| // SPDX-License-Identifier: GPL-2.0+ |
| #include <linux/clk.h> |
| #include <linux/clocksource.h> |
| #include <linux/clockchips.h> |
| #include <linux/cpuhotplug.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/iopoll.h> |
| #include <linux/err.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/sched_clock.h> |
| |
| #include <linux/clk/clk-conf.h> |
| |
| #include <clocksource/timer-ti-dm.h> |
| #include <dt-bindings/bus/ti-sysc.h> |
| |
| /* For type1, set SYSC_OMAP2_CLOCKACTIVITY for fck off on idle, l4 clock on */ |
| #define DMTIMER_TYPE1_ENABLE ((1 << 9) | (SYSC_IDLE_SMART << 3) | \ |
| SYSC_OMAP2_ENAWAKEUP | SYSC_OMAP2_AUTOIDLE) |
| #define DMTIMER_TYPE1_DISABLE (SYSC_OMAP2_SOFTRESET | SYSC_OMAP2_AUTOIDLE) |
| #define DMTIMER_TYPE2_ENABLE (SYSC_IDLE_SMART_WKUP << 2) |
| #define DMTIMER_RESET_WAIT 100000 |
| |
| #define DMTIMER_INST_DONT_CARE ~0U |
| |
| static int counter_32k; |
| static u32 clocksource; |
| static u32 clockevent; |
| |
| /* |
| * Subset of the timer registers we use. Note that the register offsets |
| * depend on the timer revision detected. |
| */ |
| struct dmtimer_systimer { |
| void __iomem *base; |
| u8 sysc; |
| u8 irq_stat; |
| u8 irq_ena; |
| u8 pend; |
| u8 load; |
| u8 counter; |
| u8 ctrl; |
| u8 wakeup; |
| u8 ifctrl; |
| struct clk *fck; |
| struct clk *ick; |
| unsigned long rate; |
| }; |
| |
| struct dmtimer_clockevent { |
| struct clock_event_device dev; |
| struct dmtimer_systimer t; |
| u32 period; |
| }; |
| |
| struct dmtimer_clocksource { |
| struct clocksource dev; |
| struct dmtimer_systimer t; |
| unsigned int loadval; |
| }; |
| |
| /* Assumes v1 ip if bits [31:16] are zero */ |
| static bool dmtimer_systimer_revision1(struct dmtimer_systimer *t) |
| { |
| u32 tidr = readl_relaxed(t->base); |
| |
| return !(tidr >> 16); |
| } |
| |
| static void dmtimer_systimer_enable(struct dmtimer_systimer *t) |
| { |
| u32 val; |
| |
| if (dmtimer_systimer_revision1(t)) |
| val = DMTIMER_TYPE1_ENABLE; |
| else |
| val = DMTIMER_TYPE2_ENABLE; |
| |
| writel_relaxed(val, t->base + t->sysc); |
| } |
| |
| static void dmtimer_systimer_disable(struct dmtimer_systimer *t) |
| { |
| if (!dmtimer_systimer_revision1(t)) |
| return; |
| |
| writel_relaxed(DMTIMER_TYPE1_DISABLE, t->base + t->sysc); |
| } |
| |
| static int __init dmtimer_systimer_type1_reset(struct dmtimer_systimer *t) |
| { |
| void __iomem *syss = t->base + OMAP_TIMER_V1_SYS_STAT_OFFSET; |
| int ret; |
| u32 l; |
| |
| dmtimer_systimer_enable(t); |
| writel_relaxed(BIT(1) | BIT(2), t->base + t->ifctrl); |
| ret = readl_poll_timeout_atomic(syss, l, l & BIT(0), 100, |
| DMTIMER_RESET_WAIT); |
| |
| return ret; |
| } |
| |
| /* Note we must use io_base instead of func_base for type2 OCP regs */ |
| static int __init dmtimer_systimer_type2_reset(struct dmtimer_systimer *t) |
| { |
| void __iomem *sysc = t->base + t->sysc; |
| u32 l; |
| |
| dmtimer_systimer_enable(t); |
| l = readl_relaxed(sysc); |
| l |= BIT(0); |
| writel_relaxed(l, sysc); |
| |
| return readl_poll_timeout_atomic(sysc, l, !(l & BIT(0)), 100, |
