| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2020 Intel Corporation |
| */ |
| |
| #include <linux/slab.h> /* fault-inject.h is not standalone! */ |
| |
| #include <linux/fault-inject.h> |
| |
| #include "i915_trace.h" |
| #include "intel_gt.h" |
| #include "intel_gtt.h" |
| |
| void stash_init(struct pagestash *stash) |
| { |
| pagevec_init(&stash->pvec); |
| spin_lock_init(&stash->lock); |
| } |
| |
| static struct page *stash_pop_page(struct pagestash *stash) |
| { |
| struct page *page = NULL; |
| |
| spin_lock(&stash->lock); |
| if (likely(stash->pvec.nr)) |
| page = stash->pvec.pages[--stash->pvec.nr]; |
| spin_unlock(&stash->lock); |
| |
| return page; |
| } |
| |
| static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec) |
| { |
| unsigned int nr; |
| |
| spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING); |
| |
| nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec)); |
| memcpy(stash->pvec.pages + stash->pvec.nr, |
| pvec->pages + pvec->nr - nr, |
| sizeof(pvec->pages[0]) * nr); |
| stash->pvec.nr += nr; |
| |
| spin_unlock(&stash->lock); |
| |
| pvec->nr -= nr; |
| } |
| |
| static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp) |
| { |
| struct pagevec stack; |
| struct page *page; |
| |
| if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) |
| i915_gem_shrink_all(vm->i915); |
| |
| page = stash_pop_page(&vm->free_pages); |
| if (page) |
| return page; |
| |
| if (!vm->pt_kmap_wc) |
| return alloc_page(gfp); |
| |
| /* Look in our global stash of WC pages... */ |
| page = stash_pop_page(&vm->i915->mm.wc_stash); |
| if (page) |
| return page; |
| |
| /* |
| * Otherwise batch allocate pages to amortize cost of set_pages_wc. |
| * |
| * We have to be careful as page allocation may trigger the shrinker |
| * (via direct reclaim) which will fill up the WC stash underneath us. |
| * So we add our WB pages into a temporary pvec on the stack and merge |
| * them into the WC stash after all the allocations are complete. |
| */ |
| pagevec_init(&stack); |
| do { |
| struct page *page; |
| |
| page = alloc_page(gfp); |
| if (unlikely(!page)) |
| break; |
| |
| stack.pages[stack.nr++] = page; |
| } while (pagevec_space(&stack)); |
| |
| if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) { |
| page = stack.pages[--stack.nr]; |
| |
| /* Merge spare WC pages to the global stash */ |
| if (stack.nr) |
| stash_push_pagevec(&vm->i915->mm.wc_stash, &stack); |
| |
| /* Push any surplus WC pages onto the local VM stash */ |
| if (stack.nr) |
| stash_push_pagevec(&vm->free_pages, &stack); |
| } |
| |
| /* Return unwanted leftovers */ |
| if (unlikely(stack.nr)) { |
| WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr)); |
| __pagevec_release(&stack); |
| } |
| |
| return page; |
| } |
| |
| static void vm_free_pages_release(struct i915_address_space *vm, |
| bool immediate) |
| { |
| struct pagevec *pvec = &vm->free_pages.pvec; |
| struct pagevec stack; |
| |
| lockdep_assert_held(&vm->free_pages.lock); |
| GEM_BUG_ON(!pagevec_count(pvec)); |
| |
| if (vm->pt_kmap_wc) { |
| /* |
| * When we use WC, first fill up the global stash and then |
| * only if full immediately free the overflow. |
| */ |
| stash_push_pagevec(&vm->i915->mm.wc_stash, pvec); |
| |
| /* |
| * As we have made some room in the VM's free_pages, |
| * we can wait for it to fill again. Unless we are |
| * inside i915_address_space_fini() and must |
| * immediately release the pages! |
| */ |
| if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1)) |
| return; |
| |
| /* |
| * We have to drop the lock to allow ourselves to sleep, |
| * so take a copy of the pvec and clear the stash for |
| * others to use it as we sleep. |
| */ |
| stack = *pvec; |
| pagevec_reinit(pvec); |
| spin_unlock(&vm->free_pages.lock); |
| |
| pvec = &stack; |
| set_pages_array_wb(pvec->pages, pvec->nr); |
| |
| spin_lock(&vm->free_pages.lock); |
| } |
| |
| __pagevec_release(pvec); |
| } |
| |
| static void vm_free_page(struct i915_address_space *vm, struct page *page) |
| { |
| /* |
| * On !llc, we need to change the pages back to WB. We only do so |
| * in bulk, so we rarely need to change the page attributes here, |
| * but doing so requires a stop_machine() from deep inside arch/x86/mm. |
| * To make detection of the possible sleep more likely, use an |
| * unconditional might_sleep() for everybody. |
| */ |
| might_sleep(); |
| spin_lock(&vm->free_pages.lock); |
| while (!pagevec_space(&vm->free_pages.pvec)) |
| vm_free_pages_release(vm, false); |
| GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE); |
