| /* |
| * Copyright © 2006-2011 Intel Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Authors: |
| * Eric Anholt <eric@anholt.net> |
| */ |
| |
| #include <linux/i2c.h> |
| #include <linux/pm_runtime.h> |
| |
| #include <drm/drmP.h> |
| #include "framebuffer.h" |
| #include "psb_drv.h" |
| #include "psb_intel_drv.h" |
| #include "psb_intel_reg.h" |
| #include "psb_intel_display.h" |
| #include "power.h" |
| #include "cdv_device.h" |
| |
| |
| struct cdv_intel_range_t { |
| int min, max; |
| }; |
| |
| struct cdv_intel_p2_t { |
| int dot_limit; |
| int p2_slow, p2_fast; |
| }; |
| |
| struct cdv_intel_clock_t { |
| /* given values */ |
| int n; |
| int m1, m2; |
| int p1, p2; |
| /* derived values */ |
| int dot; |
| int vco; |
| int m; |
| int p; |
| }; |
| |
| #define INTEL_P2_NUM 2 |
| |
| struct cdv_intel_limit_t { |
| struct cdv_intel_range_t dot, vco, n, m, m1, m2, p, p1; |
| struct cdv_intel_p2_t p2; |
| }; |
| |
| #define CDV_LIMIT_SINGLE_LVDS_96 0 |
| #define CDV_LIMIT_SINGLE_LVDS_100 1 |
| #define CDV_LIMIT_DAC_HDMI_27 2 |
| #define CDV_LIMIT_DAC_HDMI_96 3 |
| |
| static const struct cdv_intel_limit_t cdv_intel_limits[] = { |
| { /* CDV_SIGNLE_LVDS_96MHz */ |
| .dot = {.min = 20000, .max = 115500}, |
| .vco = {.min = 1800000, .max = 3600000}, |
| .n = {.min = 2, .max = 6}, |
| .m = {.min = 60, .max = 160}, |
| .m1 = {.min = 0, .max = 0}, |
| .m2 = {.min = 58, .max = 158}, |
| .p = {.min = 28, .max = 140}, |
| .p1 = {.min = 2, .max = 10}, |
| .p2 = {.dot_limit = 200000, |
| .p2_slow = 14, .p2_fast = 14}, |
| }, |
| { /* CDV_SINGLE_LVDS_100MHz */ |
| .dot = {.min = 20000, .max = 115500}, |
| .vco = {.min = 1800000, .max = 3600000}, |
| .n = {.min = 2, .max = 6}, |
| .m = {.min = 60, .max = 160}, |
| .m1 = {.min = 0, .max = 0}, |
| .m2 = {.min = 58, .max = 158}, |
| .p = {.min = 28, .max = 140}, |
| .p1 = {.min = 2, .max = 10}, |
| /* The single-channel range is 25-112Mhz, and dual-channel |
| * is 80-224Mhz. Prefer single channel as much as possible. |
| */ |
| .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14}, |
| }, |
| { /* CDV_DAC_HDMI_27MHz */ |
| .dot = {.min = 20000, .max = 400000}, |
| .vco = {.min = 1809000, .max = 3564000}, |
| .n = {.min = 1, .max = 1}, |
| .m = {.min = 67, .max = 132}, |
| .m1 = {.min = 0, .max = 0}, |
| .m2 = {.min = 65, .max = 130}, |
| .p = {.min = 5, .max = 90}, |
| .p1 = {.min = 1, .max = 9}, |
| .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5}, |
| }, |
| { /* CDV_DAC_HDMI_96MHz */ |
| .dot = {.min = 20000, .max = 400000}, |
| .vco = {.min = 1800000, .max = 3600000}, |
| .n = {.min = 2, .max = 6}, |
| .m = {.min = 60, .max = 160}, |
| .m1 = {.min = 0, .max = 0}, |
| .m2 = {.min = 58, .max = 158}, |
| .p = {.min = 5, .max = 100}, |
| .p1 = {.min = 1, .max = 10}, |
| .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5}, |
| }, |
| }; |
| |
| #define _wait_for(COND, MS, W) ({ \ |
| unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \ |
| int ret__ = 0; \ |
| while (!(COND)) { \ |
| if (time_after(jiffies, timeout__)) { \ |
| ret__ = -ETIMEDOUT; \ |
| break; \ |
| } \ |
| if (W && !in_dbg_master()) \ |
| msleep(W); \ |
| } \ |
| ret__; \ |
| }) |
| |
| #define wait_for(COND, MS) _wait_for(COND, MS, 1) |
| |
| |
| static int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val) |
| { |
| int ret; |
| |
| ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); |
| if (ret) { |
| DRM_ERROR("timeout waiting for SB to idle before read\n"); |
| return ret; |
| } |
| |
| REG_WRITE(SB_ADDR, reg); |
| REG_WRITE(SB_PCKT, |
| SET_FIELD(SB_OPCODE_READ, SB_OPCODE) | |
| SET_FIELD(SB_DEST_DPLL, SB_DEST) | |
| SET_FIELD(0xf, SB_BYTE_ENABLE)); |
| |
| ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); |
| if (ret) { |
| DRM_ERROR("timeout waiting for SB to idle after read\n"); |
| return ret; |
| } |
| |
| *val = REG_READ(SB_DATA); |
| |
| return 0; |
| } |
| |
| static int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val) |
| { |
| int ret; |
| static bool dpio_debug = true; |
| u32 temp; |
| |
| if (dpio_debug) { |
| if (cdv_sb_read(dev, reg, &temp) == 0) |
| DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp); |
| DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val); |
| } |
| |
| ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); |
| if (ret) { |
| DRM_ERROR("timeout waiting for SB to idle before write\n"); |
| return ret; |
| } |
| |
| REG_WRITE(SB_ADDR, reg); |
| REG_WRITE(SB_DATA, val); |
| REG_WRITE(SB_PCKT, |
| SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) | |
| SET_FIELD(SB_DEST_DPLL, SB_DEST) | |
| SET_FIELD(0xf, SB_BYTE_ENABLE)); |
| |
| ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000); |
| if (ret) { |
| DRM_ERROR("timeout waiting for SB to idle after write\n"); |
| return ret; |
| } |
| |
| if (dpio_debug) { |
| if (cdv_sb_read(dev, reg, &temp) == 0) |
| DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp); |
| } |
| |
| return 0; |
| } |
| |
| /* Reset the DPIO configuration register. The BIOS does this at every |
| * mode set. |
| */ |
| static void cdv_sb_reset(struct drm_device *dev) |
| { |
| |
| REG_WRITE(DPIO_CFG, 0); |
| REG_READ(DPIO_CFG); |
| REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N); |
| } |
| |
| /* Unlike most Intel display engines, on Cedarview the DPLL registers |
| * are behind this sideband bus. They must be programmed while the |