| DMTIMER_RESET_WAIT); |
| } |
| |
| static int __init dmtimer_systimer_reset(struct dmtimer_systimer *t) |
| { |
| int ret; |
| |
| if (dmtimer_systimer_revision1(t)) |
| ret = dmtimer_systimer_type1_reset(t); |
| else |
| ret = dmtimer_systimer_type2_reset(t); |
| if (ret < 0) { |
| pr_err("%s failed with %i\n", __func__, ret); |
| |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static const struct of_device_id counter_match_table[] = { |
| { .compatible = "ti,omap-counter32k" }, |
| { /* Sentinel */ }, |
| }; |
| |
| /* |
| * Check if the SoC als has a usable working 32 KiHz counter. The 32 KiHz |
| * counter is handled by timer-ti-32k, but we need to detect it as it |
| * affects the preferred dmtimer system timer configuration. There is |
| * typically no use for a dmtimer clocksource if the 32 KiHz counter is |
| * present, except on am437x as described below. |
| */ |
| static void __init dmtimer_systimer_check_counter32k(void) |
| { |
| struct device_node *np; |
| |
| if (counter_32k) |
| return; |
| |
| np = of_find_matching_node(NULL, counter_match_table); |
| if (!np) { |
| counter_32k = -ENODEV; |
| |
| return; |
| } |
| |
| if (of_device_is_available(np)) |
| counter_32k = 1; |
| else |
| counter_32k = -ENODEV; |
| |
| of_node_put(np); |
| } |
| |
| static const struct of_device_id dmtimer_match_table[] = { |
| { .compatible = "ti,omap2420-timer", }, |
| { .compatible = "ti,omap3430-timer", }, |
| { .compatible = "ti,omap4430-timer", }, |
| { .compatible = "ti,omap5430-timer", }, |
| { .compatible = "ti,am335x-timer", }, |
| { .compatible = "ti,am335x-timer-1ms", }, |
| { .compatible = "ti,dm814-timer", }, |
| { .compatible = "ti,dm816-timer", }, |
| { /* Sentinel */ }, |
| }; |
| |
| /* |
| * Checks that system timers are configured to not reset and idle during |
| * the generic timer-ti-dm device driver probe. And that the system timer |
| * source clocks are properly configured. Also, let's not hog any DSP and |
| * PWM capable timers unnecessarily as system timers. |
| */ |
| static bool __init dmtimer_is_preferred(struct device_node *np) |
| { |
| if (!of_device_is_available(np)) |
| return false; |
| |
| if (!of_property_read_bool(np->parent, |
| "ti,no-reset-on-init")) |
| return false; |
| |
| if (!of_property_read_bool(np->parent, "ti,no-idle")) |
| return false; |
| |
| /* Secure gptimer12 is always clocked with a fixed source */ |
| if (!of_property_read_bool(np, "ti,timer-secure")) { |
| if (!of_property_read_bool(np, "assigned-clocks")) |
| return false; |
| |
| if (!of_property_read_bool(np, "assigned-clock-parents")) |
| return false; |
| } |
| |
| if (of_property_read_bool(np, "ti,timer-dsp")) |
| return false; |
| |
| if (of_property_read_bool(np, "ti,timer-pwm")) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * Finds the first available usable always-on timer, and assigns it to either |
| * clockevent or clocksource depending if the counter_32k is available on the |
| * SoC or not. |
| * |
| * Some omap3 boards with unreliable oscillator must not use the counter_32k |
