blob: 824f99c4cc7cda379731266623590639b4e4d4d5 [file] [log] [blame]
/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2018 Intel Corporation
*/
#include <linux/prime_numbers.h>
#include "gem/i915_gem_pm.h"
#include "gt/intel_engine_heartbeat.h"
#include "gt/intel_reset.h"
#include "i915_selftest.h"
#include "selftests/i915_random.h"
#include "selftests/igt_flush_test.h"
#include "selftests/igt_live_test.h"
#include "selftests/igt_spinner.h"
#include "selftests/lib_sw_fence.h"
#include "gem/selftests/igt_gem_utils.h"
#include "gem/selftests/mock_context.h"
#define CS_GPR(engine, n) ((engine)->mmio_base + 0x600 + (n) * 4)
#define NUM_GPR 16
#define NUM_GPR_DW (NUM_GPR * 2) /* each GPR is 2 dwords */
static struct i915_vma *create_scratch(struct intel_gt *gt)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int err;
obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE);
if (IS_ERR(obj))
return ERR_CAST(obj);
i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED);
vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
i915_gem_object_put(obj);
return vma;
}
err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL);
if (err) {
i915_gem_object_put(obj);
return ERR_PTR(err);
}
return vma;
}
static void engine_heartbeat_disable(struct intel_engine_cs *engine,
unsigned long *saved)
{
*saved = engine->props.heartbeat_interval_ms;
engine->props.heartbeat_interval_ms = 0;
intel_engine_pm_get(engine);
intel_engine_park_heartbeat(engine);
}
static void engine_heartbeat_enable(struct intel_engine_cs *engine,
unsigned long saved)
{
intel_engine_pm_put(engine);
engine->props.heartbeat_interval_ms = saved;
}
static bool is_active(struct i915_request *rq)
{
if (i915_request_is_active(rq))
return true;
if (i915_request_on_hold(rq))
return true;
if (i915_request_started(rq))
return true;
return false;
}
static int wait_for_submit(struct intel_engine_cs *engine,
struct i915_request *rq,
unsigned long timeout)
{
timeout += jiffies;
do {
bool done = time_after(jiffies, timeout);
if (i915_request_completed(rq)) /* that was quick! */
return 0;
/* Wait until the HW has acknowleged the submission (or err) */
intel_engine_flush_submission(engine);
if (!READ_ONCE(engine->execlists.pending[0]) && is_active(rq))
return 0;
if (done)
return -ETIME;
cond_resched();
} while (1);
}
static int wait_for_reset(struct intel_engine_cs *engine,
struct i915_request *rq,
unsigned long timeout)
{
timeout += jiffies;
do {
cond_resched();
intel_engine_flush_submission(engine);
if (READ_ONCE(engine->execlists.pending[0]))
continue;
if (i915_request_completed(rq))
break;
if (READ_ONCE(rq->fence.error))
break;
} while (time_before(jiffies, timeout));
flush_scheduled_work();
if (rq->fence.error != -EIO) {
pr_err("%s: hanging request %llx:%lld not reset\n",
engine->name,
rq->fence.context,
rq->fence.seqno);
return -EINVAL;
}
/* Give the request a jiffie to complete after flushing the worker */
if (i915_request_wait(rq, 0,
max(0l, (long)(timeout - jiffies)) + 1) < 0) {
pr_err("%s: hanging request %llx:%lld did not complete\n",
engine->name,
rq->fence.context,
rq->fence.seqno);
return -ETIME;
}
return 0;
}
static int live_sanitycheck(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
struct igt_spinner spin;
int err = 0;
if (!HAS_LOGICAL_RING_CONTEXTS(gt->i915))
return 0;
if (igt_spinner_init(&spin, gt))
return -ENOMEM;
for_each_engine(engine, gt, id) {
struct intel_context *ce;
struct i915_request *rq;
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
break;
}
rq = igt_spinner_create_request(&spin, ce, MI_NOOP);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out_ctx;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin, rq)) {
GEM_TRACE("spinner failed to start\n");
GEM_TRACE_DUMP();
intel_gt_set_wedged(gt);
err = -EIO;
goto out_ctx;
}
igt_spinner_end(&spin);
if (igt_flush_test(gt->i915)) {
err = -EIO;
goto out_ctx;
}
out_ctx:
intel_context_put(ce);
if (err)
break;
}
igt_spinner_fini(&spin);
return err;
}
static int live_unlite_restore(struct intel_gt *gt, int prio)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
struct igt_spinner spin;
int err = -ENOMEM;
/*
* Check that we can correctly context switch between 2 instances
* on the same engine from the same parent context.
*/
if (igt_spinner_init(&spin, gt))
return err;
err = 0;
for_each_engine(engine, gt, id) {
struct intel_context *ce[2] = {};
struct i915_request *rq[2];
struct igt_live_test t;
unsigned long saved;
int n;
if (prio && !intel_engine_has_preemption(engine))
continue;
if (!intel_engine_can_store_dword(engine))
continue;
if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) {
err = -EIO;
break;
}
engine_heartbeat_disable(engine, &saved);
for (n = 0; n < ARRAY_SIZE(ce); n++) {
struct intel_context *tmp;
tmp = intel_context_create(engine);
if (IS_ERR(tmp)) {
err = PTR_ERR(tmp);
goto err_ce;
}
err = intel_context_pin(tmp);
if (err) {
intel_context_put(tmp);
goto err_ce;
}
/*
* Setup the pair of contexts such that if we
* lite-restore using the RING_TAIL from ce[1] it
* will execute garbage from ce[0]->ring.
*/
memset(tmp->ring->vaddr,
POISON_INUSE, /* IPEHR: 0x5a5a5a5a [hung!] */
tmp->ring->vma->size);
ce[n] = tmp;
}
GEM_BUG_ON(!ce[1]->ring->size);
intel_ring_reset(ce[1]->ring, ce[1]->ring->size / 2);
__execlists_update_reg_state(ce[1], engine, ce[1]->ring->head);
rq[0] = igt_spinner_create_request(&spin, ce[0], MI_ARB_CHECK);
if (IS_ERR(rq[0])) {
err = PTR_ERR(rq[0]);
goto err_ce;
}
i915_request_get(rq[0]);
i915_request_add(rq[0]);
GEM_BUG_ON(rq[0]->postfix > ce[1]->ring->emit);
if (!igt_wait_for_spinner(&spin, rq[0])) {
i915_request_put(rq[0]);
goto err_ce;
}
rq[1] = i915_request_create(ce[1]);
if (IS_ERR(rq[1])) {
err = PTR_ERR(rq[1]);
i915_request_put(rq[0]);
goto err_ce;
}
if (!prio) {
/*
* Ensure we do the switch to ce[1] on completion.
*
* rq[0] is already submitted, so this should reduce
* to a no-op (a wait on a request on the same engine
* uses the submit fence, not the completion fence),
* but it will install a dependency on rq[1] for rq[0]
* that will prevent the pair being reordered by
* timeslicing.
*/
i915_request_await_dma_fence(rq[1], &rq[0]->fence);
}
i915_request_get(rq[1]);
i915_request_add(rq[1]);
GEM_BUG_ON(rq[1]->postfix <= rq[0]->postfix);
i915_request_put(rq[0]);
if (prio) {
struct i915_sched_attr attr = {
.priority = prio,
};
/* Alternatively preempt the spinner with ce[1] */
engine->schedule(rq[1], &attr);
}
/* And switch back to ce[0] for good measure */
rq[0] = i915_request_create(ce[0]);
if (IS_ERR(rq[0])) {
err = PTR_ERR(rq[0]);
i915_request_put(rq[1]);
goto err_ce;
}
i915_request_await_dma_fence(rq[0], &rq[1]->fence);
i915_request_get(rq[0]);
i915_request_add(rq[0]);
GEM_BUG_ON(rq[0]->postfix > rq[1]->postfix);
i915_request_put(rq[1]);
i915_request_put(rq[0]);
err_ce:
tasklet_kill(&engine->execlists.tasklet); /* flush submission */
igt_spinner_end(&spin);
for (n = 0; n < ARRAY_SIZE(ce); n++) {
if (IS_ERR_OR_NULL(ce[n]))
break;
intel_context_unpin(ce[n]);
intel_context_put(ce[n]);
}
engine_heartbeat_enable(engine, saved);
if (igt_live_test_end(&t))
err = -EIO;
if (err)
break;
}
igt_spinner_fini(&spin);
return err;
}
static int live_unlite_switch(void *arg)
{
return live_unlite_restore(arg, 0);
}
static int live_unlite_preempt(void *arg)
{
return live_unlite_restore(arg, I915_USER_PRIORITY(I915_PRIORITY_MAX));
}
static int live_pin_rewind(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
/*
* We have to be careful not to trust intel_ring too much, for example
* ring->head is updated upon retire which is out of sync with pinning
* the context. Thus we cannot use ring->head to set CTX_RING_HEAD,
* or else we risk writing an older, stale value.
*
* To simulate this, let's apply a bit of deliberate sabotague.
