| /* |
| * native hashtable management. |
| * |
| * SMP scalability work: |
| * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| #include <linux/spinlock.h> |
| #include <linux/bitops.h> |
| #include <linux/threads.h> |
| #include <linux/smp.h> |
| |
| #include <asm/abs_addr.h> |
| #include <asm/machdep.h> |
| #include <asm/mmu.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgtable.h> |
| #include <asm/tlbflush.h> |
| #include <asm/tlb.h> |
| #include <asm/cputable.h> |
| |
| #define HPTE_LOCK_BIT 3 |
| |
| static DEFINE_SPINLOCK(native_tlbie_lock); |
| |
| static inline void native_lock_hpte(hpte_t *hptep) |
| { |
| unsigned long *word = &hptep->v; |
| |
| while (1) { |
| if (!test_and_set_bit(HPTE_LOCK_BIT, word)) |
| break; |
| while(test_bit(HPTE_LOCK_BIT, word)) |
| cpu_relax(); |
| } |
| } |
| |
| static inline void native_unlock_hpte(hpte_t *hptep) |
| { |
| unsigned long *word = &hptep->v; |
| |
| asm volatile("lwsync":::"memory"); |
| clear_bit(HPTE_LOCK_BIT, word); |
| } |
| |
| long native_hpte_insert(unsigned long hpte_group, unsigned long va, |
| unsigned long prpn, unsigned long vflags, |
| unsigned long rflags) |
| { |
| unsigned long arpn = physRpn_to_absRpn(prpn); |
| hpte_t *hptep = htab_address + hpte_group; |
| unsigned long hpte_v, hpte_r; |
| int i; |
| |
| for (i = 0; i < HPTES_PER_GROUP; i++) { |
| if (! (hptep->v & HPTE_V_VALID)) { |
| /* retry with lock held */ |
| native_lock_hpte(hptep); |
| if (! (hptep->v & HPTE_V_VALID)) |
| break; |
| native_unlock_hpte(hptep); |
| } |
| |
| hptep++; |
| } |
| |
| if (i == HPTES_PER_GROUP) |
| return -1; |
| |
| hpte_v = (va >> 23) << HPTE_V_AVPN_SHIFT | vflags | HPTE_V_VALID; |
| if (vflags & HPTE_V_LARGE) |
| va &= ~(1UL << HPTE_V_AVPN_SHIFT); |
| hpte_r = (arpn << HPTE_R_RPN_SHIFT) | rflags; |
| |
| hptep->r = hpte_r; |
| /* Guarantee the second dword is visible before the valid bit */ |
| __asm__ __volatile__ ("eieio" : : : "memory"); |
| /* |
| * Now set the first dword including the valid bit |
| * NOTE: this also unlocks the hpte |
| */ |
| hptep->v = hpte_v; |
| |
| __asm__ __volatile__ ("ptesync" : : : "memory"); |
| |
| return i | (!!(vflags & HPTE_V_SECONDARY) << 3); |
| } |
| |
| static long native_hpte_remove(unsigned long hpte_group) |
| { |
| hpte_t *hptep; |
| int i; |
| int slot_offset; |
| unsigned long hpte_v; |
| |
| /* pick a random entry to start at */ |
| slot_offset = mftb() & 0x7; |
| |
| for (i = 0; i < HPTES_PER_GROUP; i++) { |
| hptep = htab_address + hpte_group + slot_offset; |
| hpte_v = hptep->v; |
| |
| if ((hpte_v & HPTE_V_VALID) && !(hpte_v & HPTE_V_BOLTED)) { |
| /* retry with lock held */ |
| native_lock_hpte(hptep); |
| hpte_v = hptep->v; |
| if ((hpte_v & HPTE_V_VALID) |
| && !(hpte_v & HPTE_V_BOLTED)) |
| break; |
| native_unlock_hpte(hptep); |
| } |
| |
| slot_offset++; |
| slot_offset &= 0x7; |
| } |
| |
| if (i == HPTES_PER_GROUP) |
| return -1; |
| |
| /* Invalidate the hpte. NOTE: this also unlocks it */ |
| hptep->v = 0; |
| |
| return i; |
| } |
| |
| static inline void set_pp_bit(unsigned long pp, hpte_t *addr) |
| { |
| unsigned long old; |
| unsigned long *p = &addr->r; |
| |
| __asm__ __volatile__( |
| "1: ldarx %0,0,%3\n\ |
| rldimi %0,%2,0,61\n\ |
| stdcx. %0,0,%3\n\ |
| bne 1b" |
| : "=&r" (old), "=m" (*p) |
| : "r" (pp), "r" (p), "m" (*p) |
| : "cc"); |
| } |
| |
| /* |
| * Only works on small pages. Yes its ugly to have to check each slot in |
| * the group but we only use this during bootup. |
| */ |
| static long native_hpte_find(unsigned long vpn) |
| { |
| hpte_t *hptep; |
| unsigned long hash; |
| unsigned long i, j; |
| long slot; |
| unsigned long hpte_v; |
| |
| hash = hpt_hash(vpn, 0); |
| |
| for (j = 0; j < 2; j++) { |
| slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; |
| for (i = 0; i < HPTES_PER_GROUP; i++) { |