| * or dmtimer1 with 32 KiHz source. Additionally, the boards with unreliable |
| * oscillator should really set counter_32k as disabled, and delete dmtimer1 |
| * ti,always-on property, but let's not count on it. For these quirky cases, |
| * we prefer using the always-on secure dmtimer12 with the internal 32 KiHz |
| * clock as the clocksource, and any available dmtimer as clockevent. |
| * |
| * For am437x, we are using am335x style dmtimer clocksource. It is unclear |
| * if this quirk handling is really needed, but let's change it separately |
| * based on testing as it might cause side effects. |
| */ |
| static void __init dmtimer_systimer_assign_alwon(void) |
| { |
| struct device_node *np; |
| u32 pa = 0; |
| bool quirk_unreliable_oscillator = false; |
| |
| /* Quirk unreliable 32 KiHz oscillator with incomplete dts */ |
| if (of_machine_is_compatible("ti,omap3-beagle-ab4")) { |
| quirk_unreliable_oscillator = true; |
| counter_32k = -ENODEV; |
| } |
| |
| /* Quirk am437x using am335x style dmtimer clocksource */ |
| if (of_machine_is_compatible("ti,am43")) |
| counter_32k = -ENODEV; |
| |
| for_each_matching_node(np, dmtimer_match_table) { |
| struct resource res; |
| if (!dmtimer_is_preferred(np)) |
| continue; |
| |
| if (!of_property_read_bool(np, "ti,timer-alwon")) |
| continue; |
| |
| if (of_address_to_resource(np, 0, &res)) |
| continue; |
| |
| pa = res.start; |
| |
| /* Quirky omap3 boards must use dmtimer12 */ |
| if (quirk_unreliable_oscillator && pa == 0x48318000) |
| continue; |
| |
| of_node_put(np); |
| break; |
| } |
| |
| /* Usually no need for dmtimer clocksource if we have counter32 */ |
| if (counter_32k >= 0) { |
| clockevent = pa; |
| clocksource = 0; |
| } else { |
| clocksource = pa; |
| clockevent = DMTIMER_INST_DONT_CARE; |
| } |
| } |
| |
| /* Finds the first usable dmtimer, used for the don't care case */ |
| static u32 __init dmtimer_systimer_find_first_available(void) |
| { |
| struct device_node *np; |
| u32 pa = 0; |
| |
| for_each_matching_node(np, dmtimer_match_table) { |
| struct resource res; |
| if (!dmtimer_is_preferred(np)) |
| continue; |
| |
| if (of_address_to_resource(np, 0, &res)) |
| continue; |
| |
| if (res.start == clocksource || res.start == clockevent) |
| continue; |
| |
| pa = res.start; |
| of_node_put(np); |
| break; |
| } |
| |
| return pa; |
| } |
| |
| /* Selects the best clocksource and clockevent to use */ |
| static void __init dmtimer_systimer_select_best(void) |
| { |
| dmtimer_systimer_check_counter32k(); |
| dmtimer_systimer_assign_alwon(); |
| |
| if (clockevent == DMTIMER_INST_DONT_CARE) |
| clockevent = dmtimer_systimer_find_first_available(); |
| |
| pr_debug("%s: counter_32k: %i clocksource: %08x clockevent: %08x\n", |
| __func__, counter_32k, clocksource, clockevent); |
| } |
| |
| /* Interface clocks are only available on some SoCs variants */ |
| static int __init dmtimer_systimer_init_clock(struct dmtimer_systimer *t, |
| struct device_node *np, |
| const char *name, |
| unsigned long *rate) |
| { |