| * DPLL reference clock is on in the DPLL control register, but before |
| * the DPLL is enabled in the DPLL control register. |
| */ |
| static int |
| cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc, |
| struct cdv_intel_clock_t *clock) |
| { |
| struct psb_intel_crtc *psb_crtc = |
| to_psb_intel_crtc(crtc); |
| int pipe = psb_crtc->pipe; |
| u32 m, n_vco, p; |
| int ret = 0; |
| int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; |
| u32 ref_value; |
| |
| cdv_sb_reset(dev); |
| |
| if ((REG_READ(dpll_reg) & DPLL_SYNCLOCK_ENABLE) == 0) { |
| DRM_ERROR("Attempting to set DPLL with refclk disabled\n"); |
| return -EBUSY; |
| } |
| |
| /* Follow the BIOS and write the REF/SFR Register. Hardcoded value */ |
| ref_value = 0x68A701; |
| |
| cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value); |
| |
| /* We don't know what the other fields of these regs are, so |
| * leave them in place. |
| */ |
| ret = cdv_sb_read(dev, SB_M(pipe), &m); |
| if (ret) |
| return ret; |
| m &= ~SB_M_DIVIDER_MASK; |
| m |= ((clock->m2) << SB_M_DIVIDER_SHIFT); |
| ret = cdv_sb_write(dev, SB_M(pipe), m); |
| if (ret) |
| return ret; |
| |
| ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco); |
| if (ret) |
| return ret; |
| |
| /* Follow the BIOS to program the N_DIVIDER REG */ |
| n_vco &= 0xFFFF; |
| n_vco |= 0x107; |
| n_vco &= ~(SB_N_VCO_SEL_MASK | |
| SB_N_DIVIDER_MASK | |
| SB_N_CB_TUNE_MASK); |
| |
| n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT); |
| |
| if (clock->vco < 2250000) { |
| n_vco |= (2 << SB_N_CB_TUNE_SHIFT); |
| n_vco |= (0 << SB_N_VCO_SEL_SHIFT); |
| } else if (clock->vco < 2750000) { |
| n_vco |= (1 << SB_N_CB_TUNE_SHIFT); |
| n_vco |= (1 << SB_N_VCO_SEL_SHIFT); |
| } else if (clock->vco < 3300000) { |
| n_vco |= (0 << SB_N_CB_TUNE_SHIFT); |
| n_vco |= (2 << SB_N_VCO_SEL_SHIFT); |
| } else { |
| n_vco |= (0 << SB_N_CB_TUNE_SHIFT); |
| n_vco |= (3 << SB_N_VCO_SEL_SHIFT); |
| } |
| |
| ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco); |
| if (ret) |
| return ret; |
| |
| ret = cdv_sb_read(dev, SB_P(pipe), &p); |
| if (ret) |
| return ret; |
| p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK); |
| p |= SET_FIELD(clock->p1, SB_P1_DIVIDER); |
| switch (clock->p2) { |
| case 5: |
| p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER); |
| break; |
| case 10: |
| p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER); |
| break; |
| case 14: |
| p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER); |
| break; |
| case 7: |
| p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER); |
| break; |
| default: |
| DRM_ERROR("Bad P2 clock: %d\n", clock->p2); |
| return -EINVAL; |
| } |
| ret = cdv_sb_write(dev, SB_P(pipe), p); |
| if (ret) |
| return ret; |
| |
| /* always Program the Lane Register for the Pipe A*/ |
| if (pipe == 0) { |
| /* Program the Lane0/1 for HDMI B */ |
| u32 lane_reg, lane_value; |
| |
| lane_reg = PSB_LANE0; |
| cdv_sb_read(dev, lane_reg, &lane_value); |
| lane_value &= ~(LANE_PLL_MASK); |
| lane_value |= LANE_PLL_ENABLE; |
| cdv_sb_write(dev, lane_reg, lane_value); |
| |
| lane_reg = PSB_LANE1; |
| cdv_sb_read(dev, lane_reg, &lane_value); |
| lane_value &= ~(LANE_PLL_MASK); |
| lane_value |= LANE_PLL_ENABLE; |
| cdv_sb_write(dev, lane_reg, lane_value); |
| |
| /* Program the Lane2/3 for HDMI C */ |
| lane_reg = PSB_LANE2; |
| cdv_sb_read(dev, lane_reg, &lane_value); |
| lane_value &= ~(LANE_PLL_MASK); |
| lane_value |= LANE_PLL_ENABLE; |
| cdv_sb_write(dev, lane_reg, lane_value); |
| |
| lane_reg = PSB_LANE3; |
| cdv_sb_read(dev, lane_reg, &lane_value); |
| lane_value &= ~(LANE_PLL_MASK); |
| lane_value |= LANE_PLL_ENABLE; |
| cdv_sb_write(dev, lane_reg, lane_value); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Returns whether any encoder on the specified pipe is of the specified type |
| */ |
| static bool cdv_intel_pipe_has_type(struct drm_crtc *crtc, int type) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_mode_config *mode_config = &dev->mode_config; |
| struct drm_connector *l_entry; |
| |
| list_for_each_entry(l_entry, &mode_config->connector_list, head) { |
| if (l_entry->encoder && l_entry->encoder->crtc == crtc) { |
| struct psb_intel_encoder *psb_intel_encoder = |
| psb_intel_attached_encoder(l_entry); |
| if (psb_intel_encoder->type == type) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static const struct cdv_intel_limit_t *cdv_intel_limit(struct drm_crtc *crtc, |
| int refclk) |
| { |
| const struct cdv_intel_limit_t *limit; |
| if (cdv_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { |
| /* |
| * Now only single-channel LVDS is supported on CDV. If it is |
| * incorrect, please add the dual-channel LVDS. |
| */ |
| if (refclk == 96000) |
| limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96]; |
| else |
| limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100]; |
| } else { |
| if (refclk == 27000) |
| limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27]; |
| else |
| limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96]; |
| } |
| return limit; |
| } |
| |
| /* m1 is reserved as 0 in CDV, n is a ring counter */ |
| static void cdv_intel_clock(struct drm_device *dev, |
| int refclk, struct cdv_intel_clock_t *clock) |
| { |
| clock->m = clock->m2 + 2; |
| clock->p = clock->p1 * clock->p2; |
| clock->vco = (refclk * clock->m) / clock->n; |