| hptep = htab_address + slot; |
| hpte_v = hptep->v; |
| |
| if ((HPTE_V_AVPN_VAL(hpte_v) == (vpn >> 11)) |
| && (hpte_v & HPTE_V_VALID) |
| && ( !!(hpte_v & HPTE_V_SECONDARY) == j)) { |
| /* HPTE matches */ |
| if (j) |
| slot = -slot; |
| return slot; |
| } |
| ++slot; |
| } |
| hash = ~hash; |
| } |
| |
| return -1; |
| } |
| |
| static long native_hpte_updatepp(unsigned long slot, unsigned long newpp, |
| unsigned long va, int large, int local) |
| { |
| hpte_t *hptep = htab_address + slot; |
| unsigned long hpte_v; |
| unsigned long avpn = va >> 23; |
| int ret = 0; |
| |
| if (large) |
| avpn &= ~1; |
| |
| native_lock_hpte(hptep); |
| |
| hpte_v = hptep->v; |
| |
| /* Even if we miss, we need to invalidate the TLB */ |
| if ((HPTE_V_AVPN_VAL(hpte_v) != avpn) |
| || !(hpte_v & HPTE_V_VALID)) { |
| native_unlock_hpte(hptep); |
| ret = -1; |
| } else { |
| set_pp_bit(newpp, hptep); |
| native_unlock_hpte(hptep); |
| } |
| |
| /* Ensure it is out of the tlb too */ |
| if (cpu_has_feature(CPU_FTR_TLBIEL) && !large && local) { |
| tlbiel(va); |
| } else { |
| int lock_tlbie = !cpu_has_feature(CPU_FTR_LOCKLESS_TLBIE); |
| |
| if (lock_tlbie) |
| spin_lock(&native_tlbie_lock); |
| tlbie(va, large); |
| if (lock_tlbie) |
| spin_unlock(&native_tlbie_lock); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Update the page protection bits. Intended to be used to create |
| * guard pages for kernel data structures on pages which are bolted |
| * in the HPT. Assumes pages being operated on will not be stolen. |
| * Does not work on large pages. |
| * |
| * No need to lock here because we should be the only user. |
| */ |
| static void native_hpte_updateboltedpp(unsigned long newpp, unsigned long ea) |
| { |
| unsigned long vsid, va, vpn, flags = 0; |
| long slot; |
| hpte_t *hptep; |
| int lock_tlbie = !cpu_has_feature(CPU_FTR_LOCKLESS_TLBIE); |
| |
| vsid = get_kernel_vsid(ea); |
| va = (vsid << 28) | (ea & 0x0fffffff); |
| vpn = va >> PAGE_SHIFT; |
| |
| slot = native_hpte_find(vpn); |
| if (slot == -1) |
| panic("could not find page to bolt\n"); |
| hptep = htab_address + slot; |
| |
| set_pp_bit(newpp, hptep); |
| |
| /* Ensure it is out of the tlb too */ |
| if (lock_tlbie) |
| spin_lock_irqsave(&native_tlbie_lock, flags); |
| tlbie(va, 0); |
| if (lock_tlbie) |
| spin_unlock_irqrestore(&native_tlbie_lock, flags); |
| } |
| |
| static void native_hpte_invalidate(unsigned long slot, unsigned long va, |
| int large, int local) |
| { |
| hpte_t *hptep = htab_address + slot; |
| unsigned long hpte_v; |
| unsigned long avpn = va >> 23; |
| unsigned long flags; |
| int lock_tlbie = !cpu_has_feature(CPU_FTR_LOCKLESS_TLBIE); |
| |
| if (large) |
| avpn &= ~1; |
| |
| local_irq_save(flags); |
| native_lock_hpte(hptep); |
| |
| hpte_v = hptep->v; |
| |
| /* Even if we miss, we need to invalidate the TLB */ |
| if ((HPTE_V_AVPN_VAL(hpte_v) != avpn) |
| || !(hpte_v & HPTE_V_VALID)) { |
| native_unlock_hpte(hptep); |
| } else { |
| /* Invalidate the hpte. NOTE: this also unlocks it */ |
| hptep->v = 0; |
| } |
| |
| /* Invalidate the tlb */ |
| if (cpu_has_feature(CPU_FTR_TLBIEL) && !large && local) { |
| tlbiel(va); |
| } else { |
| if (lock_tlbie) |
| spin_lock(&native_tlbie_lock); |
| tlbie(va, large); |
| if (lock_tlbie) |
| spin_unlock(&native_tlbie_lock); |
| } |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * clear all mappings on kexec. All cpus are in real mode (or they will |
| * be when they isi), and we are the only one left. We rely on our kernel |
| * mapping being 0xC0's and the hardware ignoring those two real bits. |
| * |
| * TODO: add batching support when enabled. remember, no dynamic memory here, |
| * athough there is the control page available... |
| */ |
| static void native_hpte_clear(void) |
| { |
| unsigned long slot, slots, flags; |
| hpte_t *hptep = htab_address; |