| struct clk *clock; |
| unsigned long r; |
| bool is_ick = false; |
| int error; |
| |
| is_ick = !strncmp(name, "ick", 3); |
| |
| clock = of_clk_get_by_name(np, name); |
| if ((PTR_ERR(clock) == -EINVAL) && is_ick) |
| return 0; |
| else if (IS_ERR(clock)) |
| return PTR_ERR(clock); |
| |
| error = clk_prepare_enable(clock); |
| if (error) |
| return error; |
| |
| r = clk_get_rate(clock); |
| if (!r) { |
| clk_disable_unprepare(clock); |
| return -ENODEV; |
| } |
| |
| if (is_ick) |
| t->ick = clock; |
| else |
| t->fck = clock; |
| |
| *rate = r; |
| |
| return 0; |
| } |
| |
| static int __init dmtimer_systimer_setup(struct device_node *np, |
| struct dmtimer_systimer *t) |
| { |
| unsigned long rate; |
| u8 regbase; |
| int error; |
| |
| if (!of_device_is_compatible(np->parent, "ti,sysc")) |
| return -EINVAL; |
| |
| t->base = of_iomap(np, 0); |
| if (!t->base) |
| return -ENXIO; |
| |
| /* |
| * Enable optional assigned-clock-parents configured at the timer |
| * node level. For regular device drivers, this is done automatically |
| * by bus related code such as platform_drv_probe(). |
| */ |
| error = of_clk_set_defaults(np, false); |
| if (error < 0) |
| pr_err("%s: clock source init failed: %i\n", __func__, error); |
| |
| /* For ti-sysc, we have timer clocks at the parent module level */ |
| error = dmtimer_systimer_init_clock(t, np->parent, "fck", &rate); |
| if (error) |
| goto err_unmap; |
| |
| t->rate = rate; |
| |
| error = dmtimer_systimer_init_clock(t, np->parent, "ick", &rate); |
| if (error) |
| goto err_unmap; |
| |
| if (dmtimer_systimer_revision1(t)) { |
| t->irq_stat = OMAP_TIMER_V1_STAT_OFFSET; |
| t->irq_ena = OMAP_TIMER_V1_INT_EN_OFFSET; |
| t->pend = _OMAP_TIMER_WRITE_PEND_OFFSET; |
| regbase = 0; |
| } else { |
| t->irq_stat = OMAP_TIMER_V2_IRQSTATUS; |
| t->irq_ena = OMAP_TIMER_V2_IRQENABLE_SET; |
| regbase = OMAP_TIMER_V2_FUNC_OFFSET; |
| t->pend = regbase + _OMAP_TIMER_WRITE_PEND_OFFSET; |
| } |
| |
| t->sysc = OMAP_TIMER_OCP_CFG_OFFSET; |
| t->load = regbase + _OMAP_TIMER_LOAD_OFFSET; |
| t->counter = regbase + _OMAP_TIMER_COUNTER_OFFSET; |
| t->ctrl = regbase + _OMAP_TIMER_CTRL_OFFSET; |
| t->wakeup = regbase + _OMAP_TIMER_WAKEUP_EN_OFFSET; |
| t->ifctrl = regbase + _OMAP_TIMER_IF_CTRL_OFFSET; |
| |
| dmtimer_systimer_reset(t); |
| dmtimer_systimer_enable(t); |
| pr_debug("dmtimer rev %08x sysc %08x\n", readl_relaxed(t->base), |
| readl_relaxed(t->base + t->sysc)); |
| |
| return 0; |
| |
| err_unmap: |
| iounmap(t->base); |
| |
| return error; |
| } |
| |
| /* Clockevent */ |
| static struct dmtimer_clockevent * |
| to_dmtimer_clockevent(struct clock_event_device *clockevent) |
| { |
| return container_of(clockevent, struct dmtimer_clockevent, dev); |
| } |
| |
| static irqreturn_t dmtimer_clockevent_interrupt(int irq, void *data) |
| { |
| struct dmtimer_clockevent *clkevt = data; |
| struct dmtimer_systimer *t = &clkevt->t; |
| |
| writel_relaxed(OMAP_TIMER_INT_OVERFLOW, t->base + t->irq_stat); |