| clock->dot = clock->vco / clock->p; |
| } |
| |
| |
| #define INTELPllInvalid(s) { /* ErrorF (s) */; return false; } |
| static bool cdv_intel_PLL_is_valid(struct drm_crtc *crtc, |
| const struct cdv_intel_limit_t *limit, |
| struct cdv_intel_clock_t *clock) |
| { |
| if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) |
| INTELPllInvalid("p1 out of range\n"); |
| if (clock->p < limit->p.min || limit->p.max < clock->p) |
| INTELPllInvalid("p out of range\n"); |
| /* unnecessary to check the range of m(m1/M2)/n again */ |
| if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) |
| INTELPllInvalid("vco out of range\n"); |
| /* XXX: We may need to be checking "Dot clock" |
| * depending on the multiplier, connector, etc., |
| * rather than just a single range. |
| */ |
| if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) |
| INTELPllInvalid("dot out of range\n"); |
| |
| return true; |
| } |
| |
| static bool cdv_intel_find_best_PLL(struct drm_crtc *crtc, int target, |
| int refclk, |
| struct cdv_intel_clock_t *best_clock) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct cdv_intel_clock_t clock; |
| const struct cdv_intel_limit_t *limit = cdv_intel_limit(crtc, refclk); |
| int err = target; |
| |
| |
| if (cdv_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && |
| (REG_READ(LVDS) & LVDS_PORT_EN) != 0) { |
| /* |
| * For LVDS, if the panel is on, just rely on its current |
| * settings for dual-channel. We haven't figured out how to |
| * reliably set up different single/dual channel state, if we |
| * even can. |
| */ |
| if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) == |
| LVDS_CLKB_POWER_UP) |
| clock.p2 = limit->p2.p2_fast; |
| else |
| clock.p2 = limit->p2.p2_slow; |
| } else { |
| if (target < limit->p2.dot_limit) |
| clock.p2 = limit->p2.p2_slow; |
| else |
| clock.p2 = limit->p2.p2_fast; |
| } |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| clock.m1 = 0; |
| /* m1 is reserved as 0 in CDV, n is a ring counter. |
| So skip the m1 loop */ |
| for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) { |
| for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; |
| clock.m2++) { |
| for (clock.p1 = limit->p1.min; |
| clock.p1 <= limit->p1.max; |
| clock.p1++) { |
| int this_err; |
| |
| cdv_intel_clock(dev, refclk, &clock); |
| |
| if (!cdv_intel_PLL_is_valid(crtc, |
| limit, &clock)) |
| continue; |
| |
| this_err = abs(clock.dot - target); |
| if (this_err < err) { |
| *best_clock = clock; |
| err = this_err; |
| } |
| } |
| } |
| } |
| |
| return err != target; |
| } |
| |
| static int cdv_intel_pipe_set_base(struct drm_crtc *crtc, |
| int x, int y, struct drm_framebuffer *old_fb) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb); |
| int pipe = psb_intel_crtc->pipe; |
| unsigned long start, offset; |
| int dspbase = (pipe == 0 ? DSPABASE : DSPBBASE); |
| int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF); |
| int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE; |
| int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR; |
| u32 dspcntr; |
| int ret = 0; |
| |
| if (!gma_power_begin(dev, true)) |
| return 0; |
| |
| /* no fb bound */ |
| if (!crtc->fb) { |
| dev_err(dev->dev, "No FB bound\n"); |
| goto psb_intel_pipe_cleaner; |
| } |
| |
| |
| /* We are displaying this buffer, make sure it is actually loaded |
| into the GTT */ |
| ret = psb_gtt_pin(psbfb->gtt); |
| if (ret < 0) |
| goto psb_intel_pipe_set_base_exit; |
| start = psbfb->gtt->offset; |
| offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8); |
| |
| REG_WRITE(dspstride, crtc->fb->pitches[0]); |
| |
| dspcntr = REG_READ(dspcntr_reg); |
| dspcntr &= ~DISPPLANE_PIXFORMAT_MASK; |
| |
| switch (crtc->fb->bits_per_pixel) { |
| case 8: |
| dspcntr |= DISPPLANE_8BPP; |
| break; |
| case 16: |
| if (crtc->fb->depth == 15) |
| dspcntr |= DISPPLANE_15_16BPP; |
| else |
| dspcntr |= DISPPLANE_16BPP; |
| break; |
| case 24: |
| case 32: |
| dspcntr |= DISPPLANE_32BPP_NO_ALPHA; |
| break; |
| default: |
| dev_err(dev->dev, "Unknown color depth\n"); |
| ret = -EINVAL; |
| goto psb_intel_pipe_set_base_exit; |
| } |
| REG_WRITE(dspcntr_reg, dspcntr); |
| |
| dev_dbg(dev->dev, |
| "Writing base %08lX %08lX %d %d\n", start, offset, x, y); |
| |
| REG_WRITE(dspbase, offset); |
| REG_READ(dspbase); |
| REG_WRITE(dspsurf, start); |
| REG_READ(dspsurf); |
| |
| psb_intel_pipe_cleaner: |
| /* If there was a previous display we can now unpin it */ |
| if (old_fb) |
| psb_gtt_unpin(to_psb_fb(old_fb)->gtt); |
| |
| psb_intel_pipe_set_base_exit: |
| gma_power_end(dev); |
| return ret; |
| } |
| |
| /** |
| * Sets the power management mode of the pipe and plane. |
| * |
| * This code should probably grow support for turning the cursor off and back |
| * on appropriately at the same time as we're turning the pipe off/on. |
| */ |
| static void cdv_intel_crtc_dpms(struct drm_crtc *crtc, int mode) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| int pipe = psb_intel_crtc->pipe; |
| int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; |
| int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR; |
| int dspbase_reg = (pipe == 0) ? DSPABASE : DSPBBASE; |
| int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF; |
| u32 temp; |
| |
| /* XXX: When our outputs are all unaware of DPMS modes other than off |
| * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC. |
