|  | /* | 
|  | * printk_safe.c - Safe printk for printk-deadlock-prone contexts | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version 2 | 
|  | * of the License, or (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include <linux/preempt.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/debug_locks.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/irq_work.h> | 
|  | #include <linux/printk.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | /* | 
|  | * printk() could not take logbuf_lock in NMI context. Instead, | 
|  | * it uses an alternative implementation that temporary stores | 
|  | * the strings into a per-CPU buffer. The content of the buffer | 
|  | * is later flushed into the main ring buffer via IRQ work. | 
|  | * | 
|  | * The alternative implementation is chosen transparently | 
|  | * by examinig current printk() context mask stored in @printk_context | 
|  | * per-CPU variable. | 
|  | * | 
|  | * The implementation allows to flush the strings also from another CPU. | 
|  | * There are situations when we want to make sure that all buffers | 
|  | * were handled or when IRQs are blocked. | 
|  | */ | 
|  | static int printk_safe_irq_ready; | 
|  |  | 
|  | #define SAFE_LOG_BUF_LEN ((1 << CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT) -	\ | 
|  | sizeof(atomic_t) -			\ | 
|  | sizeof(atomic_t) -			\ | 
|  | sizeof(struct irq_work)) | 
|  |  | 
|  | struct printk_safe_seq_buf { | 
|  | atomic_t		len;	/* length of written data */ | 
|  | atomic_t		message_lost; | 
|  | struct irq_work		work;	/* IRQ work that flushes the buffer */ | 
|  | unsigned char		buffer[SAFE_LOG_BUF_LEN]; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct printk_safe_seq_buf, safe_print_seq); | 
|  | static DEFINE_PER_CPU(int, printk_context); | 
|  |  | 
|  | #ifdef CONFIG_PRINTK_NMI | 
|  | static DEFINE_PER_CPU(struct printk_safe_seq_buf, nmi_print_seq); | 
|  | #endif | 
|  |  | 
|  | /* Get flushed in a more safe context. */ | 
|  | static void queue_flush_work(struct printk_safe_seq_buf *s) | 
|  | { | 
|  | if (printk_safe_irq_ready) { | 
|  | /* Make sure that IRQ work is really initialized. */ | 
|  | smp_rmb(); | 
|  | irq_work_queue(&s->work); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a message to per-CPU context-dependent buffer. NMI and printk-safe | 
|  | * have dedicated buffers, because otherwise printk-safe preempted by | 
|  | * NMI-printk would have overwritten the NMI messages. | 
|  | * | 
|  | * The messages are fushed from irq work (or from panic()), possibly, | 
|  | * from other CPU, concurrently with printk_safe_log_store(). Should this | 
|  | * happen, printk_safe_log_store() will notice the buffer->len mismatch | 
|  | * and repeat the write. | 
|  | */ | 
|  | static __printf(2, 0) int printk_safe_log_store(struct printk_safe_seq_buf *s, | 
|  | const char *fmt, va_list args) | 
|  | { | 
|  | int add; | 
|  | size_t len; | 
|  |  | 
|  | again: | 
|  | len = atomic_read(&s->len); | 
|  |  | 
|  | /* The trailing '\0' is not counted into len. */ | 
|  | if (len >= sizeof(s->buffer) - 1) { | 
|  | atomic_inc(&s->message_lost); | 
|  | queue_flush_work(s); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure that all old data have been read before the buffer | 
|  | * was reset. This is not needed when we just append data. | 
|  | */ | 
|  | if (!len) | 
|  | smp_rmb(); | 
|  |  | 
|  | add = vscnprintf(s->buffer + len, sizeof(s->buffer) - len, fmt, args); | 
|  | if (!add) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Do it once again if the buffer has been flushed in the meantime. | 
|  | * Note that atomic_cmpxchg() is an implicit memory barrier that | 
|  | * makes sure that the data were written before updating s->len. | 
|  | */ | 
|  | if (atomic_cmpxchg(&s->len, len, len + add) != len) | 
|  | goto again; | 
|  |  | 
|  | queue_flush_work(s); | 
|  | return add; | 
|  | } | 
|  |  | 
|  | static inline void printk_safe_flush_line(const char *text, int len) | 
|  | { | 
|  | /* | 
|  | * Avoid any console drivers calls from here, because we may be | 
|  | * in NMI or printk_safe context (when in panic). The messages | 
|  | * must go only into the ring buffer at this stage.  Consoles will | 
|  | * get explicitly called later when a crashdump is not generated. | 
|  | */ | 
|  | printk_deferred("%.*s", len, text); | 
