| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * drivers/i2c/chips/lm8323.c |
| * |
| * Copyright (C) 2007-2009 Nokia Corporation |
| * |
| * Written by Daniel Stone <daniel.stone@nokia.com> |
| * Timo O. Karjalainen <timo.o.karjalainen@nokia.com> |
| * |
| * Updated by Felipe Balbi <felipe.balbi@nokia.com> |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/i2c.h> |
| #include <linux/interrupt.h> |
| #include <linux/sched.h> |
| #include <linux/mutex.h> |
| #include <linux/delay.h> |
| #include <linux/input.h> |
| #include <linux/leds.h> |
| #include <linux/platform_data/lm8323.h> |
| #include <linux/pm.h> |
| #include <linux/slab.h> |
| |
| /* Commands to send to the chip. */ |
| #define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */ |
| #define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */ |
| #define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */ |
| #define LM8323_CMD_RESET 0x83 /* Reset, same as external one */ |
| #define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */ |
| #define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */ |
| #define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */ |
| #define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */ |
| #define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */ |
| #define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */ |
| #define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */ |
| #define LM8323_CMD_READ_ERR 0x8c /* Get error status. */ |
| #define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */ |
| #define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */ |
| #define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */ |
| #define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */ |
| #define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */ |
| #define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */ |
| #define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */ |
| #define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */ |
| #define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */ |
| #define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */ |
| |
| /* Interrupt status. */ |
| #define INT_KEYPAD 0x01 /* Key event. */ |
| #define INT_ROTATOR 0x02 /* Rotator event. */ |
| #define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */ |
| #define INT_NOINIT 0x10 /* Lost configuration. */ |
| #define INT_PWM1 0x20 /* PWM1 stopped. */ |
| #define INT_PWM2 0x40 /* PWM2 stopped. */ |
| #define INT_PWM3 0x80 /* PWM3 stopped. */ |
| |
| /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */ |
| #define ERR_BADPAR 0x01 /* Bad parameter. */ |
| #define ERR_CMDUNK 0x02 /* Unknown command. */ |
| #define ERR_KEYOVR 0x04 /* Too many keys pressed. */ |
| #define ERR_FIFOOVER 0x40 /* FIFO overflow. */ |
| |
| /* Configuration keys (CMD_{WRITE,READ}_CFG). */ |
| #define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */ |
| #define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */ |
| #define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */ |
| #define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */ |
| #define CFG_PSIZE 0x20 /* Package size (must be 0). */ |
| #define CFG_ROTEN 0x40 /* Enable rotator. */ |
| |
| /* Clock settings (CMD_{WRITE,READ}_CLOCK). */ |
| #define CLK_RCPWM_INTERNAL 0x00 |
| #define CLK_RCPWM_EXTERNAL 0x03 |
| #define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */ |
| #define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */ |
| |
| /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */ |
| #define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */ |
| #define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */ |
| #define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */ |
| #define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */ |
| |
| /* Key event fifo length */ |
| #define LM8323_FIFO_LEN 15 |