| */ |
| switch (mode) { |
| case DRM_MODE_DPMS_ON: |
| case DRM_MODE_DPMS_STANDBY: |
| case DRM_MODE_DPMS_SUSPEND: |
| /* Enable the DPLL */ |
| temp = REG_READ(dpll_reg); |
| if ((temp & DPLL_VCO_ENABLE) == 0) { |
| REG_WRITE(dpll_reg, temp); |
| REG_READ(dpll_reg); |
| /* Wait for the clocks to stabilize. */ |
| udelay(150); |
| REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE); |
| REG_READ(dpll_reg); |
| /* Wait for the clocks to stabilize. */ |
| udelay(150); |
| REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE); |
| REG_READ(dpll_reg); |
| /* Wait for the clocks to stabilize. */ |
| udelay(150); |
| } |
| |
| /* Jim Bish - switch plan and pipe per scott */ |
| /* Enable the plane */ |
| temp = REG_READ(dspcntr_reg); |
| if ((temp & DISPLAY_PLANE_ENABLE) == 0) { |
| REG_WRITE(dspcntr_reg, |
| temp | DISPLAY_PLANE_ENABLE); |
| /* Flush the plane changes */ |
| REG_WRITE(dspbase_reg, REG_READ(dspbase_reg)); |
| } |
| |
| udelay(150); |
| |
| /* Enable the pipe */ |
| temp = REG_READ(pipeconf_reg); |
| if ((temp & PIPEACONF_ENABLE) == 0) |
| REG_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE); |
| |
| psb_intel_crtc_load_lut(crtc); |
| |
| /* Give the overlay scaler a chance to enable |
| * if it's on this pipe */ |
| /* psb_intel_crtc_dpms_video(crtc, true); TODO */ |
| break; |
| case DRM_MODE_DPMS_OFF: |
| /* Give the overlay scaler a chance to disable |
| * if it's on this pipe */ |
| /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */ |
| |
| /* Disable the VGA plane that we never use */ |
| REG_WRITE(VGACNTRL, VGA_DISP_DISABLE); |
| |
| /* Jim Bish - changed pipe/plane here as well. */ |
| |
| /* Wait for vblank for the disable to take effect */ |
| cdv_intel_wait_for_vblank(dev); |
| |
| /* Next, disable display pipes */ |
| temp = REG_READ(pipeconf_reg); |
| if ((temp & PIPEACONF_ENABLE) != 0) { |
| REG_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE); |
| REG_READ(pipeconf_reg); |
| } |
| |
| /* Wait for vblank for the disable to take effect. */ |
| cdv_intel_wait_for_vblank(dev); |
| |
| udelay(150); |
| |
| /* Disable display plane */ |
| temp = REG_READ(dspcntr_reg); |
| if ((temp & DISPLAY_PLANE_ENABLE) != 0) { |
| REG_WRITE(dspcntr_reg, |
| temp & ~DISPLAY_PLANE_ENABLE); |
| /* Flush the plane changes */ |
| REG_WRITE(dspbase_reg, REG_READ(dspbase_reg)); |
| REG_READ(dspbase_reg); |
| } |
| |
| temp = REG_READ(dpll_reg); |
| if ((temp & DPLL_VCO_ENABLE) != 0) { |
| REG_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE); |
| REG_READ(dpll_reg); |
| } |
| |
| /* Wait for the clocks to turn off. */ |
| udelay(150); |
| break; |
| } |
| /*Set FIFO Watermarks*/ |
| REG_WRITE(DSPARB, 0x3F3E); |
| } |
| |
| static void cdv_intel_crtc_prepare(struct drm_crtc *crtc) |
| { |
| struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; |
| crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF); |
| } |
| |
| static void cdv_intel_crtc_commit(struct drm_crtc *crtc) |
| { |
| struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; |
| crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON); |
| } |
| |
| static bool cdv_intel_crtc_mode_fixup(struct drm_crtc *crtc, |
| struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode) |
| { |
| return true; |
| } |
| |
| |
| /** |
| * Return the pipe currently connected to the panel fitter, |
| * or -1 if the panel fitter is not present or not in use |
| */ |
| static int cdv_intel_panel_fitter_pipe(struct drm_device *dev) |
| { |
| u32 pfit_control; |
| |
| pfit_control = REG_READ(PFIT_CONTROL); |
| |
| /* See if the panel fitter is in use */ |
| if ((pfit_control & PFIT_ENABLE) == 0) |
| return -1; |
| return (pfit_control >> 29) & 0x3; |
| } |
| |
| static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc, |
| struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode, |
| int x, int y, |
| struct drm_framebuffer *old_fb) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| int pipe = psb_intel_crtc->pipe; |
| int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B; |
| int dpll_md_reg = (psb_intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD; |
| int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR; |
| int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF; |
| int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B; |
| int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B; |
| int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B; |
| int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B; |
| int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B; |
| int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B; |
| int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE; |
| int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS; |
| int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC; |
| int refclk; |
| struct cdv_intel_clock_t clock; |
| u32 dpll = 0, dspcntr, pipeconf; |
| bool ok; |
| bool is_crt = false, is_lvds = false, is_tv = false; |
| bool is_hdmi = false; |
| struct drm_mode_config *mode_config = &dev->mode_config; |
| struct drm_connector *connector; |
| |
| list_for_each_entry(connector, &mode_config->connector_list, head) { |
| struct psb_intel_encoder *psb_intel_encoder = |
| psb_intel_attached_encoder(connector); |
| |
| if (!connector->encoder |
| || connector->encoder->crtc != crtc) |