| pagevec_add(&vm->free_pages.pvec, page); |
| spin_unlock(&vm->free_pages.lock); |
| } |
| |
| void __i915_vm_close(struct i915_address_space *vm) |
| { |
| struct i915_vma *vma, *vn; |
| |
| if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex)) |
| return; |
| |
| list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { |
| struct drm_i915_gem_object *obj = vma->obj; |
| |
| /* Keep the obj (and hence the vma) alive as _we_ destroy it */ |
| if (!kref_get_unless_zero(&obj->base.refcount)) |
| continue; |
| |
| atomic_and(~I915_VMA_PIN_MASK, &vma->flags); |
| WARN_ON(__i915_vma_unbind(vma)); |
| __i915_vma_put(vma); |
| |
| i915_gem_object_put(obj); |
| } |
| GEM_BUG_ON(!list_empty(&vm->bound_list)); |
| |
| mutex_unlock(&vm->mutex); |
| } |
| |
| void i915_address_space_fini(struct i915_address_space *vm) |
| { |
| spin_lock(&vm->free_pages.lock); |
| if (pagevec_count(&vm->free_pages.pvec)) |
| vm_free_pages_release(vm, true); |
| GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec)); |
| spin_unlock(&vm->free_pages.lock); |
| |
| drm_mm_takedown(&vm->mm); |
| |
| mutex_destroy(&vm->mutex); |
| } |
| |
| static void __i915_vm_release(struct work_struct *work) |
| { |
| struct i915_address_space *vm = |
| container_of(work, struct i915_address_space, rcu.work); |
| |
| vm->cleanup(vm); |
| i915_address_space_fini(vm); |
| |
| kfree(vm); |
| } |
| |
| void i915_vm_release(struct kref *kref) |
| { |
| struct i915_address_space *vm = |
| container_of(kref, struct i915_address_space, ref); |
| |
| GEM_BUG_ON(i915_is_ggtt(vm)); |
| trace_i915_ppgtt_release(vm); |
| |
| queue_rcu_work(vm->i915->wq, &vm->rcu); |
| } |
| |
| void i915_address_space_init(struct i915_address_space *vm, int subclass) |
| { |
| kref_init(&vm->ref); |
| INIT_RCU_WORK(&vm->rcu, __i915_vm_release); |
| atomic_set(&vm->open, 1); |
| |
| /* |
| * The vm->mutex must be reclaim safe (for use in the shrinker). |
| * Do a dummy acquire now under fs_reclaim so that any allocation |
| * attempt holding the lock is immediately reported by lockdep. |
| */ |
| mutex_init(&vm->mutex); |
| lockdep_set_subclass(&vm->mutex, subclass); |
| i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex); |
| |
| GEM_BUG_ON(!vm->total); |
| drm_mm_init(&vm->mm, 0, vm->total); |
| vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; |
| |
| stash_init(&vm->free_pages); |
| |
| INIT_LIST_HEAD(&vm->bound_list); |
| } |
| |
| void clear_pages(struct i915_vma *vma) |
| { |
| GEM_BUG_ON(!vma->pages); |
| |
| if (vma->pages != vma->obj->mm.pages) { |
| sg_free_table(vma->pages); |
| kfree(vma->pages); |
| } |
| vma->pages = NULL; |
| |
| memset(&vma->page_sizes, 0, sizeof(vma->page_sizes)); |
| } |
| |
| static int __setup_page_dma(struct i915_address_space *vm, |
| struct i915_page_dma *p, |
| gfp_t gfp) |
| { |
| p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL); |
| if (unlikely(!p->page)) |
| return -ENOMEM; |
| |
| p->daddr = dma_map_page_attrs(vm->dma, |
| p->page, 0, PAGE_SIZE, |
| PCI_DMA_BIDIRECTIONAL, |
| DMA_ATTR_SKIP_CPU_SYNC | |
| DMA_ATTR_NO_WARN); |
| if (unlikely(dma_mapping_error(vm->dma, p->daddr))) { |
| vm_free_page(vm, p->page); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| int setup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p) |
| { |
| return __setup_page_dma(vm, p, __GFP_HIGHMEM); |
| } |
| |
| void cleanup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p) |
| { |
| dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); |
| vm_free_page(vm, p->page); |
| } |
| |
| void |
| fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count) |
| { |
| kunmap_atomic(memset64(kmap_atomic(p->page), val, count)); |
| } |
| |
| static void poison_scratch_page(struct page *page, unsigned long size) |
| { |
| if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) |
| return; |
| |
| GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE)); |
| |
| do { |
| void *vaddr; |
| |
| vaddr = kmap(page); |
| memset(vaddr, POISON_FREE, PAGE_SIZE); |
| kunmap(page); |
| |
| page = pfn_to_page(page_to_pfn(page) + 1); |
| size -= PAGE_SIZE; |
| } while (size); |
| } |
| |
| int setup_scratch_page(struct i915_address_space *vm, gfp_t gfp) |
| { |
| unsigned long size; |
| |
| /* |
| * In order to utilize 64K pages for an object with a size < 2M, we will |
| * need to support a 64K scratch page, given that every 16th entry for a |
| * page-table operating in 64K mode must point to a properly aligned 64K |
| * region, including any PTEs which happen to point to scratch. |