*/
for_each_engine(engine, gt, id) {
struct intel_context *ce;
struct i915_request *rq;
struct intel_ring *ring;
struct igt_live_test t;
if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) {
err = -EIO;
break;
}
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
break;
}
err = intel_context_pin(ce);
if (err) {
intel_context_put(ce);
break;
}
/* Keep the context awake while we play games */
err = i915_active_acquire(&ce->active);
if (err) {
intel_context_unpin(ce);
intel_context_put(ce);
break;
}
ring = ce->ring;
/* Poison the ring, and offset the next request from HEAD */
memset32(ring->vaddr, STACK_MAGIC, ring->size / sizeof(u32));
ring->emit = ring->size / 2;
ring->tail = ring->emit;
GEM_BUG_ON(ring->head);
intel_context_unpin(ce);
/* Submit a simple nop request */
GEM_BUG_ON(intel_context_is_pinned(ce));
rq = intel_context_create_request(ce);
i915_active_release(&ce->active); /* e.g. async retire */
intel_context_put(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
break;
}
GEM_BUG_ON(!rq->head);
i915_request_add(rq);
/* Expect not to hang! */
if (igt_live_test_end(&t)) {
err = -EIO;
break;
}
}
return err;
}
static int live_hold_reset(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
struct igt_spinner spin;
int err = 0;
/*
* In order to support offline error capture for fast preempt reset,
* we need to decouple the guilty request and ensure that it and its
* descendents are not executed while the capture is in progress.
*/
if (!intel_has_reset_engine(gt))
return 0;
if (igt_spinner_init(&spin, gt))
return -ENOMEM;
for_each_engine(engine, gt, id) {
struct intel_context *ce;
unsigned long heartbeat;
struct i915_request *rq;
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
break;
}
engine_heartbeat_disable(engine, &heartbeat);
rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin, rq)) {
intel_gt_set_wedged(gt);
err = -ETIME;
goto out;
}
/* We have our request executing, now remove it and reset */
if (test_and_set_bit(I915_RESET_ENGINE + id,
&gt->reset.flags)) {
intel_gt_set_wedged(gt);
err = -EBUSY;
goto out;
}
tasklet_disable(&engine->execlists.tasklet);
engine->execlists.tasklet.func(engine->execlists.tasklet.data);
GEM_BUG_ON(execlists_active(&engine->execlists) != rq);
i915_request_get(rq);
execlists_hold(engine, rq);
GEM_BUG_ON(!i915_request_on_hold(rq));
intel_engine_reset(engine, NULL);
GEM_BUG_ON(rq->fence.error != -EIO);
tasklet_enable(&engine->execlists.tasklet);
clear_and_wake_up_bit(I915_RESET_ENGINE + id,
&gt->reset.flags);
/* Check that we do not resubmit the held request */
if (!i915_request_wait(rq, 0, HZ / 5)) {
pr_err("%s: on hold request completed!\n",
engine->name);
i915_request_put(rq);
err = -EIO;
goto out;
}
GEM_BUG_ON(!i915_request_on_hold(rq));
/* But is resubmitted on release */
execlists_unhold(engine, rq);
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
pr_err("%s: held request did not complete!\n",
engine->name);
intel_gt_set_wedged(gt);
err = -ETIME;
}
i915_request_put(rq);
out:
engine_heartbeat_enable(engine, heartbeat);
intel_context_put(ce);
if (err)
break;
}
igt_spinner_fini(&spin);
return err;
}
static const char *error_repr(int err)
{
return err ? "bad" : "good";
}
static int live_error_interrupt(void *arg)
{
static const struct error_phase {
enum { GOOD = 0, BAD = -EIO } error[2];
} phases[] = {
{ { BAD, GOOD } },
{ { BAD, BAD } },
{ { BAD, GOOD } },
{ { GOOD, GOOD } }, /* sentinel */
};
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
/*
* We hook up the CS_MASTER_ERROR_INTERRUPT to have forewarning
* of invalid commands in user batches that will cause a GPU hang.
* This is a faster mechanism than using hangcheck/heartbeats, but
* only detects problems the HW knows about -- it will not warn when
* we kill the HW!
*
* To verify our detection and reset, we throw some invalid commands
* at the HW and wait for the interrupt.
*/
if (!intel_has_reset_engine(gt))
return 0;
for_each_engine(engine, gt, id) {
const struct error_phase *p;
unsigned long heartbeat;
int err = 0;
engine_heartbeat_disable(engine, &heartbeat);
for (p = phases; p->error[0] != GOOD; p++) {
struct i915_request *client[ARRAY_SIZE(phases->error)];
u32 *cs;
int i;
memset(client, 0, sizeof(*client));
for (i = 0; i < ARRAY_SIZE(client); i++) {
struct intel_context *ce;
struct i915_request *rq;
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
goto out;
}
rq = intel_context_create_request(ce);
intel_context_put(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out;
}
if (rq->engine->emit_init_breadcrumb) {
err = rq->engine->emit_init_breadcrumb(rq);
if (err) {
i915_request_add(rq);
goto out;
}
}
cs = intel_ring_begin(rq, 2);
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto out;
}
if (p->error[i]) {
*cs++ = 0xdeadbeef;
*cs++ = 0xdeadbeef;
} else {
*cs++ = MI_NOOP;
*cs++ = MI_NOOP;
}
client[i] = i915_request_get(rq);
i915_request_add(rq);
}
err = wait_for_submit(engine, client[0], HZ / 2);
if (err) {
pr_err("%s: first request did not start within time!\n",
engine->name);
err = -ETIME;
goto out;
}
for (i = 0; i < ARRAY_SIZE(client); i++) {
if (i915_request_wait(client[i], 0, HZ / 5) < 0)
pr_debug("%s: %s request incomplete!\n",
engine->name,
error_repr(p->error[i]));
if (!i915_request_started(client[i])) {
pr_err("%s: %s request not started!\n",
engine->name,
error_repr(p->error[i]));
err = -ETIME;
goto out;
}
/* Kick the tasklet to process the error */
intel_engine_flush_submission(engine);
if (client[i]->fence.error != p->error[i]) {
pr_err("%s: %s request (%s) with wrong error code: %d\n",
engine->name,
error_repr(p->error[i]),
i915_request_completed(client[i]) ? "completed" : "running",
client[i]->fence.error);
err = -EINVAL;
goto out;
}
}
out:
for (i = 0; i < ARRAY_SIZE(client); i++)
if (client[i])
i915_request_put(client[i]);
if (err) {
pr_err("%s: failed at phase[%zd] { %d, %d }\n",
engine->name, p - phases,
p->error[0], p->error[1]);
break;
}
}
engine_heartbeat_enable(engine, heartbeat);
if (err) {
intel_gt_set_wedged(gt);
return err;
}
}
return 0;
}
static int
emit_semaphore_chain(struct i915_request *rq, struct i915_vma *vma, int idx)
{
u32 *cs;
cs = intel_ring_begin(rq, 10);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_NEQ_SDD;
*cs++ = 0;
*cs++ = i915_ggtt_offset(vma) + 4 * idx;
*cs++ = 0;
if (idx > 0) {
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = i915_ggtt_offset(vma) + 4 * (idx - 1);
*cs++ = 0;
*cs++ = 1;
} else {
*cs++ = MI_NOOP;
*cs++ = MI_NOOP;
*cs++ = MI_NOOP;
*cs++ = MI_NOOP;
}
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
intel_ring_advance(rq, cs);
return 0;
}
static struct i915_request *
semaphore_queue(struct intel_engine_cs *engine, struct i915_vma *vma, int idx)
{
struct intel_context *ce;
struct i915_request *rq;
int err;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return ERR_CAST(ce);
rq = intel_context_create_request(ce);
if (IS_ERR(rq))
goto out_ce;
err = 0;
if (rq->engine->emit_init_breadcrumb)
err = rq->engine->emit_init_breadcrumb(rq);
if (err == 0)
err = emit_semaphore_chain(rq, vma, idx);
if (err == 0)
i915_request_get(rq);
i915_request_add(rq);
if (err)
rq = ERR_PTR(err);
out_ce:
intel_context_put(ce);
return rq;
}
static int
release_queue(struct intel_engine_cs *engine,
struct i915_vma *vma,
int idx, int prio)
{
struct i915_sched_attr attr = {
.priority = prio,
};
struct i915_request *rq;
u32 *cs;
rq = intel_engine_create_kernel_request(engine);
if (IS_ERR(rq))
return PTR_ERR(rq);
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs)) {
i915_request_add(rq);
return PTR_ERR(cs);
}
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = i915_ggtt_offset(vma) + 4 * (idx - 1);
*cs++ = 0;
*cs++ = 1;
intel_ring_advance(rq, cs);
i915_request_get(rq);
i915_request_add(rq);
local_bh_disable();
engine->schedule(rq, &attr);
local_bh_enable(); /* kick tasklet */
i915_request_put(rq);
return 0;
}
static int
slice_semaphore_queue(struct intel_engine_cs *outer,
struct i915_vma *vma,
int count)
{
struct intel_engine_cs *engine;
struct i915_request *head;
enum intel_engine_id id;
int err, i, n = 0;
head = semaphore_queue(outer, vma, n++);
if (IS_ERR(head))
return PTR_ERR(head);
for_each_engine(engine, outer->gt, id) {
for (i = 0; i < count; i++) {
struct i915_request *rq;
rq = semaphore_queue(engine, vma, n++);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out;
}
i915_request_put(rq);
}
}
err = release_queue(outer, vma, n, INT_MAX);
if (err)
goto out;
if (i915_request_wait(head, 0,
2 * RUNTIME_INFO(outer->i915)->num_engines * (count + 2) * (count + 3)) < 0) {
pr_err("Failed to slice along semaphore chain of length (%d, %d)!\n",
count, n);
GEM_TRACE_DUMP();
intel_gt_set_wedged(outer->gt);
err = -EIO;
}
out:
i915_request_put(head);
return err;
}
static int live_timeslice_preempt(void *arg)
{
struct intel_gt *gt = arg;
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
void *vaddr;
int err = 0;
int count;
/*
* If a request takes too long, we would like to give other users
* a fair go on the GPU. In particular, users may create batches
* that wait upon external input, where that input may even be
* supplied by another GPU job. To avoid blocking forever, we
* need to preempt the current task and replace it with another
* ready task.