| continue; |
| |
| switch (psb_intel_encoder->type) { |
| case INTEL_OUTPUT_LVDS: |
| is_lvds = true; |
| break; |
| case INTEL_OUTPUT_TVOUT: |
| is_tv = true; |
| break; |
| case INTEL_OUTPUT_ANALOG: |
| is_crt = true; |
| break; |
| case INTEL_OUTPUT_HDMI: |
| is_hdmi = true; |
| break; |
| } |
| } |
| |
| refclk = 96000; |
| |
| /* Hack selection about ref clk for CRT */ |
| /* Select 27MHz as the reference clk for HDMI */ |
| if (is_crt || is_hdmi) |
| refclk = 27000; |
| |
| drm_mode_debug_printmodeline(adjusted_mode); |
| |
| ok = cdv_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk, |
| &clock); |
| if (!ok) { |
| dev_err(dev->dev, "Couldn't find PLL settings for mode!\n"); |
| return 0; |
| } |
| |
| dpll = DPLL_VGA_MODE_DIS; |
| if (is_tv) { |
| /* XXX: just matching BIOS for now */ |
| /* dpll |= PLL_REF_INPUT_TVCLKINBC; */ |
| dpll |= 3; |
| } |
| dpll |= PLL_REF_INPUT_DREFCLK; |
| |
| dpll |= DPLL_SYNCLOCK_ENABLE; |
| dpll |= DPLL_VGA_MODE_DIS; |
| if (is_lvds) |
| dpll |= DPLLB_MODE_LVDS; |
| else |
| dpll |= DPLLB_MODE_DAC_SERIAL; |
| /* dpll |= (2 << 11); */ |
| |
| /* setup pipeconf */ |
| pipeconf = REG_READ(pipeconf_reg); |
| |
| /* Set up the display plane register */ |
| dspcntr = DISPPLANE_GAMMA_ENABLE; |
| |
| if (pipe == 0) |
| dspcntr |= DISPPLANE_SEL_PIPE_A; |
| else |
| dspcntr |= DISPPLANE_SEL_PIPE_B; |
| |
| dspcntr |= DISPLAY_PLANE_ENABLE; |
| pipeconf |= PIPEACONF_ENABLE; |
| |
| REG_WRITE(dpll_reg, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE); |
| REG_READ(dpll_reg); |
| |
| cdv_dpll_set_clock_cdv(dev, crtc, &clock); |
| |
| udelay(150); |
| |
| |
| /* The LVDS pin pair needs to be on before the DPLLs are enabled. |
| * This is an exception to the general rule that mode_set doesn't turn |
| * things on. |
| */ |
| if (is_lvds) { |
| u32 lvds = REG_READ(LVDS); |
| |
| lvds |= |
| LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | |
| LVDS_PIPEB_SELECT; |
| /* Set the B0-B3 data pairs corresponding to |
| * whether we're going to |
| * set the DPLLs for dual-channel mode or not. |
| */ |
| if (clock.p2 == 7) |
| lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP; |
| else |
| lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP); |
| |
| /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP) |
| * appropriately here, but we need to look more |
| * thoroughly into how panels behave in the two modes. |
| */ |
| |
| REG_WRITE(LVDS, lvds); |
| REG_READ(LVDS); |
| } |
| |
| dpll |= DPLL_VCO_ENABLE; |
| |
| /* Disable the panel fitter if it was on our pipe */ |
| if (cdv_intel_panel_fitter_pipe(dev) == pipe) |
| REG_WRITE(PFIT_CONTROL, 0); |
| |
| DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B'); |
| drm_mode_debug_printmodeline(mode); |
| |
| REG_WRITE(dpll_reg, |
| (REG_READ(dpll_reg) & ~DPLL_LOCK) | DPLL_VCO_ENABLE); |
| REG_READ(dpll_reg); |
| /* Wait for the clocks to stabilize. */ |
| udelay(150); /* 42 usec w/o calibration, 110 with. rounded up. */ |
| |
| if (!(REG_READ(dpll_reg) & DPLL_LOCK)) { |
| dev_err(dev->dev, "Failed to get DPLL lock\n"); |
| return -EBUSY; |
| } |
| |
| { |
| int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock; |
| REG_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT)); |
| } |
| |
| REG_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) | |
| ((adjusted_mode->crtc_htotal - 1) << 16)); |
| REG_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) | |
| ((adjusted_mode->crtc_hblank_end - 1) << 16)); |
| REG_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) | |
| ((adjusted_mode->crtc_hsync_end - 1) << 16)); |
| REG_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) | |
| ((adjusted_mode->crtc_vtotal - 1) << 16)); |
| REG_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) | |
| ((adjusted_mode->crtc_vblank_end - 1) << 16)); |
| REG_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) | |
| ((adjusted_mode->crtc_vsync_end - 1) << 16)); |
| /* pipesrc and dspsize control the size that is scaled from, |
| * which should always be the user's requested size. |
| */ |
| REG_WRITE(dspsize_reg, |
| ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1)); |
| REG_WRITE(dsppos_reg, 0); |
| REG_WRITE(pipesrc_reg, |
| ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); |
| REG_WRITE(pipeconf_reg, pipeconf); |
| REG_READ(pipeconf_reg); |
| |
| cdv_intel_wait_for_vblank(dev); |
| |
| REG_WRITE(dspcntr_reg, dspcntr); |
| |
| /* Flush the plane changes */ |
| { |
| struct drm_crtc_helper_funcs *crtc_funcs = |
| crtc->helper_private; |
| crtc_funcs->mode_set_base(crtc, x, y, old_fb); |
| } |
| |
| cdv_intel_wait_for_vblank(dev); |
| |
| return 0; |
| } |
| |
| /** Loads the palette/gamma unit for the CRTC with the prepared values */ |
| static void cdv_intel_crtc_load_lut(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_psb_private *dev_priv = |
| (struct drm_psb_private *)dev->dev_private; |
| struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| int palreg = PALETTE_A; |
| int i; |
| |
| /* The clocks have to be on to load the palette. */ |
| if (!crtc->enabled) |
| return; |
| |
| switch (psb_intel_crtc->pipe) { |
| case 0: |
| break; |
| case 1: |
| palreg = PALETTE_B; |
| break; |
| case 2: |
| palreg = PALETTE_C; |
| break; |
| default: |
| dev_err(dev->dev, "Illegal Pipe Number.\n"); |
| return; |
| } |
| |
| if (gma_power_begin(dev, false)) { |