| |
| /* Commands for PWM engine; feed in with PWM_WRITE. */ |
| /* Load ramp counter from duty cycle field (range 0 - 0xff). */ |
| #define PWM_SET(v) (0x4000 | ((v) & 0xff)) |
| /* Go to start of script. */ |
| #define PWM_GOTOSTART 0x0000 |
| /* |
| * Stop engine (generates interrupt). If reset is 1, clear the program |
| * counter, else leave it. |
| */ |
| #define PWM_END(reset) (0xc000 | (!!(reset) << 11)) |
| /* |
| * Ramp. If s is 1, divide clock by 512, else divide clock by 16. |
| * Take t clock scales (up to 63) per step, for n steps (up to 126). |
| * If u is set, ramp up, else ramp down. |
| */ |
| #define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \ |
| ((n) & 0x7f) | ((u) ? 0 : 0x80)) |
| /* |
| * Loop (i.e. jump back to pos) for a given number of iterations (up to 63). |
| * If cnt is zero, execute until PWM_END is encountered. |
| */ |
| #define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \ |
| ((pos) & 0x3f)) |
| /* |
| * Wait for trigger. Argument is a mask of channels, shifted by the channel |
| * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered |
| * from 1, not 0. |
| */ |
| #define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6)) |
| /* Send trigger. Argument is same as PWM_WAIT_TRIG. */ |
| #define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7)) |
| |
| struct lm8323_pwm { |
| int id; |
| int fade_time; |
| int brightness; |
| int desired_brightness; |
| bool enabled; |
| bool running; |
| /* pwm lock */ |
| struct mutex lock; |
| struct work_struct work; |
| struct led_classdev cdev; |
| struct lm8323_chip *chip; |
| }; |
| |
| struct lm8323_chip { |
| /* device lock */ |
| struct mutex lock; |
| struct i2c_client *client; |
| struct input_dev *idev; |
| bool kp_enabled; |
| bool pm_suspend; |
| unsigned keys_down; |
| char phys[32]; |
| unsigned short keymap[LM8323_KEYMAP_SIZE]; |
| int size_x; |
| int size_y; |
| int debounce_time; |
| int active_time; |
| struct lm8323_pwm pwm[LM8323_NUM_PWMS]; |
| }; |
| |
| #define client_to_lm8323(c) container_of(c, struct lm8323_chip, client) |
| #define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev) |
| #define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev) |
| #define work_to_pwm(w) container_of(w, struct lm8323_pwm, work) |
| |
| #define LM8323_MAX_DATA 8 |
| |
| /* |
| * To write, we just access the chip's address in write mode, and dump the |
| * command and data out on the bus. The command byte and data are taken as |
| * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA. |
| */ |
| static int lm8323_write(struct lm8323_chip *lm, int len, ...) |
| { |
| int ret, i; |
| va_list ap; |
| u8 data[LM8323_MAX_DATA]; |
| |
| va_start(ap, len); |
| |
| if (unlikely(len > LM8323_MAX_DATA)) { |
| dev_err(&lm->client->dev, "tried to send %d bytes\n", len); |
| va_end(ap); |
| return 0; |
| } |
| |
| for (i = 0; i < len; i++) |
| data[i] = va_arg(ap, int); |
| |
| va_end(ap); |
| |
| /* |
| * If the host is asleep while we send the data, we can get a NACK |
| * back while it wakes up, so try again, once. |
| */ |
| ret = i2c_master_send(lm->client, data, len); |
| if (unlikely(ret == -EREMOTEIO)) |
| ret = i2c_master_send(lm->client, data, len); |
| if (unlikely(ret != len)) |
| dev_err(&lm->client->dev, "sent %d bytes of %d total\n", |
| len, ret); |
| |
| return ret; |
| } |
| |
| /* |
| * To read, we first send the command byte to the chip and end the transaction, |
| * then access the chip in read mode, at which point it will send the data. |
| */ |
| static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len) |
| { |
| int ret; |
| |
| /* |
| * If the host is asleep while we send the byte, we can get a NACK |
| * back while it wakes up, so try again, once. |
| */ |
| ret = i2c_master_send(lm->client, &cmd, 1); |
| if (unlikely(ret == -EREMOTEIO)) |
| ret = i2c_master_send(lm->client, &cmd, 1); |