*/
if (!IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
return 0;
obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE);
if (IS_ERR(obj))
return PTR_ERR(obj);
vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err_obj;
}
vaddr = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(vaddr)) {
err = PTR_ERR(vaddr);
goto err_obj;
}
err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL);
if (err)
goto err_map;
err = i915_vma_sync(vma);
if (err)
goto err_pin;
for_each_prime_number_from(count, 1, 16) {
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, gt, id) {
unsigned long saved;
if (!intel_engine_has_preemption(engine))
continue;
memset(vaddr, 0, PAGE_SIZE);
engine_heartbeat_disable(engine, &saved);
err = slice_semaphore_queue(engine, vma, count);
engine_heartbeat_enable(engine, saved);
if (err)
goto err_pin;
if (igt_flush_test(gt->i915)) {
err = -EIO;
goto err_pin;
}
}
}
err_pin:
i915_vma_unpin(vma);
err_map:
i915_gem_object_unpin_map(obj);
err_obj:
i915_gem_object_put(obj);
return err;
}
static struct i915_request *
create_rewinder(struct intel_context *ce,
struct i915_request *wait,
void *slot, int idx)
{
const u32 offset =
i915_ggtt_offset(ce->engine->status_page.vma) +
offset_in_page(slot);
struct i915_request *rq;
u32 *cs;
int err;
rq = intel_context_create_request(ce);
if (IS_ERR(rq))
return rq;
if (wait) {
err = i915_request_await_dma_fence(rq, &wait->fence);
if (err)
goto err;
}
cs = intel_ring_begin(rq, 14);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
goto err;
}
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
*cs++ = MI_NOOP;
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_GTE_SDD;
*cs++ = idx;
*cs++ = offset;
*cs++ = 0;
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(rq->engine->mmio_base));
*cs++ = offset + idx * sizeof(u32);
*cs++ = 0;
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = offset;
*cs++ = 0;
*cs++ = idx + 1;
intel_ring_advance(rq, cs);
rq->sched.attr.priority = I915_PRIORITY_MASK;
err = 0;
err:
i915_request_get(rq);
i915_request_add(rq);
if (err) {
i915_request_put(rq);
return ERR_PTR(err);
}
return rq;
}
static int live_timeslice_rewind(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
/*
* The usual presumption on timeslice expiration is that we replace
* the active context with another. However, given a chain of
* dependencies we may end up with replacing the context with itself,
* but only a few of those requests, forcing us to rewind the
* RING_TAIL of the original request.
*/
if (!IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
return 0;
for_each_engine(engine, gt, id) {
enum { A1, A2, B1 };
enum { X = 1, Z, Y };
struct i915_request *rq[3] = {};
struct intel_context *ce;
unsigned long heartbeat;
unsigned long timeslice;
int i, err = 0;
u32 *slot;
if (!intel_engine_has_timeslices(engine))
continue;
/*
* A:rq1 -- semaphore wait, timestamp X
* A:rq2 -- write timestamp Y
*
* B:rq1 [await A:rq1] -- write timestamp Z
*
* Force timeslice, release semaphore.
*
* Expect execution/evaluation order XZY
*/
engine_heartbeat_disable(engine, &heartbeat);
timeslice = xchg(&engine->props.timeslice_duration_ms, 1);
slot = memset32(engine->status_page.addr + 1000, 0, 4);
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
goto err;
}
rq[0] = create_rewinder(ce, NULL, slot, X);
if (IS_ERR(rq[0])) {
intel_context_put(ce);
goto err;
}
rq[1] = create_rewinder(ce, NULL, slot, Y);
intel_context_put(ce);
if (IS_ERR(rq[1]))
goto err;
err = wait_for_submit(engine, rq[1], HZ / 2);
if (err) {
pr_err("%s: failed to submit first context\n",
engine->name);
goto err;
}
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
goto err;
}
rq[2] = create_rewinder(ce, rq[0], slot, Z);
intel_context_put(ce);
if (IS_ERR(rq[2]))
goto err;
err = wait_for_submit(engine, rq[2], HZ / 2);
if (err) {
pr_err("%s: failed to submit second context\n",
engine->name);
goto err;
}
/* ELSP[] = { { A:rq1, A:rq2 }, { B:rq1 } } */
if (i915_request_is_active(rq[A2])) { /* semaphore yielded! */
/* Wait for the timeslice to kick in */
del_timer(&engine->execlists.timer);
tasklet_hi_schedule(&engine->execlists.tasklet);
intel_engine_flush_submission(engine);
}
/* -> ELSP[] = { { A:rq1 }, { B:rq1 } } */
GEM_BUG_ON(!i915_request_is_active(rq[A1]));
GEM_BUG_ON(!i915_request_is_active(rq[B1]));
GEM_BUG_ON(i915_request_is_active(rq[A2]));
/* Release the hounds! */
slot[0] = 1;
wmb(); /* "pairs" with GPU; paranoid kick of internal CPU$ */
for (i = 1; i <= 3; i++) {
unsigned long timeout = jiffies + HZ / 2;
while (!READ_ONCE(slot[i]) &&
time_before(jiffies, timeout))
;
if (!time_before(jiffies, timeout)) {
pr_err("%s: rq[%d] timed out\n",
engine->name, i - 1);
err = -ETIME;
goto err;
}
pr_debug("%s: slot[%d]:%x\n", engine->name, i, slot[i]);
}
/* XZY: XZ < XY */
if (slot[Z] - slot[X] >= slot[Y] - slot[X]) {
pr_err("%s: timeslicing did not run context B [%u] before A [%u]!\n",
engine->name,
slot[Z] - slot[X],
slot[Y] - slot[X]);
err = -EINVAL;
}
err:
memset32(&slot[0], -1, 4);
wmb();
engine->props.timeslice_duration_ms = timeslice;
engine_heartbeat_enable(engine, heartbeat);
for (i = 0; i < 3; i++)
i915_request_put(rq[i]);
if (igt_flush_test(gt->i915))
err = -EIO;
if (err)
return err;
}
return 0;
}
static struct i915_request *nop_request(struct intel_engine_cs *engine)
{
struct i915_request *rq;
rq = intel_engine_create_kernel_request(engine);
if (IS_ERR(rq))
return rq;
i915_request_get(rq);
i915_request_add(rq);
return rq;
}
static long timeslice_threshold(const struct intel_engine_cs *engine)
{
return 2 * msecs_to_jiffies_timeout(timeslice(engine)) + 1;
}
static int live_timeslice_queue(void *arg)
{
struct intel_gt *gt = arg;
struct drm_i915_gem_object *obj;
struct intel_engine_cs *engine;
enum intel_engine_id id;
struct i915_vma *vma;
void *vaddr;
int err = 0;
/*
* Make sure that even if ELSP[0] and ELSP[1] are filled with
* timeslicing between them disabled, we *do* enable timeslicing
* if the queue demands it. (Normally, we do not submit if
* ELSP[1] is already occupied, so must rely on timeslicing to
* eject ELSP[0] in favour of the queue.)