| unsigned long hpte_v; |
| unsigned long pteg_count; |
| |
| pteg_count = htab_hash_mask + 1; |
| |
| local_irq_save(flags); |
| |
| /* we take the tlbie lock and hold it. Some hardware will |
| * deadlock if we try to tlbie from two processors at once. |
| */ |
| spin_lock(&native_tlbie_lock); |
| |
| slots = pteg_count * HPTES_PER_GROUP; |
| |
| for (slot = 0; slot < slots; slot++, hptep++) { |
| /* |
| * we could lock the pte here, but we are the only cpu |
| * running, right? and for crash dump, we probably |
| * don't want to wait for a maybe bad cpu. |
| */ |
| hpte_v = hptep->v; |
| |
| if (hpte_v & HPTE_V_VALID) { |
| hptep->v = 0; |
| tlbie(slot2va(hpte_v, slot), hpte_v & HPTE_V_LARGE); |
| } |
| } |
| |
| spin_unlock(&native_tlbie_lock); |
| local_irq_restore(flags); |
| } |
| |
| static void native_flush_hash_range(unsigned long context, |
| unsigned long number, int local) |
| { |
| unsigned long vsid, vpn, va, hash, secondary, slot, flags, avpn; |
| int i, j; |
| hpte_t *hptep; |
| unsigned long hpte_v; |
| struct ppc64_tlb_batch *batch = &__get_cpu_var(ppc64_tlb_batch); |
| |
| /* XXX fix for large ptes */ |
| unsigned long large = 0; |
| |
| local_irq_save(flags); |
| |
| j = 0; |
| for (i = 0; i < number; i++) { |
| if (batch->addr[i] < KERNELBASE) |
| vsid = get_vsid(context, batch->addr[i]); |
| else |
| vsid = get_kernel_vsid(batch->addr[i]); |
| |
| va = (vsid << 28) | (batch->addr[i] & 0x0fffffff); |
| batch->vaddr[j] = va; |
| if (large) |
| vpn = va >> HPAGE_SHIFT; |
| else |
| vpn = va >> PAGE_SHIFT; |
| hash = hpt_hash(vpn, large); |
| secondary = (pte_val(batch->pte[i]) & _PAGE_SECONDARY) >> 15; |
| if (secondary) |
| hash = ~hash; |
| slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; |
| slot += (pte_val(batch->pte[i]) & _PAGE_GROUP_IX) >> 12; |
| |
| hptep = htab_address + slot; |
| |
| avpn = va >> 23; |
| if (large) |
| avpn &= ~0x1UL; |
| |
| native_lock_hpte(hptep); |
| |
| hpte_v = hptep->v; |
| |
| /* Even if we miss, we need to invalidate the TLB */ |
| if ((HPTE_V_AVPN_VAL(hpte_v) != avpn) |
| || !(hpte_v & HPTE_V_VALID)) { |
| native_unlock_hpte(hptep); |
| } else { |
| /* Invalidate the hpte. NOTE: this also unlocks it */ |
| hptep->v = 0; |
| } |
| |
| j++; |
| } |
| |
| if (cpu_has_feature(CPU_FTR_TLBIEL) && !large && local) { |
| asm volatile("ptesync":::"memory"); |
| |
| for (i = 0; i < j; i++) |
| __tlbiel(batch->vaddr[i]); |
| |
| asm volatile("ptesync":::"memory"); |
| } else { |
| int lock_tlbie = !cpu_has_feature(CPU_FTR_LOCKLESS_TLBIE); |
| |
| if (lock_tlbie) |
| spin_lock(&native_tlbie_lock); |
| |
| asm volatile("ptesync":::"memory"); |
| |
| for (i = 0; i < j; i++) |
| __tlbie(batch->vaddr[i], 0); |
| |
| asm volatile("eieio; tlbsync; ptesync":::"memory"); |
| |
| if (lock_tlbie) |
| spin_unlock(&native_tlbie_lock); |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| #ifdef CONFIG_PPC_PSERIES |
| /* Disable TLB batching on nighthawk */ |
| static inline int tlb_batching_enabled(void) |
| { |
| struct device_node *root = of_find_node_by_path("/"); |
| int enabled = 1; |
| |
| if (root) { |
| const char *model = get_property(root, "model", NULL); |
| if (model && !strcmp(model, "IBM,9076-N81")) |
| enabled = 0; |
| of_node_put(root); |
| } |
| |
| return enabled; |
| } |
| #else |
| static inline int tlb_batching_enabled(void) |
| { |
| return 1; |
| } |
| #endif |
| |
| void hpte_init_native(void) |
| { |
| ppc_md.hpte_invalidate = native_hpte_invalidate; |
| ppc_md.hpte_updatepp = native_hpte_updatepp; |
| ppc_md.hpte_updateboltedpp = native_hpte_updateboltedpp; |
| ppc_md.hpte_insert = native_hpte_insert; |
| ppc_md.hpte_remove = native_hpte_remove; |
| ppc_md.hpte_clear_all = native_hpte_clear; |
| if (tlb_batching_enabled()) |
| ppc_md.flush_hash_range = native_flush_hash_range; |
| htab_finish_init(); |
| } |