| clkevt->dev.event_handler(&clkevt->dev); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int dmtimer_set_next_event(unsigned long cycles, |
| struct clock_event_device *evt) |
| { |
| struct dmtimer_clockevent *clkevt = to_dmtimer_clockevent(evt); |
| struct dmtimer_systimer *t = &clkevt->t; |
| void __iomem *pend = t->base + t->pend; |
| |
| while (readl_relaxed(pend) & WP_TCRR) |
| cpu_relax(); |
| writel_relaxed(0xffffffff - cycles, t->base + t->counter); |
| |
| while (readl_relaxed(pend) & WP_TCLR) |
| cpu_relax(); |
| writel_relaxed(OMAP_TIMER_CTRL_ST, t->base + t->ctrl); |
| |
| return 0; |
| } |
| |
| static int dmtimer_clockevent_shutdown(struct clock_event_device *evt) |
| { |
| struct dmtimer_clockevent *clkevt = to_dmtimer_clockevent(evt); |
| struct dmtimer_systimer *t = &clkevt->t; |
| void __iomem *ctrl = t->base + t->ctrl; |
| u32 l; |
| |
| l = readl_relaxed(ctrl); |
| if (l & OMAP_TIMER_CTRL_ST) { |
| l &= ~BIT(0); |
| writel_relaxed(l, ctrl); |
| /* Flush posted write */ |
| l = readl_relaxed(ctrl); |
| /* Wait for functional clock period x 3.5 */ |
| udelay(3500000 / t->rate + 1); |
| } |
| writel_relaxed(OMAP_TIMER_INT_OVERFLOW, t->base + t->irq_stat); |
| |
| return 0; |
| } |
| |
| static int dmtimer_set_periodic(struct clock_event_device *evt) |
| { |
| struct dmtimer_clockevent *clkevt = to_dmtimer_clockevent(evt); |
| struct dmtimer_systimer *t = &clkevt->t; |
| void __iomem *pend = t->base + t->pend; |
| |
| dmtimer_clockevent_shutdown(evt); |
| |
| /* Looks like we need to first set the load value separately */ |
| while (readl_relaxed(pend) & WP_TLDR) |
| cpu_relax(); |
| writel_relaxed(clkevt->period, t->base + t->load); |
| |
| while (readl_relaxed(pend) & WP_TCRR) |
| cpu_relax(); |
| writel_relaxed(clkevt->period, t->base + t->counter); |
| |
| while (readl_relaxed(pend) & WP_TCLR) |
| cpu_relax(); |
| writel_relaxed(OMAP_TIMER_CTRL_AR | OMAP_TIMER_CTRL_ST, |
| t->base + t->ctrl); |
| |
| return 0; |
| } |
| |
| static void omap_clockevent_idle(struct clock_event_device *evt) |
| { |
| struct dmtimer_clockevent *clkevt = to_dmtimer_clockevent(evt); |
| struct dmtimer_systimer *t = &clkevt->t; |
| |
| dmtimer_systimer_disable(t); |
| clk_disable(t->fck); |
| } |
| |
| static void omap_clockevent_unidle(struct clock_event_device *evt) |
| { |
| struct dmtimer_clockevent *clkevt = to_dmtimer_clockevent(evt); |
| struct dmtimer_systimer *t = &clkevt->t; |
| int error; |
| |
| error = clk_enable(t->fck); |
| if (error) |
| pr_err("could not enable timer fck on resume: %i\n", error); |
| |
| dmtimer_systimer_enable(t); |
| writel_relaxed(OMAP_TIMER_INT_OVERFLOW, t->base + t->irq_ena); |
| writel_relaxed(OMAP_TIMER_INT_OVERFLOW, t->base + t->wakeup); |
| } |
| |
| static int __init dmtimer_clkevt_init_common(struct dmtimer_clockevent *clkevt, |
| struct device_node *np, |
| unsigned int features, |
| const struct cpumask *cpumask, |
| const char *name, |
| int rating) |
| { |
| struct clock_event_device *dev; |
| struct dmtimer_systimer *t; |
| int error; |
| |
| t = &clkevt->t; |
| dev = &clkevt->dev; |
| |
| /* |