*/
if (!IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
return 0;
obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE);
if (IS_ERR(obj))
return PTR_ERR(obj);
vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err_obj;
}
vaddr = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(vaddr)) {
err = PTR_ERR(vaddr);
goto err_obj;
}
err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL);
if (err)
goto err_map;
err = i915_vma_sync(vma);
if (err)
goto err_pin;
for_each_engine(engine, gt, id) {
struct i915_sched_attr attr = {
.priority = I915_USER_PRIORITY(I915_PRIORITY_MAX),
};
struct i915_request *rq, *nop;
unsigned long saved;
if (!intel_engine_has_preemption(engine))
continue;
engine_heartbeat_disable(engine, &saved);
memset(vaddr, 0, PAGE_SIZE);
/* ELSP[0]: semaphore wait */
rq = semaphore_queue(engine, vma, 0);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_heartbeat;
}
engine->schedule(rq, &attr);
err = wait_for_submit(engine, rq, HZ / 2);
if (err) {
pr_err("%s: Timed out trying to submit semaphores\n",
engine->name);
goto err_rq;
}
/* ELSP[1]: nop request */
nop = nop_request(engine);
if (IS_ERR(nop)) {
err = PTR_ERR(nop);
goto err_rq;
}
err = wait_for_submit(engine, nop, HZ / 2);
i915_request_put(nop);
if (err) {
pr_err("%s: Timed out trying to submit nop\n",
engine->name);
goto err_rq;
}
GEM_BUG_ON(i915_request_completed(rq));
GEM_BUG_ON(execlists_active(&engine->execlists) != rq);
/* Queue: semaphore signal, matching priority as semaphore */
err = release_queue(engine, vma, 1, effective_prio(rq));
if (err)
goto err_rq;
/* Wait until we ack the release_queue and start timeslicing */
do {
cond_resched();
intel_engine_flush_submission(engine);
} while (READ_ONCE(engine->execlists.pending[0]));
if (!READ_ONCE(engine->execlists.timer.expires) &&
execlists_active(&engine->execlists) == rq &&
!i915_request_completed(rq)) {
struct drm_printer p =
drm_info_printer(gt->i915->drm.dev);
GEM_TRACE_ERR("%s: Failed to enable timeslicing!\n",
engine->name);
intel_engine_dump(engine, &p,
"%s\n", engine->name);
GEM_TRACE_DUMP();
memset(vaddr, 0xff, PAGE_SIZE);
err = -EINVAL;
}
/* Timeslice every jiffy, so within 2 we should signal */
if (i915_request_wait(rq, 0, timeslice_threshold(engine)) < 0) {
struct drm_printer p =
drm_info_printer(gt->i915->drm.dev);
pr_err("%s: Failed to timeslice into queue\n",
engine->name);
intel_engine_dump(engine, &p,
"%s\n", engine->name);
memset(vaddr, 0xff, PAGE_SIZE);
err = -EIO;
}
err_rq:
i915_request_put(rq);
err_heartbeat:
engine_heartbeat_enable(engine, saved);
if (err)
break;
}
err_pin:
i915_vma_unpin(vma);
err_map:
i915_gem_object_unpin_map(obj);
err_obj:
i915_gem_object_put(obj);
return err;
}
static int live_busywait_preempt(void *arg)
{
struct intel_gt *gt = arg;
struct i915_gem_context *ctx_hi, *ctx_lo;
struct intel_engine_cs *engine;
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
enum intel_engine_id id;
int err = -ENOMEM;
u32 *map;
/*
* Verify that even without HAS_LOGICAL_RING_PREEMPTION, we can
* preempt the busywaits used to synchronise between rings.
*/
ctx_hi = kernel_context(gt->i915);
if (!ctx_hi)
return -ENOMEM;
ctx_hi->sched.priority =
I915_USER_PRIORITY(I915_CONTEXT_MAX_USER_PRIORITY);
ctx_lo = kernel_context(gt->i915);
if (!ctx_lo)
goto err_ctx_hi;
ctx_lo->sched.priority =
I915_USER_PRIORITY(I915_CONTEXT_MIN_USER_PRIORITY);
obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto err_ctx_lo;
}
map = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(map)) {
err = PTR_ERR(map);
goto err_obj;
}
vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err_map;
}
err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL);
if (err)
goto err_map;
err = i915_vma_sync(vma);
if (err)
goto err_vma;
for_each_engine(engine, gt, id) {
struct i915_request *lo, *hi;
struct igt_live_test t;
u32 *cs;
if (!intel_engine_has_preemption(engine))
continue;
if (!intel_engine_can_store_dword(engine))
continue;
if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) {
err = -EIO;
goto err_vma;
}
/*
* We create two requests. The low priority request
* busywaits on a semaphore (inside the ringbuffer where
* is should be preemptible) and the high priority requests
* uses a MI_STORE_DWORD_IMM to update the semaphore value
* allowing the first request to complete. If preemption
* fails, we hang instead.
*/
lo = igt_request_alloc(ctx_lo, engine);
if (IS_ERR(lo)) {
err = PTR_ERR(lo);
goto err_vma;
}
cs = intel_ring_begin(lo, 8);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
i915_request_add(lo);
goto err_vma;
}
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = i915_ggtt_offset(vma);
*cs++ = 0;
*cs++ = 1;
/* XXX Do we need a flush + invalidate here? */
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_EQ_SDD;
*cs++ = 0;
*cs++ = i915_ggtt_offset(vma);
*cs++ = 0;
intel_ring_advance(lo, cs);
i915_request_get(lo);
i915_request_add(lo);
if (wait_for(READ_ONCE(*map), 10)) {
i915_request_put(lo);
err = -ETIMEDOUT;
goto err_vma;
}
/* Low priority request should be busywaiting now */
if (i915_request_wait(lo, 0, 1) != -ETIME) {
i915_request_put(lo);
pr_err("%s: Busywaiting request did not!\n",
engine->name);
err = -EIO;
goto err_vma;
}
hi = igt_request_alloc(ctx_hi, engine);
if (IS_ERR(hi)) {
err = PTR_ERR(hi);
i915_request_put(lo);
goto err_vma;
}
cs = intel_ring_begin(hi, 4);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
i915_request_add(hi);
i915_request_put(lo);
goto err_vma;
}
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = i915_ggtt_offset(vma);
*cs++ = 0;
*cs++ = 0;
intel_ring_advance(hi, cs);
i915_request_add(hi);
if (i915_request_wait(lo, 0, HZ / 5) < 0) {
struct drm_printer p = drm_info_printer(gt->i915->drm.dev);
pr_err("%s: Failed to preempt semaphore busywait!\n",
engine->name);
intel_engine_dump(engine, &p, "%s\n", engine->name);
GEM_TRACE_DUMP();
i915_request_put(lo);
intel_gt_set_wedged(gt);
err = -EIO;
goto err_vma;
}
GEM_BUG_ON(READ_ONCE(*map));
i915_request_put(lo);
if (igt_live_test_end(&t)) {
err = -EIO;
goto err_vma;
}
}
err = 0;
err_vma:
i915_vma_unpin(vma);
err_map:
i915_gem_object_unpin_map(obj);
err_obj:
i915_gem_object_put(obj);
err_ctx_lo:
kernel_context_close(ctx_lo);
err_ctx_hi:
kernel_context_close(ctx_hi);
return err;
}
static struct i915_request *
spinner_create_request(struct igt_spinner *spin,
struct i915_gem_context *ctx,
struct intel_engine_cs *engine,
u32 arb)
{
struct intel_context *ce;
struct i915_request *rq;
ce = i915_gem_context_get_engine(ctx, engine->legacy_idx);
if (IS_ERR(ce))
return ERR_CAST(ce);
rq = igt_spinner_create_request(spin, ce, arb);
intel_context_put(ce);
return rq;
}
static int live_preempt(void *arg)
{
struct intel_gt *gt = arg;
struct i915_gem_context *ctx_hi, *ctx_lo;
struct igt_spinner spin_hi, spin_lo;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = -ENOMEM;
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
if (!(gt->i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION))
pr_err("Logical preemption supported, but not exposed\n");
if (igt_spinner_init(&spin_hi, gt))
return -ENOMEM;
if (igt_spinner_init(&spin_lo, gt))
goto err_spin_hi;
ctx_hi = kernel_context(gt->i915);
if (!ctx_hi)
goto err_spin_lo;
ctx_hi->sched.priority =
I915_USER_PRIORITY(I915_CONTEXT_MAX_USER_PRIORITY);
ctx_lo = kernel_context(gt->i915);
if (!ctx_lo)
goto err_ctx_hi;
ctx_lo->sched.priority =
I915_USER_PRIORITY(I915_CONTEXT_MIN_USER_PRIORITY);
for_each_engine(engine, gt, id) {
struct igt_live_test t;
struct i915_request *rq;
if (!intel_engine_has_preemption(engine))
continue;
if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) {
err = -EIO;
goto err_ctx_lo;
}
rq = spinner_create_request(&spin_lo, ctx_lo, engine,
MI_ARB_CHECK);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_ctx_lo;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin_lo, rq)) {
GEM_TRACE("lo spinner failed to start\n");
GEM_TRACE_DUMP();