| for (i = 0; i < 256; i++) { |
| REG_WRITE(palreg + 4 * i, |
| ((psb_intel_crtc->lut_r[i] + |
| psb_intel_crtc->lut_adj[i]) << 16) | |
| ((psb_intel_crtc->lut_g[i] + |
| psb_intel_crtc->lut_adj[i]) << 8) | |
| (psb_intel_crtc->lut_b[i] + |
| psb_intel_crtc->lut_adj[i])); |
| } |
| gma_power_end(dev); |
| } else { |
| for (i = 0; i < 256; i++) { |
| dev_priv->regs.psb.save_palette_a[i] = |
| ((psb_intel_crtc->lut_r[i] + |
| psb_intel_crtc->lut_adj[i]) << 16) | |
| ((psb_intel_crtc->lut_g[i] + |
| psb_intel_crtc->lut_adj[i]) << 8) | |
| (psb_intel_crtc->lut_b[i] + |
| psb_intel_crtc->lut_adj[i]); |
| } |
| |
| } |
| } |
| |
| /** |
| * Save HW states of giving crtc |
| */ |
| static void cdv_intel_crtc_save(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| /* struct drm_psb_private *dev_priv = |
| (struct drm_psb_private *)dev->dev_private; */ |
| struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state; |
| int pipeA = (psb_intel_crtc->pipe == 0); |
| uint32_t paletteReg; |
| int i; |
| |
| if (!crtc_state) { |
| dev_dbg(dev->dev, "No CRTC state found\n"); |
| return; |
| } |
| |
| crtc_state->saveDSPCNTR = REG_READ(pipeA ? DSPACNTR : DSPBCNTR); |
| crtc_state->savePIPECONF = REG_READ(pipeA ? PIPEACONF : PIPEBCONF); |
| crtc_state->savePIPESRC = REG_READ(pipeA ? PIPEASRC : PIPEBSRC); |
| crtc_state->saveFP0 = REG_READ(pipeA ? FPA0 : FPB0); |
| crtc_state->saveFP1 = REG_READ(pipeA ? FPA1 : FPB1); |
| crtc_state->saveDPLL = REG_READ(pipeA ? DPLL_A : DPLL_B); |
| crtc_state->saveHTOTAL = REG_READ(pipeA ? HTOTAL_A : HTOTAL_B); |
| crtc_state->saveHBLANK = REG_READ(pipeA ? HBLANK_A : HBLANK_B); |
| crtc_state->saveHSYNC = REG_READ(pipeA ? HSYNC_A : HSYNC_B); |
| crtc_state->saveVTOTAL = REG_READ(pipeA ? VTOTAL_A : VTOTAL_B); |
| crtc_state->saveVBLANK = REG_READ(pipeA ? VBLANK_A : VBLANK_B); |
| crtc_state->saveVSYNC = REG_READ(pipeA ? VSYNC_A : VSYNC_B); |
| crtc_state->saveDSPSTRIDE = REG_READ(pipeA ? DSPASTRIDE : DSPBSTRIDE); |
| |
| /*NOTE: DSPSIZE DSPPOS only for psb*/ |
| crtc_state->saveDSPSIZE = REG_READ(pipeA ? DSPASIZE : DSPBSIZE); |
| crtc_state->saveDSPPOS = REG_READ(pipeA ? DSPAPOS : DSPBPOS); |
| |
| crtc_state->saveDSPBASE = REG_READ(pipeA ? DSPABASE : DSPBBASE); |
| |
| DRM_DEBUG("(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n", |
| crtc_state->saveDSPCNTR, |
| crtc_state->savePIPECONF, |
| crtc_state->savePIPESRC, |
| crtc_state->saveFP0, |
| crtc_state->saveFP1, |
| crtc_state->saveDPLL, |
| crtc_state->saveHTOTAL, |
| crtc_state->saveHBLANK, |
| crtc_state->saveHSYNC, |
| crtc_state->saveVTOTAL, |
| crtc_state->saveVBLANK, |
| crtc_state->saveVSYNC, |
| crtc_state->saveDSPSTRIDE, |
| crtc_state->saveDSPSIZE, |
| crtc_state->saveDSPPOS, |
| crtc_state->saveDSPBASE |
| ); |
| |
| paletteReg = pipeA ? PALETTE_A : PALETTE_B; |
| for (i = 0; i < 256; ++i) |
| crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2)); |
| } |
| |
| /** |
| * Restore HW states of giving crtc |
| */ |
| static void cdv_intel_crtc_restore(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| /* struct drm_psb_private * dev_priv = |
| (struct drm_psb_private *)dev->dev_private; */ |
| struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state; |
| /* struct drm_crtc_helper_funcs * crtc_funcs = crtc->helper_private; */ |
| int pipeA = (psb_intel_crtc->pipe == 0); |
| uint32_t paletteReg; |
| int i; |
| |
| if (!crtc_state) { |
| dev_dbg(dev->dev, "No crtc state\n"); |
| return; |
| } |
| |
| DRM_DEBUG( |
| "current:(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n", |
| REG_READ(pipeA ? DSPACNTR : DSPBCNTR), |
| REG_READ(pipeA ? PIPEACONF : PIPEBCONF), |
| REG_READ(pipeA ? PIPEASRC : PIPEBSRC), |
| REG_READ(pipeA ? FPA0 : FPB0), |
| REG_READ(pipeA ? FPA1 : FPB1), |
| REG_READ(pipeA ? DPLL_A : DPLL_B), |
| REG_READ(pipeA ? HTOTAL_A : HTOTAL_B), |
| REG_READ(pipeA ? HBLANK_A : HBLANK_B), |
| REG_READ(pipeA ? HSYNC_A : HSYNC_B), |
| REG_READ(pipeA ? VTOTAL_A : VTOTAL_B), |
| REG_READ(pipeA ? VBLANK_A : VBLANK_B), |
| REG_READ(pipeA ? VSYNC_A : VSYNC_B), |
| REG_READ(pipeA ? DSPASTRIDE : DSPBSTRIDE), |
| REG_READ(pipeA ? DSPASIZE : DSPBSIZE), |
| REG_READ(pipeA ? DSPAPOS : DSPBPOS), |
| REG_READ(pipeA ? DSPABASE : DSPBBASE) |
| ); |
| |
| DRM_DEBUG( |
| "saved: (%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n", |
| crtc_state->saveDSPCNTR, |
| crtc_state->savePIPECONF, |
| crtc_state->savePIPESRC, |
| crtc_state->saveFP0, |
| crtc_state->saveFP1, |
| crtc_state->saveDPLL, |
| crtc_state->saveHTOTAL, |
| crtc_state->saveHBLANK, |
| crtc_state->saveHSYNC, |
| crtc_state->saveVTOTAL, |
| crtc_state->saveVBLANK, |
| crtc_state->saveVSYNC, |
| crtc_state->saveDSPSTRIDE, |
| crtc_state->saveDSPSIZE, |
| crtc_state->saveDSPPOS, |
| crtc_state->saveDSPBASE |
| ); |
| |
| |
| if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) { |
| REG_WRITE(pipeA ? DPLL_A : DPLL_B, |
| crtc_state->saveDPLL & ~DPLL_VCO_ENABLE); |
| REG_READ(pipeA ? DPLL_A : DPLL_B); |
| DRM_DEBUG("write dpll: %x\n", |
| REG_READ(pipeA ? DPLL_A : DPLL_B)); |
| udelay(150); |
| } |
| |
| REG_WRITE(pipeA ? FPA0 : FPB0, crtc_state->saveFP0); |
| REG_READ(pipeA ? FPA0 : FPB0); |
| |
| REG_WRITE(pipeA ? FPA1 : FPB1, crtc_state->saveFP1); |
| REG_READ(pipeA ? FPA1 : FPB1); |
| |
| REG_WRITE(pipeA ? DPLL_A : DPLL_B, crtc_state->saveDPLL); |
| REG_READ(pipeA ? DPLL_A : DPLL_B); |
| udelay(150); |
| |