| * We mostly use cpuidle_coupled with ARM local timers for runtime, |
| * so there's probably no use for CLOCK_EVT_FEAT_DYNIRQ here. |
| */ |
| dev->features = features; |
| dev->rating = rating; |
| dev->set_next_event = dmtimer_set_next_event; |
| dev->set_state_shutdown = dmtimer_clockevent_shutdown; |
| dev->set_state_periodic = dmtimer_set_periodic; |
| dev->set_state_oneshot = dmtimer_clockevent_shutdown; |
| dev->set_state_oneshot_stopped = dmtimer_clockevent_shutdown; |
| dev->tick_resume = dmtimer_clockevent_shutdown; |
| dev->cpumask = cpumask; |
| |
| dev->irq = irq_of_parse_and_map(np, 0); |
| if (!dev->irq) |
| return -ENXIO; |
| |
| error = dmtimer_systimer_setup(np, &clkevt->t); |
| if (error) |
| return error; |
| |
| clkevt->period = 0xffffffff - DIV_ROUND_CLOSEST(t->rate, HZ); |
| |
| /* |
| * For clock-event timers we never read the timer counter and |
| * so we are not impacted by errata i103 and i767. Therefore, |
| * we can safely ignore this errata for clock-event timers. |
| */ |
| writel_relaxed(OMAP_TIMER_CTRL_POSTED, t->base + t->ifctrl); |
| |
| error = request_irq(dev->irq, dmtimer_clockevent_interrupt, |
| IRQF_TIMER, name, clkevt); |
| if (error) |
| goto err_out_unmap; |
| |
| writel_relaxed(OMAP_TIMER_INT_OVERFLOW, t->base + t->irq_ena); |
| writel_relaxed(OMAP_TIMER_INT_OVERFLOW, t->base + t->wakeup); |
| |
| pr_info("TI gptimer %s: %s%lu Hz at %pOF\n", |
| name, of_property_read_bool(np, "ti,timer-alwon") ? |
| "always-on " : "", t->rate, np->parent); |
| |
| return 0; |
| |
| err_out_unmap: |
| iounmap(t->base); |
| |
| return error; |
| } |
| |
| static int __init dmtimer_clockevent_init(struct device_node *np) |
| { |
| struct dmtimer_clockevent *clkevt; |
| int error; |
| |
| clkevt = kzalloc(sizeof(*clkevt), GFP_KERNEL); |
| if (!clkevt) |
| return -ENOMEM; |
| |
| error = dmtimer_clkevt_init_common(clkevt, np, |
| CLOCK_EVT_FEAT_PERIODIC | |
| CLOCK_EVT_FEAT_ONESHOT, |
| cpu_possible_mask, "clockevent", |
| 300); |
| if (error) |
| goto err_out_free; |
| |
| clockevents_config_and_register(&clkevt->dev, clkevt->t.rate, |
| 3, /* Timer internal resync latency */ |
| 0xffffffff); |
| |
| if (of_machine_is_compatible("ti,am33xx") || |
| of_machine_is_compatible("ti,am43")) { |
| clkevt->dev.suspend = omap_clockevent_idle; |
| clkevt->dev.resume = omap_clockevent_unidle; |
| } |
| |
| return 0; |
| |
| err_out_free: |
| kfree(clkevt); |
| |
| return error; |
| } |
| |
| /* Dmtimer as percpu timer. See dra7 ARM architected timer wrap erratum i940 */ |
| static DEFINE_PER_CPU(struct dmtimer_clockevent, dmtimer_percpu_timer); |
| |
| static int __init dmtimer_percpu_timer_init(struct device_node *np, int cpu) |
| { |
| struct dmtimer_clockevent *clkevt; |
| int error; |
| |
| if (!cpu_possible(cpu)) |
| return -EINVAL; |
| |
| if (!of_property_read_bool(np->parent, "ti,no-reset-on-init") || |
| !of_property_read_bool(np->parent, "ti,no-idle")) |
| pr_warn("Incomplete dtb for percpu dmtimer %pOF\n", np->parent); |
| |
| clkevt = per_cpu_ptr(&dmtimer_percpu_timer, cpu); |
| |