| * |
| * This is only relevant for the 48b PPGTT where we support |
| * huge-gtt-pages, see also i915_vma_insert(). However, as we share the |
| * scratch (read-only) between all vm, we create one 64k scratch page |
| * for all. |
| */ |
| size = I915_GTT_PAGE_SIZE_4K; |
| if (i915_vm_is_4lvl(vm) && |
| HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) { |
| size = I915_GTT_PAGE_SIZE_64K; |
| gfp |= __GFP_NOWARN; |
| } |
| gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL; |
| |
| do { |
| unsigned int order = get_order(size); |
| struct page *page; |
| dma_addr_t addr; |
| |
| page = alloc_pages(gfp, order); |
| if (unlikely(!page)) |
| goto skip; |
| |
| /* |
| * Use a non-zero scratch page for debugging. |
| * |
| * We want a value that should be reasonably obvious |
| * to spot in the error state, while also causing a GPU hang |
| * if executed. We prefer using a clear page in production, so |
| * should it ever be accidentally used, the effect should be |
| * fairly benign. |
| */ |
| poison_scratch_page(page, size); |
| |
| addr = dma_map_page_attrs(vm->dma, |
| page, 0, size, |
| PCI_DMA_BIDIRECTIONAL, |
| DMA_ATTR_SKIP_CPU_SYNC | |
| DMA_ATTR_NO_WARN); |
| if (unlikely(dma_mapping_error(vm->dma, addr))) |
| goto free_page; |
| |
| if (unlikely(!IS_ALIGNED(addr, size))) |
| goto unmap_page; |
| |
| vm->scratch[0].base.page = page; |
| vm->scratch[0].base.daddr = addr; |
| vm->scratch_order = order; |
| return 0; |
| |
| unmap_page: |
| dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL); |
| free_page: |
| __free_pages(page, order); |
| skip: |
| if (size == I915_GTT_PAGE_SIZE_4K) |
| return -ENOMEM; |
| |
| size = I915_GTT_PAGE_SIZE_4K; |
| gfp &= ~__GFP_NOWARN; |
| } while (1); |
| } |
| |
| void cleanup_scratch_page(struct i915_address_space *vm) |
| { |
| struct i915_page_dma *p = px_base(&vm->scratch[0]); |
| unsigned int order = vm->scratch_order; |
| |
| dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT, |
| PCI_DMA_BIDIRECTIONAL); |
| __free_pages(p->page, order); |
| } |
| |
| void free_scratch(struct i915_address_space *vm) |
| { |
| int i; |
| |
| if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */ |
| return; |
| |
| for (i = 1; i <= vm->top; i++) { |
| if (!px_dma(&vm->scratch[i])) |
| break; |
| cleanup_page_dma(vm, px_base(&vm->scratch[i])); |
| } |
| |
| cleanup_scratch_page(vm); |
| } |
| |
| void gtt_write_workarounds(struct intel_gt *gt) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| struct intel_uncore *uncore = gt->uncore; |
| |
| /* |
| * This function is for gtt related workarounds. This function is |
| * called on driver load and after a GPU reset, so you can place |
| * workarounds here even if they get overwritten by GPU reset. |
| */ |
| /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */ |
| if (IS_BROADWELL(i915)) |
| intel_uncore_write(uncore, |
| GEN8_L3_LRA_1_GPGPU, |
| GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); |
| else if (IS_CHERRYVIEW(i915)) |
| intel_uncore_write(uncore, |
| GEN8_L3_LRA_1_GPGPU, |
| GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); |
| else if (IS_GEN9_LP(i915)) |
| intel_uncore_write(uncore, |
| GEN8_L3_LRA_1_GPGPU, |
| GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); |
| else if (INTEL_GEN(i915) >= 9 && INTEL_GEN(i915) <= 11) |
| intel_uncore_write(uncore, |
| GEN8_L3_LRA_1_GPGPU, |
| GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); |
| |
| /* |
| * To support 64K PTEs we need to first enable the use of the |
| * Intermediate-Page-Size(IPS) bit of the PDE field via some magical |
| * mmio, otherwise the page-walker will simply ignore the IPS bit. This |
| * shouldn't be needed after GEN10. |
| * |
| * 64K pages were first introduced from BDW+, although technically they |
| * only *work* from gen9+. For pre-BDW we instead have the option for |
| * 32K pages, but we don't currently have any support for it in our |
| * driver. |
| */ |
| if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) && |
| INTEL_GEN(i915) <= 10) |
| intel_uncore_rmw(uncore, |
| GEN8_GAMW_ECO_DEV_RW_IA, |
| 0, |
| GAMW_ECO_ENABLE_64K_IPS_FIELD); |
| |
| if (IS_GEN_RANGE(i915, 8, 11)) { |
| bool can_use_gtt_cache = true; |
| |
| /* |
| * According to the BSpec if we use 2M/1G pages then we also |
| * need to disable the GTT cache. At least on BDW we can see |
| * visual corruption when using 2M pages, and not disabling the |
| * GTT cache. |
| */ |
| if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M)) |
| can_use_gtt_cache = false; |