|  | } | 
|  |  | 
|  | /* printk part of the temporary buffer line by line */ | 
|  | static int printk_safe_flush_buffer(const char *start, size_t len) | 
|  | { | 
|  | const char *c, *end; | 
|  | bool header; | 
|  |  | 
|  | c = start; | 
|  | end = start + len; | 
|  | header = true; | 
|  |  | 
|  | /* Print line by line. */ | 
|  | while (c < end) { | 
|  | if (*c == '\n') { | 
|  | printk_safe_flush_line(start, c - start + 1); | 
|  | start = ++c; | 
|  | header = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Handle continuous lines or missing new line. */ | 
|  | if ((c + 1 < end) && printk_get_level(c)) { | 
|  | if (header) { | 
|  | c = printk_skip_level(c); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | printk_safe_flush_line(start, c - start); | 
|  | start = c++; | 
|  | header = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | header = false; | 
|  | c++; | 
|  | } | 
|  |  | 
|  | /* Check if there was a partial line. Ignore pure header. */ | 
|  | if (start < end && !header) { | 
|  | static const char newline[] = KERN_CONT "\n"; | 
|  |  | 
|  | printk_safe_flush_line(start, end - start); | 
|  | printk_safe_flush_line(newline, strlen(newline)); | 
|  | } | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  | static void report_message_lost(struct printk_safe_seq_buf *s) | 
|  | { | 
|  | int lost = atomic_xchg(&s->message_lost, 0); | 
|  |  | 
|  | if (lost) | 
|  | printk_deferred("Lost %d message(s)!\n", lost); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush data from the associated per-CPU buffer. The function | 
|  | * can be called either via IRQ work or independently. | 
|  | */ | 
|  | static void __printk_safe_flush(struct irq_work *work) | 
|  | { | 
|  | static raw_spinlock_t read_lock = | 
|  | __RAW_SPIN_LOCK_INITIALIZER(read_lock); | 
|  | struct printk_safe_seq_buf *s = | 
|  | container_of(work, struct printk_safe_seq_buf, work); | 
|  | unsigned long flags; | 
|  | size_t len; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * The lock has two functions. First, one reader has to flush all | 
|  | * available message to make the lockless synchronization with | 
|  | * writers easier. Second, we do not want to mix messages from | 
|  | * different CPUs. This is especially important when printing | 
|  | * a backtrace. | 
|  | */ | 
|  | raw_spin_lock_irqsave(&read_lock, flags); | 
|  |  | 
|  | i = 0; | 
|  | more: | 
|  | len = atomic_read(&s->len); | 
|  |  | 
|  | /* | 
|  | * This is just a paranoid check that nobody has manipulated | 
|  | * the buffer an unexpected way. If we printed something then | 
|  | * @len must only increase. Also it should never overflow the | 
|  | * buffer size. | 
|  | */ | 
|  | if ((i && i >= len) || len > sizeof(s->buffer)) { | 
|  | const char *msg = "printk_safe_flush: internal error\n"; | 
|  |  | 
|  | printk_safe_flush_line(msg, strlen(msg)); | 
|  | len = 0; | 
|  | } | 
|  |  | 
|  | if (!len) | 
|  | goto out; /* Someone else has already flushed the buffer. */ | 
|  |  | 
|  | /* Make sure that data has been written up to the @len */ | 
|  | smp_rmb(); | 
|  | i += printk_safe_flush_buffer(s->buffer + i, len - i); | 
|  |  | 
|  | /* | 
|  | * Check that nothing has got added in the meantime and truncate | 
|  | * the buffer. Note that atomic_cmpxchg() is an implicit memory | 
|  | * barrier that makes sure that the data were copied before | 
|  | * updating s->len. | 
|  | */ | 
|  | if (atomic_cmpxchg(&s->len, len, 0) != len) | 
|  | goto more; | 
|  |  | 
|  | out: | 
|  | report_message_lost(s); | 
|  | raw_spin_unlock_irqrestore(&read_lock, flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * printk_safe_flush - flush all per-cpu nmi buffers. | 
|  | * | 
|  | * The buffers are flushed automatically via IRQ work. This function | 
|  | * is useful only when someone wants to be sure that all buffers have | 
|  | * been flushed at some point. | 
|  | */ | 
|  | void printk_safe_flush(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | #ifdef CONFIG_PRINTK_NMI | 
|  | __printk_safe_flush(&per_cpu(nmi_print_seq, cpu).work); | 
|  | #endif | 
|  | __printk_safe_flush(&per_cpu(safe_print_seq, cpu).work); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * printk_safe_flush_on_panic - flush all per-cpu nmi buffers when the system | 
|  | *	goes down. | 
|  | * | 