| error = dmtimer_clkevt_init_common(clkevt, np, CLOCK_EVT_FEAT_ONESHOT, |
| cpumask_of(cpu), "percpu-dmtimer", |
| 500); |
| if (error) |
| return error; |
| |
| return 0; |
| } |
| |
| /* See TRM for timer internal resynch latency */ |
| static int omap_dmtimer_starting_cpu(unsigned int cpu) |
| { |
| struct dmtimer_clockevent *clkevt = per_cpu_ptr(&dmtimer_percpu_timer, cpu); |
| struct clock_event_device *dev = &clkevt->dev; |
| struct dmtimer_systimer *t = &clkevt->t; |
| |
| clockevents_config_and_register(dev, t->rate, 3, ULONG_MAX); |
| irq_force_affinity(dev->irq, cpumask_of(cpu)); |
| |
| return 0; |
| } |
| |
| static int __init dmtimer_percpu_timer_startup(void) |
| { |
| struct dmtimer_clockevent *clkevt = per_cpu_ptr(&dmtimer_percpu_timer, 0); |
| struct dmtimer_systimer *t = &clkevt->t; |
| |
| if (t->sysc) { |
| cpuhp_setup_state(CPUHP_AP_TI_GP_TIMER_STARTING, |
| "clockevents/omap/gptimer:starting", |
| omap_dmtimer_starting_cpu, NULL); |
| } |
| |
| return 0; |
| } |
| subsys_initcall(dmtimer_percpu_timer_startup); |
| |
| static int __init dmtimer_percpu_quirk_init(struct device_node *np, u32 pa) |
| { |
| struct device_node *arm_timer; |
| |
| arm_timer = of_find_compatible_node(NULL, NULL, "arm,armv7-timer"); |
| if (of_device_is_available(arm_timer)) { |
| pr_warn_once("ARM architected timer wrap issue i940 detected\n"); |
| return 0; |
| } |
| |
| if (pa == 0x4882c000) /* dra7 dmtimer15 */ |
| return dmtimer_percpu_timer_init(np, 0); |
| else if (pa == 0x4882e000) /* dra7 dmtimer16 */ |
| return dmtimer_percpu_timer_init(np, 1); |
| |
| return 0; |
| } |
| |
| /* Clocksource */ |
| static struct dmtimer_clocksource * |
| to_dmtimer_clocksource(struct clocksource *cs) |
| { |
| return container_of(cs, struct dmtimer_clocksource, dev); |
| } |
| |
| static u64 dmtimer_clocksource_read_cycles(struct clocksource *cs) |
| { |
| struct dmtimer_clocksource *clksrc = to_dmtimer_clocksource(cs); |
| struct dmtimer_systimer *t = &clksrc->t; |
| |
| return (u64)readl_relaxed(t->base + t->counter); |
| } |
| |
| static void __iomem *dmtimer_sched_clock_counter; |
| |
| static u64 notrace dmtimer_read_sched_clock(void) |
| { |
| return readl_relaxed(dmtimer_sched_clock_counter); |
| } |
| |
| static void dmtimer_clocksource_suspend(struct clocksource *cs) |
| { |
| struct dmtimer_clocksource *clksrc = to_dmtimer_clocksource(cs); |
| struct dmtimer_systimer *t = &clksrc->t; |
| |
| clksrc->loadval = readl_relaxed(t->base + t->counter); |
| dmtimer_systimer_disable(t); |
| clk_disable(t->fck); |
| } |
| |
| static void dmtimer_clocksource_resume(struct clocksource *cs) |
| { |
| struct dmtimer_clocksource *clksrc = to_dmtimer_clocksource(cs); |
| struct dmtimer_systimer *t = &clksrc->t; |
| int error; |
| |
| error = clk_enable(t->fck); |
| if (error) |
| pr_err("could not enable timer fck on resume: %i\n", error); |
| |
| dmtimer_systimer_enable(t); |
| writel_relaxed(clksrc->loadval, t->base + t->counter); |
| writel_relaxed(OMAP_TIMER_CTRL_ST | OMAP_TIMER_CTRL_AR, |
| t->base + t->ctrl); |
| } |
| |