| if (unlikely(ret != 1)) { |
| dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n", |
| cmd); |
| return 0; |
| } |
| |
| ret = i2c_master_recv(lm->client, buf, len); |
| if (unlikely(ret != len)) |
| dev_err(&lm->client->dev, "wanted %d bytes, got %d\n", |
| len, ret); |
| |
| return ret; |
| } |
| |
| /* |
| * Set the chip active time (idle time before it enters halt). |
| */ |
| static void lm8323_set_active_time(struct lm8323_chip *lm, int time) |
| { |
| lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2); |
| } |
| |
| /* |
| * The signals are AT-style: the low 7 bits are the keycode, and the top |
| * bit indicates the state (1 for down, 0 for up). |
| */ |
| static inline u8 lm8323_whichkey(u8 event) |
| { |
| return event & 0x7f; |
| } |
| |
| static inline int lm8323_ispress(u8 event) |
| { |
| return (event & 0x80) ? 1 : 0; |
| } |
| |
| static void process_keys(struct lm8323_chip *lm) |
| { |
| u8 event; |
| u8 key_fifo[LM8323_FIFO_LEN + 1]; |
| int old_keys_down = lm->keys_down; |
| int ret; |
| int i = 0; |
| |
| /* |
| * Read all key events from the FIFO at once. Next READ_FIFO clears the |
| * FIFO even if we didn't read all events previously. |
| */ |
| ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN); |
| |
| if (ret < 0) { |
| dev_err(&lm->client->dev, "Failed reading fifo \n"); |
| return; |
| } |
| key_fifo[ret] = 0; |
| |
| while ((event = key_fifo[i++])) { |
| u8 key = lm8323_whichkey(event); |
| int isdown = lm8323_ispress(event); |
| unsigned short keycode = lm->keymap[key]; |
| |
| dev_vdbg(&lm->client->dev, "key 0x%02x %s\n", |
| key, isdown ? "down" : "up"); |
| |
| if (lm->kp_enabled) { |
| input_event(lm->idev, EV_MSC, MSC_SCAN, key); |
| input_report_key(lm->idev, keycode, isdown); |
| input_sync(lm->idev); |
| } |
| |
| if (isdown) |
| lm->keys_down++; |
| else |
| lm->keys_down--; |
| } |
| |
| /* |
| * Errata: We need to ensure that the chip never enters halt mode |
| * during a keypress, so set active time to 0. When it's released, |
| * we can enter halt again, so set the active time back to normal. |
| */ |
| if (!old_keys_down && lm->keys_down) |
| lm8323_set_active_time(lm, 0); |
| if (old_keys_down && !lm->keys_down) |
| lm8323_set_active_time(lm, lm->active_time); |
| } |
| |
| static void lm8323_process_error(struct lm8323_chip *lm) |
| { |
| u8 error; |
| |
| if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) { |
| if (error & ERR_FIFOOVER) |
| dev_vdbg(&lm->client->dev, "fifo overflow!\n"); |
| if (error & ERR_KEYOVR) |
| dev_vdbg(&lm->client->dev, |
| "more than two keys pressed\n"); |
| if (error & ERR_CMDUNK) |
| dev_vdbg(&lm->client->dev, |
| "unknown command submitted\n"); |
| if (error & ERR_BADPAR) |
| dev_vdbg(&lm->client->dev, "bad command parameter\n"); |
| } |
| } |
| |
| static void lm8323_reset(struct lm8323_chip *lm) |
| { |
| /* The docs say we must pass 0xAA as the data byte. */ |
| lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA); |
| } |
| |
| static int lm8323_configure(struct lm8323_chip *lm) |
| { |
| int keysize = (lm->size_x << 4) | lm->size_y; |
| int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL); |
| int debounce = lm->debounce_time >> 2; |
| int active = lm->active_time >> 2; |
| |
| /* |
| * Active time must be greater than the debounce time: if it's |
| * a close-run thing, give ourselves a 12ms buffer. |
| */ |
| if (debounce >= active) |
| active = debounce + 3; |
| |
| lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0); |
| lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock); |
| lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize); |
| lm8323_set_active_time(lm, lm->active_time); |
| lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce); |
| lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff); |
| lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0); |
| |
| /* |
| * Not much we can do about errors at this point, so just hope |