intel_gt_set_wedged(gt);
err = -EIO;
goto err_ctx_lo;
}
rq = spinner_create_request(&spin_hi, ctx_hi, engine,
MI_ARB_CHECK);
if (IS_ERR(rq)) {
igt_spinner_end(&spin_lo);
err = PTR_ERR(rq);
goto err_ctx_lo;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin_hi, rq)) {
GEM_TRACE("hi spinner failed to start\n");
GEM_TRACE_DUMP();
intel_gt_set_wedged(gt);
err = -EIO;
goto err_ctx_lo;
}
igt_spinner_end(&spin_hi);
igt_spinner_end(&spin_lo);
if (igt_live_test_end(&t)) {
err = -EIO;
goto err_ctx_lo;
}
}
err = 0;
err_ctx_lo:
kernel_context_close(ctx_lo);
err_ctx_hi:
kernel_context_close(ctx_hi);
err_spin_lo:
igt_spinner_fini(&spin_lo);
err_spin_hi:
igt_spinner_fini(&spin_hi);
return err;
}
static int live_late_preempt(void *arg)
{
struct intel_gt *gt = arg;
struct i915_gem_context *ctx_hi, *ctx_lo;
struct igt_spinner spin_hi, spin_lo;
struct intel_engine_cs *engine;
struct i915_sched_attr attr = {};
enum intel_engine_id id;
int err = -ENOMEM;
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
if (igt_spinner_init(&spin_hi, gt))
return -ENOMEM;
if (igt_spinner_init(&spin_lo, gt))
goto err_spin_hi;
ctx_hi = kernel_context(gt->i915);
if (!ctx_hi)
goto err_spin_lo;
ctx_lo = kernel_context(gt->i915);
if (!ctx_lo)
goto err_ctx_hi;
/* Make sure ctx_lo stays before ctx_hi until we trigger preemption. */
ctx_lo->sched.priority = I915_USER_PRIORITY(1);
for_each_engine(engine, gt, id) {
struct igt_live_test t;
struct i915_request *rq;
if (!intel_engine_has_preemption(engine))
continue;
if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) {
err = -EIO;
goto err_ctx_lo;
}
rq = spinner_create_request(&spin_lo, ctx_lo, engine,
MI_ARB_CHECK);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_ctx_lo;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin_lo, rq)) {
pr_err("First context failed to start\n");
goto err_wedged;
}
rq = spinner_create_request(&spin_hi, ctx_hi, engine,
MI_NOOP);
if (IS_ERR(rq)) {
igt_spinner_end(&spin_lo);
err = PTR_ERR(rq);
goto err_ctx_lo;
}
i915_request_add(rq);
if (igt_wait_for_spinner(&spin_hi, rq)) {
pr_err("Second context overtook first?\n");
goto err_wedged;
}
attr.priority = I915_USER_PRIORITY(I915_PRIORITY_MAX);
engine->schedule(rq, &attr);
if (!igt_wait_for_spinner(&spin_hi, rq)) {
pr_err("High priority context failed to preempt the low priority context\n");
GEM_TRACE_DUMP();
goto err_wedged;
}
igt_spinner_end(&spin_hi);
igt_spinner_end(&spin_lo);
if (igt_live_test_end(&t)) {
err = -EIO;
goto err_ctx_lo;
}
}
err = 0;
err_ctx_lo:
kernel_context_close(ctx_lo);
err_ctx_hi:
kernel_context_close(ctx_hi);
err_spin_lo:
igt_spinner_fini(&spin_lo);
err_spin_hi:
igt_spinner_fini(&spin_hi);
return err;
err_wedged:
igt_spinner_end(&spin_hi);
igt_spinner_end(&spin_lo);
intel_gt_set_wedged(gt);
err = -EIO;
goto err_ctx_lo;
}
struct preempt_client {
struct igt_spinner spin;
struct i915_gem_context *ctx;
};
static int preempt_client_init(struct intel_gt *gt, struct preempt_client *c)
{
c->ctx = kernel_context(gt->i915);
if (!c->ctx)
return -ENOMEM;
if (igt_spinner_init(&c->spin, gt))
goto err_ctx;
return 0;
err_ctx:
kernel_context_close(c->ctx);
return -ENOMEM;
}
static void preempt_client_fini(struct preempt_client *c)
{
igt_spinner_fini(&c->spin);
kernel_context_close(c->ctx);
}
static int live_nopreempt(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
struct preempt_client a, b;
enum intel_engine_id id;
int err = -ENOMEM;
/*
* Verify that we can disable preemption for an individual request
* that may be being observed and not want to be interrupted.
*/
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
if (preempt_client_init(gt, &a))
return -ENOMEM;
if (preempt_client_init(gt, &b))
goto err_client_a;
b.ctx->sched.priority = I915_USER_PRIORITY(I915_PRIORITY_MAX);
for_each_engine(engine, gt, id) {
struct i915_request *rq_a, *rq_b;
if (!intel_engine_has_preemption(engine))
continue;
engine->execlists.preempt_hang.count = 0;
rq_a = spinner_create_request(&a.spin,
a.ctx, engine,
MI_ARB_CHECK);
if (IS_ERR(rq_a)) {
err = PTR_ERR(rq_a);
goto err_client_b;
}
/* Low priority client, but unpreemptable! */
__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq_a->fence.flags);
i915_request_add(rq_a);
if (!igt_wait_for_spinner(&a.spin, rq_a)) {
pr_err("First client failed to start\n");
goto err_wedged;
}
rq_b = spinner_create_request(&b.spin,
b.ctx, engine,
MI_ARB_CHECK);
if (IS_ERR(rq_b)) {
err = PTR_ERR(rq_b);
goto err_client_b;
}
i915_request_add(rq_b);
/* B is much more important than A! (But A is unpreemptable.) */
GEM_BUG_ON(rq_prio(rq_b) <= rq_prio(rq_a));
/* Wait long enough for preemption and timeslicing */
if (igt_wait_for_spinner(&b.spin, rq_b)) {
pr_err("Second client started too early!\n");
goto err_wedged;
}
igt_spinner_end(&a.spin);
if (!igt_wait_for_spinner(&b.spin, rq_b)) {
pr_err("Second client failed to start\n");
goto err_wedged;
}
igt_spinner_end(&b.spin);
if (engine->execlists.preempt_hang.count) {
pr_err("Preemption recorded x%d; should have been suppressed!\n",
engine->execlists.preempt_hang.count);
err = -EINVAL;
goto err_wedged;
}
if (igt_flush_test(gt->i915))
goto err_wedged;
}
err = 0;
err_client_b:
preempt_client_fini(&b);
err_client_a:
preempt_client_fini(&a);
return err;
err_wedged:
igt_spinner_end(&b.spin);
igt_spinner_end(&a.spin);
intel_gt_set_wedged(gt);
err = -EIO;
goto err_client_b;
}
struct live_preempt_cancel {
struct intel_engine_cs *engine;
struct preempt_client a, b;
};
static int __cancel_active0(struct live_preempt_cancel *arg)
{
struct i915_request *rq;
struct igt_live_test t;
int err;
/* Preempt cancel of ELSP0 */
GEM_TRACE("%s(%s)\n", __func__, arg->engine->name);
if (igt_live_test_begin(&t, arg->engine->i915,
__func__, arg->engine->name))
return -EIO;
rq = spinner_create_request(&arg->a.spin,
arg->a.ctx, arg->engine,
MI_ARB_CHECK);
if (IS_ERR(rq))
return PTR_ERR(rq);
clear_bit(CONTEXT_BANNED, &rq->context->flags);
i915_request_get(rq);
i915_request_add(rq);
if (!igt_wait_for_spinner(&arg->a.spin, rq)) {
err = -EIO;
goto out;
}
intel_context_set_banned(rq->context);
err = intel_engine_pulse(arg->engine);
if (err)
goto out;
err = wait_for_reset(arg->engine, rq, HZ / 2);
if (err) {
pr_err("Cancelled inflight0 request did not reset\n");
goto out;
}
out:
i915_request_put(rq);
if (igt_live_test_end(&t))
err = -EIO;
return err;
}
static int __cancel_active1(struct live_preempt_cancel *arg)
{
struct i915_request *rq[2] = {};
struct igt_live_test t;
int err;
/* Preempt cancel of ELSP1 */
GEM_TRACE("%s(%s)\n", __func__, arg->engine->name);
if (igt_live_test_begin(&t, arg->engine->i915,
__func__, arg->engine->name))
return -EIO;
rq[0] = spinner_create_request(&arg->a.spin,
arg->a.ctx, arg->engine,
MI_NOOP); /* no preemption */
if (IS_ERR(rq[0]))
return PTR_ERR(rq[0]);
clear_bit(CONTEXT_BANNED, &rq[0]->context->flags);
i915_request_get(rq[0]);
i915_request_add(rq[0]);
if (!igt_wait_for_spinner(&arg->a.spin, rq[0])) {
err = -EIO;
goto out;
}
rq[1] = spinner_create_request(&arg->b.spin,
arg->b.ctx, arg->engine,
MI_ARB_CHECK);
if (IS_ERR(rq[1])) {
err = PTR_ERR(rq[1]);
goto out;
}
clear_bit(CONTEXT_BANNED, &rq[1]->context->flags);
i915_request_get(rq[1]);
err = i915_request_await_dma_fence(rq[1], &rq[0]->fence);
i915_request_add(rq[1]);
if (err)
goto out;
intel_context_set_banned(rq[1]->context);
err = intel_engine_pulse(arg->engine);
if (err)
goto out;
igt_spinner_end(&arg->a.spin);
err = wait_for_reset(arg->engine, rq[1], HZ / 2);
if (err)
goto out;
if (rq[0]->fence.error != 0) {
pr_err("Normal inflight0 request did not complete\n");
err = -EINVAL;
goto out;
}
if (rq[1]->fence.error != -EIO) {
pr_err("Cancelled inflight1 request did not report -EIO\n");
err = -EINVAL;
goto out;
}
out:
i915_request_put(rq[1]);
i915_request_put(rq[0]);
if (igt_live_test_end(&t))
err = -EIO;
return err;
}
static int __cancel_queued(struct live_preempt_cancel *arg)
{
struct i915_request *rq[3] = {};