| |
| /* WaGttCachingOffByDefault */ |
| intel_uncore_write(uncore, |
| HSW_GTT_CACHE_EN, |
| can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0); |
| drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache && |
| intel_uncore_read(uncore, |
| HSW_GTT_CACHE_EN) == 0); |
| } |
| } |
| |
| static void tgl_setup_private_ppat(struct intel_uncore *uncore) |
| { |
| /* TGL doesn't support LLC or AGE settings */ |
| intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB); |
| intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC); |
| intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT); |
| intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC); |
| intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB); |
| intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB); |
| intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB); |
| intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB); |
| } |
| |
| static void cnl_setup_private_ppat(struct intel_uncore *uncore) |
| { |
| intel_uncore_write(uncore, |
| GEN10_PAT_INDEX(0), |
| GEN8_PPAT_WB | GEN8_PPAT_LLC); |
| intel_uncore_write(uncore, |
| GEN10_PAT_INDEX(1), |
| GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); |
| intel_uncore_write(uncore, |
| GEN10_PAT_INDEX(2), |
| GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); |
| intel_uncore_write(uncore, |
| GEN10_PAT_INDEX(3), |
| GEN8_PPAT_UC); |
| intel_uncore_write(uncore, |
| GEN10_PAT_INDEX(4), |
| GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); |
| intel_uncore_write(uncore, |
| GEN10_PAT_INDEX(5), |
| GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); |
| intel_uncore_write(uncore, |
| GEN10_PAT_INDEX(6), |
| GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); |
| intel_uncore_write(uncore, |
| GEN10_PAT_INDEX(7), |
| GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); |
| } |
| |
| /* |
| * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability |
| * bits. When using advanced contexts each context stores its own PAT, but |
| * writing this data shouldn't be harmful even in those cases. |
| */ |
| static void bdw_setup_private_ppat(struct intel_uncore *uncore) |
| { |
| u64 pat; |
| |
| pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ |
| GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ |
| GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */ |
| GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ |
| GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | |
| GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | |
| GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | |
| GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); |
| |
| intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); |
| intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); |
| } |
| |
| static void chv_setup_private_ppat(struct intel_uncore *uncore) |
| { |
| u64 pat; |
| |
| /* |
| * Map WB on BDW to snooped on CHV. |
| * |
| * Only the snoop bit has meaning for CHV, the rest is |
| * ignored. |
| * |
| * The hardware will never snoop for certain types of accesses: |
| * - CPU GTT (GMADR->GGTT->no snoop->memory) |
| * - PPGTT page tables |
| * - some other special cycles |
| * |
| * As with BDW, we also need to consider the following for GT accesses: |
| * "For GGTT, there is NO pat_sel[2:0] from the entry, |
| * so RTL will always use the value corresponding to |
| * pat_sel = 000". |
| * Which means we must set the snoop bit in PAT entry 0 |
| * in order to keep the global status page working. |
| */ |
| |
| pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(1, 0) | |
| GEN8_PPAT(2, 0) | |
| GEN8_PPAT(3, 0) | |
| GEN8_PPAT(4, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(5, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(6, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(7, CHV_PPAT_SNOOP); |
| |
| intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); |
| intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); |
| } |
| |
| void setup_private_pat(struct intel_uncore *uncore) |
| { |
| struct drm_i915_private *i915 = uncore->i915; |
| |
| GEM_BUG_ON(INTEL_GEN(i915) < 8); |
| |
| if (INTEL_GEN(i915) >= 12) |
| tgl_setup_private_ppat(uncore); |
| else if (INTEL_GEN(i915) >= 10) |
| cnl_setup_private_ppat(uncore); |
| else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915)) |
| chv_setup_private_ppat(uncore); |
| else |
| bdw_setup_private_ppat(uncore); |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| #include "selftests/mock_gtt.c" |
| #endif |