| * for the best. |
| */ |
| |
| return 0; |
| } |
| |
| static void pwm_done(struct lm8323_pwm *pwm) |
| { |
| mutex_lock(&pwm->lock); |
| pwm->running = false; |
| if (pwm->desired_brightness != pwm->brightness) |
| schedule_work(&pwm->work); |
| mutex_unlock(&pwm->lock); |
| } |
| |
| /* |
| * Bottom half: handle the interrupt by posting key events, or dealing with |
| * errors appropriately. |
| */ |
| static irqreturn_t lm8323_irq(int irq, void *_lm) |
| { |
| struct lm8323_chip *lm = _lm; |
| u8 ints; |
| int i; |
| |
| mutex_lock(&lm->lock); |
| |
| while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) { |
| if (likely(ints & INT_KEYPAD)) |
| process_keys(lm); |
| if (ints & INT_ROTATOR) { |
| /* We don't currently support the rotator. */ |
| dev_vdbg(&lm->client->dev, "rotator fired\n"); |
| } |
| if (ints & INT_ERROR) { |
| dev_vdbg(&lm->client->dev, "error!\n"); |
| lm8323_process_error(lm); |
| } |
| if (ints & INT_NOINIT) { |
| dev_err(&lm->client->dev, "chip lost config; " |
| "reinitialising\n"); |
| lm8323_configure(lm); |
| } |
| for (i = 0; i < LM8323_NUM_PWMS; i++) { |
| if (ints & (INT_PWM1 << i)) { |
| dev_vdbg(&lm->client->dev, |
| "pwm%d engine completed\n", i); |
| pwm_done(&lm->pwm[i]); |
| } |
| } |
| } |
| |
| mutex_unlock(&lm->lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Read the chip ID. |
| */ |
| static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf) |
| { |
| int bytes; |
| |
| bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2); |
| if (unlikely(bytes != 2)) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd) |
| { |
| lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id, |
| (cmd & 0xff00) >> 8, cmd & 0x00ff); |
| } |
| |
| /* |
| * Write a script into a given PWM engine, concluding with PWM_END. |
| * If 'kill' is nonzero, the engine will be shut down at the end |
| * of the script, producing a zero output. Otherwise the engine |
| * will be kept running at the final PWM level indefinitely. |
| */ |
| static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill, |
| int len, const u16 *cmds) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) |
| lm8323_write_pwm_one(pwm, i, cmds[i]); |
| |
| lm8323_write_pwm_one(pwm, i++, PWM_END(kill)); |
| lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id); |
| pwm->running = true; |
| } |
| |
| static void lm8323_pwm_work(struct work_struct *work) |
| { |
| struct lm8323_pwm *pwm = work_to_pwm(work); |
| int div512, perstep, steps, hz, up, kill; |
| u16 pwm_cmds[3]; |
| int num_cmds = 0; |
| |
| mutex_lock(&pwm->lock); |
| |
| /* |
| * Do nothing if we're already at the requested level, |
| * or previous setting is not yet complete. In the latter |
| * case we will be called again when the previous PWM script |
| * finishes. |
| */ |
| if (pwm->running || pwm->desired_brightness == pwm->brightness) |
| goto out; |
| |
| kill = (pwm->desired_brightness == 0); |
| up = (pwm->desired_brightness > pwm->brightness); |
| steps = abs(pwm->desired_brightness - pwm->brightness); |
| |
| /* |
| * Convert time (in ms) into a divisor (512 or 16 on a refclk of |
| * 32768Hz), and number of ticks per step. |
| */ |
| if ((pwm->fade_time / steps) > (32768 / 512)) { |
| div512 = 1; |
| hz = 32768 / 512; |
| } else { |
| div512 = 0; |
| hz = 32768 / 16; |
| } |
| |
| perstep = (hz * pwm->fade_time) / (steps * 1000); |
| |
| if (perstep == 0) |
| perstep = 1; |
| else if (perstep > 63) |
| perstep = 63; |
| |
| while (steps) { |
| int s; |
| |
| s = min(126, steps); |
| pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up); |
| steps -= s; |
| } |
| |
| lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds); |
| pwm->brightness = pwm->desired_brightness; |
| |
| out: |
| mutex_unlock(&pwm->lock); |
| } |
| |
| static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev, |
| enum led_brightness brightness) |
| { |
| struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); |
| struct lm8323_chip *lm = pwm->chip; |
| |
| mutex_lock(&pwm->lock); |
| pwm->desired_brightness = brightness; |
| mutex_unlock(&pwm->lock); |
| |
| if (in_interrupt()) { |
| schedule_work(&pwm->work); |
| } else { |
| /* |
| * Schedule PWM work as usual unless we are going into suspend |
| */ |
| mutex_lock(&lm->lock); |
| if (likely(!lm->pm_suspend)) |
| schedule_work(&pwm->work); |
| else |
| lm8323_pwm_work(&pwm->work); |
| mutex_unlock(&lm->lock); |
| } |
| } |
| |
| static ssize_t lm8323_pwm_show_time(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct led_classdev *led_cdev = dev_get_drvdata(dev); |
| struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); |
| |
| return sprintf(buf, "%d\n", pwm->fade_time); |
| } |
| |
| static ssize_t lm8323_pwm_store_time(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| struct led_classdev *led_cdev = dev_get_drvdata(dev); |
| struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); |
| int ret, time; |
| |
| ret = kstrtoint(buf, 10, &time); |
| /* Numbers only, please. */ |
| if (ret) |
| return ret; |
| |
| pwm->fade_time = time; |
| |
| return strlen(buf); |
| } |
| static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time); |
| |
| static struct attribute *lm8323_pwm_attrs[] = { |
| &dev_attr_time.attr, |
| NULL |
| }; |
| ATTRIBUTE_GROUPS(lm8323_pwm); |
| |
| static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev, |
| const char *name) |
| { |
| struct lm8323_pwm *pwm; |
| int err; |
| |
| BUG_ON(id > 3); |
| |
| pwm = &lm->pwm[id - 1]; |
| |
| pwm->id = id; |
| pwm->fade_time = 0; |
| pwm->brightness = 0; |
| pwm->desired_brightness = 0; |
| pwm->running = false; |
| pwm->enabled = false; |
| INIT_WORK(&pwm->work, lm8323_pwm_work); |
| mutex_init(&pwm->lock); |
| pwm->chip = lm; |
| |
| if (name) { |
| pwm->cdev.name = name; |
| pwm->cdev.brightness_set = lm8323_pwm_set_brightness; |
| pwm->cdev.groups = lm8323_pwm_groups; |
| |
| err = devm_led_classdev_register(dev, &pwm->cdev); |
| if (err) { |
| dev_err(dev, "couldn't register PWM %d: %d\n", id, err); |
| return err; |
| } |
| pwm->enabled = true; |
| } |
| |
| return 0; |
| } |
| |
| static ssize_t lm8323_show_disable(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct lm8323_chip *lm = dev_get_drvdata(dev); |
| |
| return sprintf(buf, "%u\n", !lm->kp_enabled); |
| } |
| |
| static ssize_t lm8323_set_disable(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct lm8323_chip *lm = dev_get_drvdata(dev); |
| int ret; |
| unsigned int i; |
| |
| ret = kstrtouint(buf, 10, &i); |
| if (ret) |
| return ret; |
| |
| mutex_lock(&lm->lock); |
| lm->kp_enabled = !i; |
| mutex_unlock(&lm->lock); |
| |
| return count; |
| } |
| static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable); |
| |
| static struct attribute *lm8323_attrs[] = { |
| &dev_attr_disable_kp.attr, |
| NULL, |
| }; |
| ATTRIBUTE_GROUPS(lm8323); |
| |
| static int lm8323_probe(struct i2c_client *client) |
| { |
| struct lm8323_platform_data *pdata = dev_get_platdata(&client->dev); |
| struct input_dev *idev; |
| struct lm8323_chip *lm; |
| int pwm; |
| int i, err; |
| unsigned long tmo; |
| u8 data[2]; |
| |
| if (!pdata || !pdata->size_x || !pdata->size_y) { |
| dev_err(&client->dev, "missing platform_data\n"); |
| return -EINVAL; |
| } |
| |
| if (pdata->size_x > 8) { |
| dev_err(&client->dev, "invalid x size %d specified\n", |
| pdata->size_x); |
| return -EINVAL; |
| } |
| |
| if (pdata->size_y > 12) { |
| dev_err(&client->dev, "invalid y size %d specified\n", |
| pdata->size_y); |
| return -EINVAL; |
| } |
| |
| lm = devm_kzalloc(&client->dev, sizeof(*lm), GFP_KERNEL); |
| if (!lm) |
| return -ENOMEM; |
| |
| idev = devm_input_allocate_device(&client->dev); |
| if (!idev) |
| return -ENOMEM; |
| |
| lm->client = client; |
| lm->idev = idev; |
| mutex_init(&lm->lock); |
| |