struct igt_live_test t;
int err;
/* Full ELSP and one in the wings */
GEM_TRACE("%s(%s)\n", __func__, arg->engine->name);
if (igt_live_test_begin(&t, arg->engine->i915,
__func__, arg->engine->name))
return -EIO;
rq[0] = spinner_create_request(&arg->a.spin,
arg->a.ctx, arg->engine,
MI_ARB_CHECK);
if (IS_ERR(rq[0]))
return PTR_ERR(rq[0]);
clear_bit(CONTEXT_BANNED, &rq[0]->context->flags);
i915_request_get(rq[0]);
i915_request_add(rq[0]);
if (!igt_wait_for_spinner(&arg->a.spin, rq[0])) {
err = -EIO;
goto out;
}
rq[1] = igt_request_alloc(arg->b.ctx, arg->engine);
if (IS_ERR(rq[1])) {
err = PTR_ERR(rq[1]);
goto out;
}
clear_bit(CONTEXT_BANNED, &rq[1]->context->flags);
i915_request_get(rq[1]);
err = i915_request_await_dma_fence(rq[1], &rq[0]->fence);
i915_request_add(rq[1]);
if (err)
goto out;
rq[2] = spinner_create_request(&arg->b.spin,
arg->a.ctx, arg->engine,
MI_ARB_CHECK);
if (IS_ERR(rq[2])) {
err = PTR_ERR(rq[2]);
goto out;
}
i915_request_get(rq[2]);
err = i915_request_await_dma_fence(rq[2], &rq[1]->fence);
i915_request_add(rq[2]);
if (err)
goto out;
intel_context_set_banned(rq[2]->context);
err = intel_engine_pulse(arg->engine);
if (err)
goto out;
err = wait_for_reset(arg->engine, rq[2], HZ / 2);
if (err)
goto out;
if (rq[0]->fence.error != -EIO) {
pr_err("Cancelled inflight0 request did not report -EIO\n");
err = -EINVAL;
goto out;
}
if (rq[1]->fence.error != 0) {
pr_err("Normal inflight1 request did not complete\n");
err = -EINVAL;
goto out;
}
if (rq[2]->fence.error != -EIO) {
pr_err("Cancelled queued request did not report -EIO\n");
err = -EINVAL;
goto out;
}
out:
i915_request_put(rq[2]);
i915_request_put(rq[1]);
i915_request_put(rq[0]);
if (igt_live_test_end(&t))
err = -EIO;
return err;
}
static int __cancel_hostile(struct live_preempt_cancel *arg)
{
struct i915_request *rq;
int err;
/* Preempt cancel non-preemptible spinner in ELSP0 */
if (!IS_ACTIVE(CONFIG_DRM_I915_PREEMPT_TIMEOUT))
return 0;
if (!intel_has_reset_engine(arg->engine->gt))
return 0;
GEM_TRACE("%s(%s)\n", __func__, arg->engine->name);
rq = spinner_create_request(&arg->a.spin,
arg->a.ctx, arg->engine,
MI_NOOP); /* preemption disabled */
if (IS_ERR(rq))
return PTR_ERR(rq);
clear_bit(CONTEXT_BANNED, &rq->context->flags);
i915_request_get(rq);
i915_request_add(rq);
if (!igt_wait_for_spinner(&arg->a.spin, rq)) {
err = -EIO;
goto out;
}
intel_context_set_banned(rq->context);
err = intel_engine_pulse(arg->engine); /* force reset */
if (err)
goto out;
err = wait_for_reset(arg->engine, rq, HZ / 2);
if (err) {
pr_err("Cancelled inflight0 request did not reset\n");
goto out;
}
out:
i915_request_put(rq);
if (igt_flush_test(arg->engine->i915))
err = -EIO;
return err;
}
static int live_preempt_cancel(void *arg)
{
struct intel_gt *gt = arg;
struct live_preempt_cancel data;
enum intel_engine_id id;
int err = -ENOMEM;
/*
* To cancel an inflight context, we need to first remove it from the
* GPU. That sounds like preemption! Plus a little bit of bookkeeping.
*/
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
if (preempt_client_init(gt, &data.a))
return -ENOMEM;
if (preempt_client_init(gt, &data.b))
goto err_client_a;
for_each_engine(data.engine, gt, id) {
if (!intel_engine_has_preemption(data.engine))
continue;
err = __cancel_active0(&data);
if (err)
goto err_wedged;
err = __cancel_active1(&data);
if (err)
goto err_wedged;
err = __cancel_queued(&data);
if (err)
goto err_wedged;
err = __cancel_hostile(&data);
if (err)
goto err_wedged;
}
err = 0;
err_client_b:
preempt_client_fini(&data.b);
err_client_a:
preempt_client_fini(&data.a);
return err;
err_wedged:
GEM_TRACE_DUMP();
igt_spinner_end(&data.b.spin);
igt_spinner_end(&data.a.spin);
intel_gt_set_wedged(gt);
goto err_client_b;
}
static int live_suppress_self_preempt(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
struct i915_sched_attr attr = {
.priority = I915_USER_PRIORITY(I915_PRIORITY_MAX)
};
struct preempt_client a, b;
enum intel_engine_id id;
int err = -ENOMEM;
/*
* Verify that if a preemption request does not cause a change in
* the current execution order, the preempt-to-idle injection is
* skipped and that we do not accidentally apply it after the CS
* completion event.
*/
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
if (intel_uc_uses_guc_submission(&gt->uc))
return 0; /* presume black blox */
if (intel_vgpu_active(gt->i915))
return 0; /* GVT forces single port & request submission */
if (preempt_client_init(gt, &a))
return -ENOMEM;
if (preempt_client_init(gt, &b))
goto err_client_a;
for_each_engine(engine, gt, id) {
struct i915_request *rq_a, *rq_b;
int depth;
if (!intel_engine_has_preemption(engine))
continue;
if (igt_flush_test(gt->i915))
goto err_wedged;
intel_engine_pm_get(engine);
engine->execlists.preempt_hang.count = 0;
rq_a = spinner_create_request(&a.spin,
a.ctx, engine,
MI_NOOP);
if (IS_ERR(rq_a)) {
err = PTR_ERR(rq_a);
intel_engine_pm_put(engine);
goto err_client_b;
}
i915_request_add(rq_a);
if (!igt_wait_for_spinner(&a.spin, rq_a)) {
pr_err("First client failed to start\n");
intel_engine_pm_put(engine);
goto err_wedged;
}
/* Keep postponing the timer to avoid premature slicing */
mod_timer(&engine->execlists.timer, jiffies + HZ);
for (depth = 0; depth < 8; depth++) {
rq_b = spinner_create_request(&b.spin,
b.ctx, engine,
MI_NOOP);
if (IS_ERR(rq_b)) {
err = PTR_ERR(rq_b);
intel_engine_pm_put(engine);
goto err_client_b;
}
i915_request_add(rq_b);
GEM_BUG_ON(i915_request_completed(rq_a));
engine->schedule(rq_a, &attr);
igt_spinner_end(&a.spin);
if (!igt_wait_for_spinner(&b.spin, rq_b)) {
pr_err("Second client failed to start\n");
intel_engine_pm_put(engine);
goto err_wedged;
}
swap(a, b);
rq_a = rq_b;
}
igt_spinner_end(&a.spin);
if (engine->execlists.preempt_hang.count) {
pr_err("Preemption on %s recorded x%d, depth %d; should have been suppressed!\n",
engine->name,
engine->execlists.preempt_hang.count,
depth);
intel_engine_pm_put(engine);
err = -EINVAL;
goto err_client_b;
}
intel_engine_pm_put(engine);
if (igt_flush_test(gt->i915))
goto err_wedged;
}
err = 0;
err_client_b:
preempt_client_fini(&b);
err_client_a:
preempt_client_fini(&a);
return err;
err_wedged:
igt_spinner_end(&b.spin);
igt_spinner_end(&a.spin);
intel_gt_set_wedged(gt);
err = -EIO;
goto err_client_b;
}
static int __i915_sw_fence_call
dummy_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
return NOTIFY_DONE;
}
static struct i915_request *dummy_request(struct intel_engine_cs *engine)
{
struct i915_request *rq;
rq = kzalloc(sizeof(*rq), GFP_KERNEL);
if (!rq)
return NULL;
rq->engine = engine;
spin_lock_init(&rq->lock);
INIT_LIST_HEAD(&rq->fence.cb_list);
rq->fence.lock = &rq->lock;
rq->fence.ops = &i915_fence_ops;
i915_sched_node_init(&rq->sched);
/* mark this request as permanently incomplete */
rq->fence.seqno = 1;
BUILD_BUG_ON(sizeof(rq->fence.seqno) != 8); /* upper 32b == 0 */
rq->hwsp_seqno = (u32 *)&rq->fence.seqno + 1;
GEM_BUG_ON(i915_request_completed(rq));
i915_sw_fence_init(&rq->submit, dummy_notify);
set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
spin_lock_init(&rq->lock);
rq->fence.lock = &rq->lock;
INIT_LIST_HEAD(&rq->fence.cb_list);
return rq;
}
static void dummy_request_free(struct i915_request *dummy)
{
/* We have to fake the CS interrupt to kick the next request */
i915_sw_fence_commit(&dummy->submit);
i915_request_mark_complete(dummy);
dma_fence_signal(&dummy->fence);
i915_sched_node_fini(&dummy->sched);
i915_sw_fence_fini(&dummy->submit);
dma_fence_free(&dummy->fence);
}
static int live_suppress_wait_preempt(void *arg)
{
struct intel_gt *gt = arg;
struct preempt_client client[4];
struct i915_request *rq[ARRAY_SIZE(client)] = {};
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = -ENOMEM;
int i;
/*
* Waiters are given a little priority nudge, but not enough
* to actually cause any preemption. Double check that we do
* not needlessly generate preempt-to-idle cycles.