| REG_WRITE(pipeA ? HTOTAL_A : HTOTAL_B, crtc_state->saveHTOTAL); |
| REG_WRITE(pipeA ? HBLANK_A : HBLANK_B, crtc_state->saveHBLANK); |
| REG_WRITE(pipeA ? HSYNC_A : HSYNC_B, crtc_state->saveHSYNC); |
| REG_WRITE(pipeA ? VTOTAL_A : VTOTAL_B, crtc_state->saveVTOTAL); |
| REG_WRITE(pipeA ? VBLANK_A : VBLANK_B, crtc_state->saveVBLANK); |
| REG_WRITE(pipeA ? VSYNC_A : VSYNC_B, crtc_state->saveVSYNC); |
| REG_WRITE(pipeA ? DSPASTRIDE : DSPBSTRIDE, crtc_state->saveDSPSTRIDE); |
| |
| REG_WRITE(pipeA ? DSPASIZE : DSPBSIZE, crtc_state->saveDSPSIZE); |
| REG_WRITE(pipeA ? DSPAPOS : DSPBPOS, crtc_state->saveDSPPOS); |
| |
| REG_WRITE(pipeA ? PIPEASRC : PIPEBSRC, crtc_state->savePIPESRC); |
| REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE); |
| REG_WRITE(pipeA ? PIPEACONF : PIPEBCONF, crtc_state->savePIPECONF); |
| |
| cdv_intel_wait_for_vblank(dev); |
| |
| REG_WRITE(pipeA ? DSPACNTR : DSPBCNTR, crtc_state->saveDSPCNTR); |
| REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE); |
| |
| cdv_intel_wait_for_vblank(dev); |
| |
| paletteReg = pipeA ? PALETTE_A : PALETTE_B; |
| for (i = 0; i < 256; ++i) |
| REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]); |
| } |
| |
| static int cdv_intel_crtc_cursor_set(struct drm_crtc *crtc, |
| struct drm_file *file_priv, |
| uint32_t handle, |
| uint32_t width, uint32_t height) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| int pipe = psb_intel_crtc->pipe; |
| uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR; |
| uint32_t base = (pipe == 0) ? CURABASE : CURBBASE; |
| uint32_t temp; |
| size_t addr = 0; |
| struct gtt_range *gt; |
| struct drm_gem_object *obj; |
| int ret; |
| |
| /* if we want to turn of the cursor ignore width and height */ |
| if (!handle) { |
| /* turn off the cursor */ |
| temp = CURSOR_MODE_DISABLE; |
| |
| if (gma_power_begin(dev, false)) { |
| REG_WRITE(control, temp); |
| REG_WRITE(base, 0); |
| gma_power_end(dev); |
| } |
| |
| /* unpin the old GEM object */ |
| if (psb_intel_crtc->cursor_obj) { |
| gt = container_of(psb_intel_crtc->cursor_obj, |
| struct gtt_range, gem); |
| psb_gtt_unpin(gt); |
| drm_gem_object_unreference(psb_intel_crtc->cursor_obj); |
| psb_intel_crtc->cursor_obj = NULL; |
| } |
| |
| return 0; |
| } |
| |
| /* Currently we only support 64x64 cursors */ |
| if (width != 64 || height != 64) { |
| dev_dbg(dev->dev, "we currently only support 64x64 cursors\n"); |
| return -EINVAL; |
| } |
| |
| obj = drm_gem_object_lookup(dev, file_priv, handle); |
| if (!obj) |
| return -ENOENT; |
| |
| if (obj->size < width * height * 4) { |
| dev_dbg(dev->dev, "buffer is to small\n"); |
| return -ENOMEM; |
| } |
| |
| gt = container_of(obj, struct gtt_range, gem); |
| |
| /* Pin the memory into the GTT */ |
| ret = psb_gtt_pin(gt); |
| if (ret) { |
| dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle); |
| return ret; |
| } |
| |
| addr = gt->offset; /* Or resource.start ??? */ |
| |
| psb_intel_crtc->cursor_addr = addr; |
| |
| temp = 0; |
| /* set the pipe for the cursor */ |
| temp |= (pipe << 28); |
| temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE; |
| |
| if (gma_power_begin(dev, false)) { |
| REG_WRITE(control, temp); |
| REG_WRITE(base, addr); |
| gma_power_end(dev); |
| } |
| |
| /* unpin the old GEM object */ |
| if (psb_intel_crtc->cursor_obj) { |
| gt = container_of(psb_intel_crtc->cursor_obj, |
| struct gtt_range, gem); |
| psb_gtt_unpin(gt); |
| drm_gem_object_unreference(psb_intel_crtc->cursor_obj); |
| psb_intel_crtc->cursor_obj = obj; |
| } |
| return 0; |
| } |
| |
| static int cdv_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| int pipe = psb_intel_crtc->pipe; |
| uint32_t temp = 0; |
| uint32_t adder; |
| |
| |
| if (x < 0) { |
| temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT); |
| x = -x; |
| } |
| if (y < 0) { |
| temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT); |
| y = -y; |
| } |
| |
| temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT); |
| temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT); |
| |
| adder = psb_intel_crtc->cursor_addr; |
| |
| if (gma_power_begin(dev, false)) { |
| REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp); |
| REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder); |
| gma_power_end(dev); |
| } |
| return 0; |
| } |
| |
| static void cdv_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, |
| u16 *green, u16 *blue, uint32_t start, uint32_t size) |
| { |
| struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| int i; |
| int end = (start + size > 256) ? 256 : start + size; |
| |
| for (i = start; i < end; i++) { |
| psb_intel_crtc->lut_r[i] = red[i] >> 8; |
| psb_intel_crtc->lut_g[i] = green[i] >> 8; |
| psb_intel_crtc->lut_b[i] = blue[i] >> 8; |
| } |
| |
| cdv_intel_crtc_load_lut(crtc); |
| } |
| |
| static int cdv_crtc_set_config(struct drm_mode_set *set) |
| { |
| int ret = 0; |
| struct drm_device *dev = set->crtc->dev; |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| |
| if (!dev_priv->rpm_enabled) |
| return drm_crtc_helper_set_config(set); |
| |
| pm_runtime_forbid(&dev->pdev->dev); |
| |
| ret = drm_crtc_helper_set_config(set); |
| |
| pm_runtime_allow(&dev->pdev->dev); |
| |
| return ret; |
| } |
| |
| /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */ |
| |
| /* FIXME: why are we using this, should it be cdv_ in this tree ? */ |
| |
