * specifically floppy and IDE when memory is larger than 2GB. |
| */ |
| hose->sg_isa = iommu_arena_new(hose, 0x00800000, 0x00800000, 0); |
| /* Initially set for 4 PTEs, but will be overridden to 64K for ISA. */ |
| hose->sg_isa->align_entry = 4; |
| |
| hose->sg_pci = iommu_arena_new(hose, 0x40000000, |
| size_for_memory(0x40000000), 0); |
| hose->sg_pci->align_entry = 4; /* Tsunami caches 4 PTEs at a time */ |
| |
| __direct_map_base = 0x80000000; |
| __direct_map_size = 0x80000000; |
| |
| pchip->wsba[0].csr = hose->sg_isa->dma_base | 3; |
| pchip->wsm[0].csr = (hose->sg_isa->size - 1) & 0xfff00000; |
| pchip->tba[0].csr = virt_to_phys(hose->sg_isa->ptes); |
| |
| pchip->wsba[1].csr = hose->sg_pci->dma_base | 3; |
| pchip->wsm[1].csr = (hose->sg_pci->size - 1) & 0xfff00000; |
| pchip->tba[1].csr = virt_to_phys(hose->sg_pci->ptes); |
| |
| pchip->wsba[2].csr = 0x80000000 | 1; |
| pchip->wsm[2].csr = (0x80000000 - 1) & 0xfff00000; |
| pchip->tba[2].csr = 0; |
| |
| pchip->wsba[3].csr = 0; |
| |
| /* Enable the Monster Window to make DAC pci64 possible. */ |
| pchip->pctl.csr |= pctl_m_mwin; |
| |
| tsunami_pci_tbi(hose, 0, -1); |
| } |
| |
| void __init |
| tsunami_init_arch(void) |
| { |
| #ifdef NXM_MACHINE_CHECKS_ON_TSUNAMI |
| unsigned long tmp; |
| |
| /* Ho hum.. init_arch is called before init_IRQ, but we need to be |
| able to handle machine checks. So install the handler now. */ |
| wrent(entInt, 0); |
| |
| /* NXMs just don't matter to Tsunami--unless they make it |
| choke completely. */ |
| tmp = (unsigned long)(TSUNAMI_cchip - 1); |
| printk("%s: probing bogus address: 0x%016lx\n", FN, bogus_addr); |
| printk("\tprobe %s\n", |
| tsunami_probe_write((unsigned long *)bogus_addr) |
| ? "succeeded" : "failed"); |
| #endif /* NXM_MACHINE_CHECKS_ON_TSUNAMI */ |
| |
| #if 0 |
| printk("%s: CChip registers:\n", FN); |
| printk("%s: CSR_CSC 0x%lx\n", FN, TSUNAMI_cchip->csc.csr); |
| printk("%s: CSR_MTR 0x%lx\n", FN, TSUNAMI_cchip.mtr.csr); |
| printk("%s: CSR_MISC 0x%lx\n", FN, TSUNAMI_cchip->misc.csr); |
| printk("%s: CSR_DIM0 0x%lx\n", FN, TSUNAMI_cchip->dim0.csr); |
| printk("%s: CSR_DIM1 0x%lx\n", FN, TSUNAMI_cchip->dim1.csr); |
| printk("%s: CSR_DIR0 0x%lx\n", FN, TSUNAMI_cchip->dir0.csr); |
| printk("%s: CSR_DIR1 0x%lx\n", FN, TSUNAMI_cchip->dir1.csr); |
| printk("%s: CSR_DRIR 0x%lx\n", FN, TSUNAMI_cchip->drir.csr); |
| |
| printk("%s: DChip registers:\n"); |
| printk("%s: CSR_DSC 0x%lx\n", FN, TSUNAMI_dchip->dsc.csr); |
| printk("%s: CSR_STR 0x%lx\n", FN, TSUNAMI_dchip->str.csr); |
| printk("%s: CSR_DREV 0x%lx\n", FN, TSUNAMI_dchip->drev.csr); |
| #endif |
| /* With multiple PCI busses, we play with I/O as physical addrs. */ |
| ioport_resource.end = ~0UL; |
| |
| /* Find how many hoses we have, and initialize them. TSUNAMI |
| and TYPHOON can have 2, but might only have 1 (DS10). */ |
| |
| tsunami_init_one_pchip(TSUNAMI_pchip0, 0); |
| if (TSUNAMI_cchip->csc.csr & 1L<<14) |
| tsunami_init_one_pchip(TSUNAMI_pchip1, 1); |
| } |
| |
| static void |
| tsunami_kill_one_pchip(tsunami_pchip *pchip, int index) |
| { |
| pchip->wsba[0].csr = saved_config[index].wsba[0]; |
| pchip->wsm[0].csr = saved_config[index].wsm[0]; |
| pchip->tba[0].csr = saved_config[index].tba[0]; |
| |
| pchip->wsba[1].csr = saved_config[index].wsba[1]; |
| pchip->wsm[1].csr = saved_config[index].wsm[1]; |
| pchip->tba[1].csr = saved_config[index].tba[1]; |
| |
| pchip->wsba[2].csr = saved_config[index].wsba[2]; |
| pchip->wsm[2].csr = saved_config[index].wsm[2]; |
| pchip->tba[2].csr = saved_config[index].tba[2]; |
| |
| pchip->wsba[3].csr = saved_config[index].wsba[3]; |
| pchip->wsm[3].csr = saved_config[index].wsm[3]; |
| pchip->tba[3].csr = saved_config[index].tba[3]; |
| } |
| |
| void |
| tsunami_kill_arch(int mode) |
| { |
| tsunami_kill_one_pchip(TSUNAMI_pchip0, 0); |
| if (TSUNAMI_cchip->csc.csr & 1L<<14) |
| tsunami_kill_one_pchip(TSUNAMI_pchip1, 1); |
| } |
| |
| static inline void |
| tsunami_pci_clr_err_1(tsunami_pchip *pchip) |
| { |
| pchip->perror.csr; |
| pchip->perror.csr = 0x040; |
| mb(); |
| pchip->perror.csr; |
| } |
| |
| static inline void |
| tsunami_pci_clr_err(void) |
| { |
| tsunami_pci_clr_err_1(TSUNAMI_pchip0); |
| |
| /* TSUNAMI and TYPHOON can have 2, but might only have 1 (DS10) */ |
| if (TSUNAMI_cchip->csc.csr & 1L<<14) |
| tsunami_pci_clr_err_1(TSUNAMI_pchip1); |
| } |
| |
| void |
| tsunami_machine_check(unsigned long vector, unsigned long la_ptr, |
| struct pt_regs * regs) |
| { |
| /* Clear error before any reporting. */ |
| mb(); |
| mb(); /* magic */ |
| draina(); |
| tsunami_pci_clr_err(); |
| wrmces(0x7); |
| mb(); |
| |
| process_mcheck_info(vector, la_ptr, regs, "TSUNAMI", |
| mcheck_expected(smp_processor_id())); |
| } |