*/
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
if (preempt_client_init(gt, &client[0])) /* ELSP[0] */
return -ENOMEM;
if (preempt_client_init(gt, &client[1])) /* ELSP[1] */
goto err_client_0;
if (preempt_client_init(gt, &client[2])) /* head of queue */
goto err_client_1;
if (preempt_client_init(gt, &client[3])) /* bystander */
goto err_client_2;
for_each_engine(engine, gt, id) {
int depth;
if (!intel_engine_has_preemption(engine))
continue;
if (!engine->emit_init_breadcrumb)
continue;
for (depth = 0; depth < ARRAY_SIZE(client); depth++) {
struct i915_request *dummy;
engine->execlists.preempt_hang.count = 0;
dummy = dummy_request(engine);
if (!dummy)
goto err_client_3;
for (i = 0; i < ARRAY_SIZE(client); i++) {
struct i915_request *this;
this = spinner_create_request(&client[i].spin,
client[i].ctx, engine,
MI_NOOP);
if (IS_ERR(this)) {
err = PTR_ERR(this);
goto err_wedged;
}
/* Disable NEWCLIENT promotion */
__i915_active_fence_set(&i915_request_timeline(this)->last_request,
&dummy->fence);
rq[i] = i915_request_get(this);
i915_request_add(this);
}
dummy_request_free(dummy);
GEM_BUG_ON(i915_request_completed(rq[0]));
if (!igt_wait_for_spinner(&client[0].spin, rq[0])) {
pr_err("%s: First client failed to start\n",
engine->name);
goto err_wedged;
}
GEM_BUG_ON(!i915_request_started(rq[0]));
if (i915_request_wait(rq[depth],
I915_WAIT_PRIORITY,
1) != -ETIME) {
pr_err("%s: Waiter depth:%d completed!\n",
engine->name, depth);
goto err_wedged;
}
for (i = 0; i < ARRAY_SIZE(client); i++) {
igt_spinner_end(&client[i].spin);
i915_request_put(rq[i]);
rq[i] = NULL;
}
if (igt_flush_test(gt->i915))
goto err_wedged;
if (engine->execlists.preempt_hang.count) {
pr_err("%s: Preemption recorded x%d, depth %d; should have been suppressed!\n",
engine->name,
engine->execlists.preempt_hang.count,
depth);
err = -EINVAL;
goto err_client_3;
}
}
}
err = 0;
err_client_3:
preempt_client_fini(&client[3]);
err_client_2:
preempt_client_fini(&client[2]);
err_client_1:
preempt_client_fini(&client[1]);
err_client_0:
preempt_client_fini(&client[0]);
return err;
err_wedged:
for (i = 0; i < ARRAY_SIZE(client); i++) {
igt_spinner_end(&client[i].spin);
i915_request_put(rq[i]);
}
intel_gt_set_wedged(gt);
err = -EIO;
goto err_client_3;
}
static int live_chain_preempt(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
struct preempt_client hi, lo;
enum intel_engine_id id;
int err = -ENOMEM;
/*
* Build a chain AB...BA between two contexts (A, B) and request
* preemption of the last request. It should then complete before
* the previously submitted spinner in B.
*/
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
if (preempt_client_init(gt, &hi))
return -ENOMEM;
if (preempt_client_init(gt, &lo))
goto err_client_hi;
for_each_engine(engine, gt, id) {
struct i915_sched_attr attr = {
.priority = I915_USER_PRIORITY(I915_PRIORITY_MAX),
};
struct igt_live_test t;
struct i915_request *rq;
int ring_size, count, i;
if (!intel_engine_has_preemption(engine))
continue;
rq = spinner_create_request(&lo.spin,
lo.ctx, engine,
MI_ARB_CHECK);
if (IS_ERR(rq))
goto err_wedged;
i915_request_get(rq);
i915_request_add(rq);
ring_size = rq->wa_tail - rq->head;
if (ring_size < 0)
ring_size += rq->ring->size;
ring_size = rq->ring->size / ring_size;
pr_debug("%s(%s): Using maximum of %d requests\n",
__func__, engine->name, ring_size);
igt_spinner_end(&lo.spin);
if (i915_request_wait(rq, 0, HZ / 2) < 0) {
pr_err("Timed out waiting to flush %s\n", engine->name);
i915_request_put(rq);
goto err_wedged;
}
i915_request_put(rq);
if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) {
err = -EIO;
goto err_wedged;
}
for_each_prime_number_from(count, 1, ring_size) {
rq = spinner_create_request(&hi.spin,
hi.ctx, engine,
MI_ARB_CHECK);
if (IS_ERR(rq))
goto err_wedged;
i915_request_add(rq);
if (!igt_wait_for_spinner(&hi.spin, rq))
goto err_wedged;
rq = spinner_create_request(&lo.spin,
lo.ctx, engine,
MI_ARB_CHECK);
if (IS_ERR(rq))
goto err_wedged;
i915_request_add(rq);
for (i = 0; i < count; i++) {
rq = igt_request_alloc(lo.ctx, engine);
if (IS_ERR(rq))
goto err_wedged;
i915_request_add(rq);
}
rq = igt_request_alloc(hi.ctx, engine);
if (IS_ERR(rq))
goto err_wedged;
i915_request_get(rq);
i915_request_add(rq);
engine->schedule(rq, &attr);
igt_spinner_end(&hi.spin);
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
struct drm_printer p =
drm_info_printer(gt->i915->drm.dev);
pr_err("Failed to preempt over chain of %d\n",
count);
intel_engine_dump(engine, &p,
"%s\n", engine->name);
i915_request_put(rq);
goto err_wedged;
}
igt_spinner_end(&lo.spin);
i915_request_put(rq);
rq = igt_request_alloc(lo.ctx, engine);
if (IS_ERR(rq))
goto err_wedged;
i915_request_get(rq);
i915_request_add(rq);
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
struct drm_printer p =
drm_info_printer(gt->i915->drm.dev);
pr_err("Failed to flush low priority chain of %d requests\n",
count);
intel_engine_dump(engine, &p,
"%s\n", engine->name);
i915_request_put(rq);
goto err_wedged;
}
i915_request_put(rq);
}
if (igt_live_test_end(&t)) {
err = -EIO;
goto err_wedged;
}
}
err = 0;
err_client_lo:
preempt_client_fini(&lo);
err_client_hi:
preempt_client_fini(&hi);
return err;
err_wedged:
igt_spinner_end(&hi.spin);
igt_spinner_end(&lo.spin);
intel_gt_set_wedged(gt);
err = -EIO;
goto err_client_lo;
}
static int create_gang(struct intel_engine_cs *engine,
struct i915_request **prev)
{
struct drm_i915_gem_object *obj;
struct intel_context *ce;
struct i915_request *rq;
struct i915_vma *vma;
u32 *cs;
int err;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
obj = i915_gem_object_create_internal(engine->i915, 4096);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto err_ce;
}
vma = i915_vma_instance(obj, ce->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err_obj;
}
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err)
goto err_obj;
cs = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(cs))
goto err_obj;
/* Semaphore target: spin until zero */
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_EQ_SDD;
*cs++ = 0;
*cs++ = lower_32_bits(vma->node.start);
*cs++ = upper_32_bits(vma->node.start);
if (*prev) {
u64 offset = (*prev)->batch->node.start;
/* Terminate the spinner in the next lower priority batch. */
*cs++ = MI_STORE_DWORD_IMM_GEN4;
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
*cs++ = 0;
}
*cs++ = MI_BATCH_BUFFER_END;
i915_gem_object_flush_map(obj);
i915_gem_object_unpin_map(obj);
rq = intel_context_create_request(ce);
if (IS_ERR(rq))
goto err_obj;
rq->batch = i915_vma_get(vma);
i915_request_get(rq);
i915_vma_lock(vma);
err = i915_request_await_object(rq, vma->obj, false);
if (!err)
err = i915_vma_move_to_active(vma, rq, 0);
if (!err)
err = rq->engine->emit_bb_start(rq,
vma->node.start,
PAGE_SIZE, 0);
i915_vma_unlock(vma);
i915_request_add(rq);
if (err)
goto err_rq;
i915_gem_object_put(obj);
intel_context_put(ce);
rq->client_link.next = &(*prev)->client_link;
*prev = rq;
return 0;
err_rq:
i915_vma_put(rq->batch);
i915_request_put(rq);
err_obj:
i915_gem_object_put(obj);
err_ce:
intel_context_put(ce);
return err;
}
static int live_preempt_gang(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
/*
* Build as long a chain of preempters as we can, with each
* request higher priority than the last. Once we are ready, we release
* the last batch which then precolates down the chain, each releasing
* the next oldest in turn. The intent is to simply push as hard as we
* can with the number of preemptions, trying to exceed narrow HW
* limits. At a minimum, we insist that we can sort all the user
* high priority levels into execution order.