| static void i8xx_clock(int refclk, struct cdv_intel_clock_t *clock) |
| { |
| clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); |
| clock->p = clock->p1 * clock->p2; |
| clock->vco = refclk * clock->m / (clock->n + 2); |
| clock->dot = clock->vco / clock->p; |
| } |
| |
| /* Returns the clock of the currently programmed mode of the given pipe. */ |
| static int cdv_intel_crtc_clock_get(struct drm_device *dev, |
| struct drm_crtc *crtc) |
| { |
| struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| int pipe = psb_intel_crtc->pipe; |
| u32 dpll; |
| u32 fp; |
| struct cdv_intel_clock_t clock; |
| bool is_lvds; |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| |
| if (gma_power_begin(dev, false)) { |
| dpll = REG_READ((pipe == 0) ? DPLL_A : DPLL_B); |
| if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) |
| fp = REG_READ((pipe == 0) ? FPA0 : FPB0); |
| else |
| fp = REG_READ((pipe == 0) ? FPA1 : FPB1); |
| is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN); |
| gma_power_end(dev); |
| } else { |
| dpll = (pipe == 0) ? |
| dev_priv->regs.psb.saveDPLL_A : |
| dev_priv->regs.psb.saveDPLL_B; |
| |
| if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) |
| fp = (pipe == 0) ? |
| dev_priv->regs.psb.saveFPA0 : |
| dev_priv->regs.psb.saveFPB0; |
| else |
| fp = (pipe == 0) ? |
| dev_priv->regs.psb.saveFPA1 : |
| dev_priv->regs.psb.saveFPB1; |
| |
| is_lvds = (pipe == 1) && |
| (dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN); |
| } |
| |
| clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; |
| clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; |
| clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; |
| |
| if (is_lvds) { |
| clock.p1 = |
| ffs((dpll & |
| DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT); |
| if (clock.p1 == 0) { |
| clock.p1 = 4; |
| dev_err(dev->dev, "PLL %d\n", dpll); |
| } |
| clock.p2 = 14; |
| |
| if ((dpll & PLL_REF_INPUT_MASK) == |
| PLLB_REF_INPUT_SPREADSPECTRUMIN) { |
| /* XXX: might not be 66MHz */ |
| i8xx_clock(66000, &clock); |
| } else |
| i8xx_clock(48000, &clock); |
| } else { |
| if (dpll & PLL_P1_DIVIDE_BY_TWO) |
| clock.p1 = 2; |
| else { |
| clock.p1 = |
| ((dpll & |
| DPLL_FPA01_P1_POST_DIV_MASK_I830) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; |
| } |
| if (dpll & PLL_P2_DIVIDE_BY_4) |
| clock.p2 = 4; |
| else |
| clock.p2 = 2; |
| |
| i8xx_clock(48000, &clock); |
| } |
| |
| /* XXX: It would be nice to validate the clocks, but we can't reuse |
| * i830PllIsValid() because it relies on the xf86_config connector |
| * configuration being accurate, which it isn't necessarily. |
| */ |
| |
| return clock.dot; |
| } |
| |
| /** Returns the currently programmed mode of the given pipe. */ |
| struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev, |
| struct drm_crtc *crtc) |
| { |
| struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| int pipe = psb_intel_crtc->pipe; |
| struct drm_display_mode *mode; |
| int htot; |
| int hsync; |
| int vtot; |
| int vsync; |
| struct drm_psb_private *dev_priv = dev->dev_private; |
| |
| if (gma_power_begin(dev, false)) { |
| htot = REG_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B); |
| hsync = REG_READ((pipe == 0) ? HSYNC_A : HSYNC_B); |
| vtot = REG_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B); |
| vsync = REG_READ((pipe == 0) ? VSYNC_A : VSYNC_B); |
| gma_power_end(dev); |
| } else { |
| htot = (pipe == 0) ? |
| dev_priv->regs.psb.saveHTOTAL_A : |
| dev_priv->regs.psb.saveHTOTAL_B; |
| hsync = (pipe == 0) ? |
| dev_priv->regs.psb.saveHSYNC_A : |
| dev_priv->regs.psb.saveHSYNC_B; |
| vtot = (pipe == 0) ? |
| dev_priv->regs.psb.saveVTOTAL_A : |
| dev_priv->regs.psb.saveVTOTAL_B; |
| vsync = (pipe == 0) ? |
| dev_priv->regs.psb.saveVSYNC_A : |
| dev_priv->regs.psb.saveVSYNC_B; |
| } |
| |
| mode = kzalloc(sizeof(*mode), GFP_KERNEL); |
| if (!mode) |
| return NULL; |
| |
| mode->clock = cdv_intel_crtc_clock_get(dev, crtc); |
| mode->hdisplay = (htot & 0xffff) + 1; |
| mode->htotal = ((htot & 0xffff0000) >> 16) + 1; |
| mode->hsync_start = (hsync & 0xffff) + 1; |
| mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; |
| mode->vdisplay = (vtot & 0xffff) + 1; |
| mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; |
| mode->vsync_start = (vsync & 0xffff) + 1; |
| mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; |
| |
| drm_mode_set_name(mode); |
| drm_mode_set_crtcinfo(mode, 0); |
| |
| return mode; |
| } |
| |
| static void cdv_intel_crtc_destroy(struct drm_crtc *crtc) |
| { |
| struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc); |
| |
| kfree(psb_intel_crtc->crtc_state); |
| drm_crtc_cleanup(crtc); |
| kfree(psb_intel_crtc); |
| } |
| |
| const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = { |
| .dpms = cdv_intel_crtc_dpms, |
| .mode_fixup = cdv_intel_crtc_mode_fixup, |
| .mode_set = cdv_intel_crtc_mode_set, |
| .mode_set_base = cdv_intel_pipe_set_base, |
| .prepare = cdv_intel_crtc_prepare, |
| .commit = cdv_intel_crtc_commit, |
| }; |
| |
| const struct drm_crtc_funcs cdv_intel_crtc_funcs = { |
| .save = cdv_intel_crtc_save, |
| .restore = cdv_intel_crtc_restore, |
| .cursor_set = cdv_intel_crtc_cursor_set, |
| .cursor_move = cdv_intel_crtc_cursor_move, |
| .gamma_set = cdv_intel_crtc_gamma_set, |
| .set_config = cdv_crtc_set_config, |
| .destroy = cdv_intel_crtc_destroy, |
| }; |