| static int __init dmtimer_clocksource_init(struct device_node *np) |
| { |
| struct dmtimer_clocksource *clksrc; |
| struct dmtimer_systimer *t; |
| struct clocksource *dev; |
| int error; |
| |
| clksrc = kzalloc(sizeof(*clksrc), GFP_KERNEL); |
| if (!clksrc) |
| return -ENOMEM; |
| |
| dev = &clksrc->dev; |
| t = &clksrc->t; |
| |
| error = dmtimer_systimer_setup(np, t); |
| if (error) |
| goto err_out_free; |
| |
| dev->name = "dmtimer"; |
| dev->rating = 300; |
| dev->read = dmtimer_clocksource_read_cycles; |
| dev->mask = CLOCKSOURCE_MASK(32); |
| dev->flags = CLOCK_SOURCE_IS_CONTINUOUS; |
| |
| /* Unlike for clockevent, legacy code sets suspend only for am4 */ |
| if (of_machine_is_compatible("ti,am43")) { |
| dev->suspend = dmtimer_clocksource_suspend; |
| dev->resume = dmtimer_clocksource_resume; |
| } |
| |
| writel_relaxed(0, t->base + t->counter); |
| writel_relaxed(OMAP_TIMER_CTRL_ST | OMAP_TIMER_CTRL_AR, |
| t->base + t->ctrl); |
| |
| pr_info("TI gptimer clocksource: %s%pOF\n", |
| of_property_read_bool(np, "ti,timer-alwon") ? |
| "always-on " : "", np->parent); |
| |
| if (!dmtimer_sched_clock_counter) { |
| dmtimer_sched_clock_counter = t->base + t->counter; |
| sched_clock_register(dmtimer_read_sched_clock, 32, t->rate); |
| } |
| |
| if (clocksource_register_hz(dev, t->rate)) |
| pr_err("Could not register clocksource %pOF\n", np); |
| |
| return 0; |
| |
| err_out_free: |
| kfree(clksrc); |
| |
| return -ENODEV; |
| } |
| |
| /* |
| * To detect between a clocksource and clockevent, we assume the device tree |
| * has no interrupts configured for a clocksource timer. |
| */ |
| static int __init dmtimer_systimer_init(struct device_node *np) |
| { |
| struct resource res; |
| u32 pa; |
| |
| /* One time init for the preferred timer configuration */ |
| if (!clocksource && !clockevent) |
| dmtimer_systimer_select_best(); |
| |
| if (!clocksource && !clockevent) { |
| pr_err("%s: unable to detect system timers, update dtb?\n", |
| __func__); |
| |
| return -EINVAL; |
| } |
| |
| |
| of_address_to_resource(np, 0, &res); |
| pa = (u32)res.start; |
| if (!pa) |
| return -EINVAL; |
| |
| if (counter_32k <= 0 && clocksource == pa) |
| return dmtimer_clocksource_init(np); |
| |
| if (clockevent == pa) |
| return dmtimer_clockevent_init(np); |
| |
| if (of_machine_is_compatible("ti,dra7")) |
| return dmtimer_percpu_quirk_init(np, pa); |
| |
| return 0; |
| } |
| |
| TIMER_OF_DECLARE(systimer_omap2, "ti,omap2420-timer", dmtimer_systimer_init); |
| TIMER_OF_DECLARE(systimer_omap3, "ti,omap3430-timer", dmtimer_systimer_init); |
| TIMER_OF_DECLARE(systimer_omap4, "ti,omap4430-timer", dmtimer_systimer_init); |
| TIMER_OF_DECLARE(systimer_omap5, "ti,omap5430-timer", dmtimer_systimer_init); |
| TIMER_OF_DECLARE(systimer_am33x, "ti,am335x-timer", dmtimer_systimer_init); |
| TIMER_OF_DECLARE(systimer_am3ms, "ti,am335x-timer-1ms", dmtimer_systimer_init); |
| TIMER_OF_DECLARE(systimer_dm814, "ti,dm814-timer", dmtimer_systimer_init); |
| TIMER_OF_DECLARE(systimer_dm816, "ti,dm816-timer", dmtimer_systimer_init); |