|  | * Similar to printk_safe_flush() but it can be called even in NMI context when | 
|  | * the system goes down. It does the best effort to get NMI messages into | 
|  | * the main ring buffer. | 
|  | * | 
|  | * Note that it could try harder when there is only one CPU online. | 
|  | */ | 
|  | void printk_safe_flush_on_panic(void) | 
|  | { | 
|  | /* | 
|  | * Make sure that we could access the main ring buffer. | 
|  | * Do not risk a double release when more CPUs are up. | 
|  | */ | 
|  | if (in_nmi() && raw_spin_is_locked(&logbuf_lock)) { | 
|  | if (num_online_cpus() > 1) | 
|  | return; | 
|  |  | 
|  | debug_locks_off(); | 
|  | raw_spin_lock_init(&logbuf_lock); | 
|  | } | 
|  |  | 
|  | printk_safe_flush(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PRINTK_NMI | 
|  | /* | 
|  | * Safe printk() for NMI context. It uses a per-CPU buffer to | 
|  | * store the message. NMIs are not nested, so there is always only | 
|  | * one writer running. But the buffer might get flushed from another | 
|  | * CPU, so we need to be careful. | 
|  | */ | 
|  | static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args) | 
|  | { | 
|  | struct printk_safe_seq_buf *s = this_cpu_ptr(&nmi_print_seq); | 
|  |  | 
|  | return printk_safe_log_store(s, fmt, args); | 
|  | } | 
|  |  | 
|  | void printk_nmi_enter(void) | 
|  | { | 
|  | /* | 
|  | * The size of the extra per-CPU buffer is limited. Use it only when | 
|  | * the main one is locked. If this CPU is not in the safe context, | 
|  | * the lock must be taken on another CPU and we could wait for it. | 
|  | */ | 
|  | if ((this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK) && | 
|  | raw_spin_is_locked(&logbuf_lock)) { | 
|  | this_cpu_or(printk_context, PRINTK_NMI_CONTEXT_MASK); | 
|  | } else { | 
|  | this_cpu_or(printk_context, PRINTK_NMI_DEFERRED_CONTEXT_MASK); | 
|  | } | 
|  | } | 
|  |  | 
|  | void printk_nmi_exit(void) | 
|  | { | 
|  | this_cpu_and(printk_context, | 
|  | ~(PRINTK_NMI_CONTEXT_MASK | | 
|  | PRINTK_NMI_DEFERRED_CONTEXT_MASK)); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PRINTK_NMI */ | 
|  |  | 
|  | /* | 
|  | * Lock-less printk(), to avoid deadlocks should the printk() recurse | 
|  | * into itself. It uses a per-CPU buffer to store the message, just like | 
|  | * NMI. | 
|  | */ | 
|  | static __printf(1, 0) int vprintk_safe(const char *fmt, va_list args) | 
|  | { | 
|  | struct printk_safe_seq_buf *s = this_cpu_ptr(&safe_print_seq); | 
|  |  | 
|  | return printk_safe_log_store(s, fmt, args); | 
|  | } | 
|  |  | 
|  | /* Can be preempted by NMI. */ | 
|  | void __printk_safe_enter(void) | 
|  | { | 
|  | this_cpu_inc(printk_context); | 
|  | } | 
|  |  | 
|  | /* Can be preempted by NMI. */ | 
|  | void __printk_safe_exit(void) | 
|  | { | 
|  | this_cpu_dec(printk_context); | 
|  | } | 
|  |  | 
|  | __printf(1, 0) int vprintk_func(const char *fmt, va_list args) | 
|  | { | 
|  | /* Use extra buffer in NMI when logbuf_lock is taken or in safe mode. */ | 
|  | if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK) | 
|  | return vprintk_nmi(fmt, args); | 
|  |  | 
|  | /* Use extra buffer to prevent a recursion deadlock in safe mode. */ | 
|  | if (this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK) | 
|  | return vprintk_safe(fmt, args); | 
|  |  | 
|  | /* | 
|  | * Use the main logbuf when logbuf_lock is available in NMI. | 
|  | * But avoid calling console drivers that might have their own locks. | 
|  | */ | 
|  | if (this_cpu_read(printk_context) & PRINTK_NMI_DEFERRED_CONTEXT_MASK) | 
|  | return vprintk_deferred(fmt, args); | 
|  |  | 
|  | /* No obstacles. */ | 
|  | return vprintk_default(fmt, args); | 
|  | } | 
|  |  | 
|  | void __init printk_safe_init(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct printk_safe_seq_buf *s; | 
|  |  | 
|  | s = &per_cpu(safe_print_seq, cpu); | 
|  | init_irq_work(&s->work, __printk_safe_flush); | 
|  |  | 
|  | #ifdef CONFIG_PRINTK_NMI | 
|  | s = &per_cpu(nmi_print_seq, cpu); | 
|  | init_irq_work(&s->work, __printk_safe_flush); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Make sure that IRQ works are initialized before enabling. */ | 
|  | smp_wmb(); | 
|  | printk_safe_irq_ready = 1; | 
|  |  | 
|  | /* Flush pending messages that did not have scheduled IRQ works. */ | 
|  | printk_safe_flush(); | 
|  | } |