| lm->size_x = pdata->size_x; |
| lm->size_y = pdata->size_y; |
| dev_vdbg(&client->dev, "Keypad size: %d x %d\n", |
| lm->size_x, lm->size_y); |
| |
| lm->debounce_time = pdata->debounce_time; |
| lm->active_time = pdata->active_time; |
| |
| lm8323_reset(lm); |
| |
| /* |
| * Nothing's set up to service the IRQ yet, so just spin for max. |
| * 100ms until we can configure. |
| */ |
| tmo = jiffies + msecs_to_jiffies(100); |
| while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) { |
| if (data[0] & INT_NOINIT) |
| break; |
| |
| if (time_after(jiffies, tmo)) { |
| dev_err(&client->dev, |
| "timeout waiting for initialisation\n"); |
| break; |
| } |
| |
| msleep(1); |
| } |
| |
| lm8323_configure(lm); |
| |
| /* If a true probe check the device */ |
| if (lm8323_read_id(lm, data) != 0) { |
| dev_err(&client->dev, "device not found\n"); |
| return -ENODEV; |
| } |
| |
| for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) { |
| err = init_pwm(lm, pwm + 1, &client->dev, |
| pdata->pwm_names[pwm]); |
| if (err) |
| return err; |
| } |
| |
| lm->kp_enabled = true; |
| |
| idev->name = pdata->name ? : "LM8323 keypad"; |
| snprintf(lm->phys, sizeof(lm->phys), |
| "%s/input-kp", dev_name(&client->dev)); |
| idev->phys = lm->phys; |
| |
| idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC); |
| __set_bit(MSC_SCAN, idev->mscbit); |
| for (i = 0; i < LM8323_KEYMAP_SIZE; i++) { |
| __set_bit(pdata->keymap[i], idev->keybit); |
| lm->keymap[i] = pdata->keymap[i]; |
| } |
| __clear_bit(KEY_RESERVED, idev->keybit); |
| |
| if (pdata->repeat) |
| __set_bit(EV_REP, idev->evbit); |
| |
| err = input_register_device(idev); |
| if (err) { |
| dev_dbg(&client->dev, "error registering input device\n"); |
| return err; |
| } |
| |
| err = devm_request_threaded_irq(&client->dev, client->irq, |
| NULL, lm8323_irq, |
| IRQF_TRIGGER_LOW | IRQF_ONESHOT, |
| "lm8323", lm); |
| if (err) { |
| dev_err(&client->dev, "could not get IRQ %d\n", client->irq); |
| return err; |
| } |
| |
| i2c_set_clientdata(client, lm); |
| |
| device_init_wakeup(&client->dev, 1); |
| enable_irq_wake(client->irq); |
| |
| return 0; |
| } |
| |
| /* |
| * We don't need to explicitly suspend the chip, as it already switches off |
| * when there's no activity. |
| */ |
| static int lm8323_suspend(struct device *dev) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct lm8323_chip *lm = i2c_get_clientdata(client); |
| int i; |
| |
| irq_set_irq_wake(client->irq, 0); |
| disable_irq(client->irq); |
| |
| mutex_lock(&lm->lock); |
| lm->pm_suspend = true; |
| mutex_unlock(&lm->lock); |
| |
| for (i = 0; i < 3; i++) |
| if (lm->pwm[i].enabled) |
| led_classdev_suspend(&lm->pwm[i].cdev); |
| |
| return 0; |
| } |
| |
| static int lm8323_resume(struct device *dev) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct lm8323_chip *lm = i2c_get_clientdata(client); |
| int i; |
| |
| mutex_lock(&lm->lock); |
| lm->pm_suspend = false; |
| mutex_unlock(&lm->lock); |
| |
| for (i = 0; i < 3; i++) |
| if (lm->pwm[i].enabled) |
| led_classdev_resume(&lm->pwm[i].cdev); |
| |
| enable_irq(client->irq); |
| irq_set_irq_wake(client->irq, 1); |
| |
| return 0; |
| } |
| |
| static DEFINE_SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume); |
| |
| static const struct i2c_device_id lm8323_id[] = { |
| { "lm8323", 0 }, |
| { } |
| }; |
| |
| static struct i2c_driver lm8323_i2c_driver = { |
| .driver = { |
| .name = "lm8323", |
| .pm = pm_sleep_ptr(&lm8323_pm_ops), |
| .dev_groups = lm8323_groups, |
| }, |
| .probe = lm8323_probe, |
| .id_table = lm8323_id, |
| }; |
| MODULE_DEVICE_TABLE(i2c, lm8323_id); |
| |
| module_i2c_driver(lm8323_i2c_driver); |
| |
| MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>"); |
| MODULE_AUTHOR("Daniel Stone"); |
| MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>"); |
| MODULE_DESCRIPTION("LM8323 keypad driver"); |
| MODULE_LICENSE("GPL"); |
| |