*/
for_each_engine(engine, gt, id) {
struct i915_request *rq = NULL;
struct igt_live_test t;
IGT_TIMEOUT(end_time);
int prio = 0;
int err = 0;
u32 *cs;
if (!intel_engine_has_preemption(engine))
continue;
if (igt_live_test_begin(&t, gt->i915, __func__, engine->name))
return -EIO;
do {
struct i915_sched_attr attr = {
.priority = I915_USER_PRIORITY(prio++),
};
err = create_gang(engine, &rq);
if (err)
break;
/* Submit each spinner at increasing priority */
engine->schedule(rq, &attr);
if (prio <= I915_PRIORITY_MAX)
continue;
if (prio > (INT_MAX >> I915_USER_PRIORITY_SHIFT))
break;
if (__igt_timeout(end_time, NULL))
break;
} while (1);
pr_debug("%s: Preempt chain of %d requests\n",
engine->name, prio);
/*
* Such that the last spinner is the highest priority and
* should execute first. When that spinner completes,
* it will terminate the next lowest spinner until there
* are no more spinners and the gang is complete.
*/
cs = i915_gem_object_pin_map(rq->batch->obj, I915_MAP_WC);
if (!IS_ERR(cs)) {
*cs = 0;
i915_gem_object_unpin_map(rq->batch->obj);
} else {
err = PTR_ERR(cs);
intel_gt_set_wedged(gt);
}
while (rq) { /* wait for each rq from highest to lowest prio */
struct i915_request *n =
list_next_entry(rq, client_link);
if (err == 0 && i915_request_wait(rq, 0, HZ / 5) < 0) {
struct drm_printer p =
drm_info_printer(engine->i915->drm.dev);
pr_err("Failed to flush chain of %d requests, at %d\n",
prio, rq_prio(rq) >> I915_USER_PRIORITY_SHIFT);
intel_engine_dump(engine, &p,
"%s\n", engine->name);
err = -ETIME;
}
i915_vma_put(rq->batch);
i915_request_put(rq);
rq = n;
}
if (igt_live_test_end(&t))
err = -EIO;
if (err)
return err;
}
return 0;
}
static struct i915_vma *
create_gpr_user(struct intel_engine_cs *engine,
struct i915_vma *result,
unsigned int offset)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
u32 *cs;
int err;
int i;
obj = i915_gem_object_create_internal(engine->i915, 4096);
if (IS_ERR(obj))
return ERR_CAST(obj);
vma = i915_vma_instance(obj, result->vm, NULL);
if (IS_ERR(vma)) {
i915_gem_object_put(obj);
return vma;
}
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err) {
i915_vma_put(vma);
return ERR_PTR(err);
}
cs = i915_gem_object_pin_map(obj, I915_MAP_WC);
if (IS_ERR(cs)) {
i915_vma_put(vma);
return ERR_CAST(cs);
}
/* All GPR are clear for new contexts. We use GPR(0) as a constant */
*cs++ = MI_LOAD_REGISTER_IMM(1);
*cs++ = CS_GPR(engine, 0);
*cs++ = 1;
for (i = 1; i < NUM_GPR; i++) {
u64 addr;
/*
* Perform: GPR[i]++
*
* As we read and write into the context saved GPR[i], if
* we restart this batch buffer from an earlier point, we
* will repeat the increment and store a value > 1.
*/
*cs++ = MI_MATH(4);
*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(i));
*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(0));
*cs++ = MI_MATH_ADD;
*cs++ = MI_MATH_STORE(MI_MATH_REG(i), MI_MATH_REG_ACCU);
addr = result->node.start + offset + i * sizeof(*cs);
*cs++ = MI_STORE_REGISTER_MEM_GEN8;
*cs++ = CS_GPR(engine, 2 * i);
*cs++ = lower_32_bits(addr);
*cs++ = upper_32_bits(addr);
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_GTE_SDD;
*cs++ = i;
*cs++ = lower_32_bits(result->node.start);
*cs++ = upper_32_bits(result->node.start);
}
*cs++ = MI_BATCH_BUFFER_END;
i915_gem_object_flush_map(obj);
i915_gem_object_unpin_map(obj);
return vma;
}
static struct i915_vma *create_global(struct intel_gt *gt, size_t sz)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int err;
obj = i915_gem_object_create_internal(gt->i915, sz);
if (IS_ERR(obj))
return ERR_CAST(obj);
vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
i915_gem_object_put(obj);
return vma;
}
err = i915_ggtt_pin(vma, 0, 0);
if (err) {
i915_vma_put(vma);
return ERR_PTR(err);
}
return vma;
}
static struct i915_request *
create_gpr_client(struct intel_engine_cs *engine,
struct i915_vma *global,
unsigned int offset)
{
struct i915_vma *batch, *vma;
struct intel_context *ce;
struct i915_request *rq;
int err;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return ERR_CAST(ce);
vma = i915_vma_instance(global->obj, ce->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto out_ce;
}
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err)
goto out_ce;
batch = create_gpr_user(engine, vma, offset);
if (IS_ERR(batch)) {
err = PTR_ERR(batch);
goto out_vma;
}
rq = intel_context_create_request(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out_batch;
}
i915_vma_lock(vma);
err = i915_request_await_object(rq, vma->obj, false);
if (!err)
err = i915_vma_move_to_active(vma, rq, 0);
i915_vma_unlock(vma);
i915_vma_lock(batch);
if (!err)
err = i915_request_await_object(rq, batch->obj, false);
if (!err)
err = i915_vma_move_to_active(batch, rq, 0);
if (!err)
err = rq->engine->emit_bb_start(rq,
batch->node.start,
PAGE_SIZE, 0);
i915_vma_unlock(batch);
i915_vma_unpin(batch);
if (!err)
i915_request_get(rq);
i915_request_add(rq);
out_batch:
i915_vma_put(batch);
out_vma:
i915_vma_unpin(vma);
out_ce:
intel_context_put(ce);
return err ? ERR_PTR(err) : rq;
}
static int preempt_user(struct intel_engine_cs *engine,
struct i915_vma *global,
int id)
{
struct i915_sched_attr attr = {
.priority = I915_PRIORITY_MAX
};
struct i915_request *rq;
int err = 0;
u32 *cs;
rq = intel_engine_create_kernel_request(engine);
if (IS_ERR(rq))
return PTR_ERR(rq);
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs)) {
i915_request_add(rq);
return PTR_ERR(cs);
}
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = i915_ggtt_offset(global);
*cs++ = 0;
*cs++ = id;
intel_ring_advance(rq, cs);
i915_request_get(rq);
i915_request_add(rq);
engine->schedule(rq, &attr);
if (i915_request_wait(rq, 0, HZ / 2) < 0)
err = -ETIME;
i915_request_put(rq);
return err;
}
static int live_preempt_user(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
struct i915_vma *global;
enum intel_engine_id id;
u32 *result;
int err = 0;
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
/*
* In our other tests, we look at preemption in carefully
* controlled conditions in the ringbuffer. Since most of the
* time is spent in user batches, most of our preemptions naturally
* occur there. We want to verify that when we preempt inside a batch
* we continue on from the current instruction and do not roll back
* to the start, or another earlier arbitration point.
*
* To verify this, we create a batch which is a mixture of
* MI_MATH (gpr++) MI_SRM (gpr) and preemption points. Then with
* a few preempting contexts thrown into the mix, we look for any
* repeated instructions (which show up as incorrect values).
*/
global = create_global(gt, 4096);
if (IS_ERR(global))
return PTR_ERR(global);
result = i915_gem_object_pin_map(global->obj, I915_MAP_WC);
if (IS_ERR(result)) {
i915_vma_unpin_and_release(&global, 0);
return PTR_ERR(result);
}
for_each_engine(engine, gt, id) {
struct i915_request *client[3] = {};
struct igt_live_test t;
int i;
if (!intel_engine_has_preemption(engine))
continue;
if (IS_GEN(gt->i915, 8) && engine->class != RENDER_CLASS)
continue; /* we need per-context GPR */
if (igt_live_test_begin(&t, gt->i915, __func__, engine->name)) {
err = -EIO;
break;
}
memset(result, 0, 4096);
for (i = 0; i < ARRAY_SIZE(client); i++) {
struct i915_request *rq;
rq = create_gpr_client(engine, global,
NUM_GPR * i * sizeof(u32));
if (IS_ERR(rq))
goto end_test;
client[i] = rq;
}
/* Continuously preempt the set of 3 running contexts */
for (i = 1; i <= NUM_GPR; i++) {
err = preempt_user(engine, global, i);
if (err)
goto end_test;
}
if (READ_ONCE(result[0]) != NUM_GPR) {
pr_err("%s: Failed to release semaphore\n",
engine->name);
err = -EIO;
goto end_test;
}
for (i = 0; i < ARRAY_SIZE(client); i++) {
int gpr;
if (i915_request_wait(client[i], 0, HZ / 2) < 0) {
err = -ETIME;
goto end_test;
}
for (gpr = 1; gpr < NUM_GPR; gpr++) {
if (result[NUM_GPR * i + gpr] != 1) {
pr_err("%s: Invalid result, client %d, gpr %d, result: %d\n",
engine->name,
i, gpr, result[NUM_GPR * i + gpr]);
err = -EINVAL;
goto end_test;
}
}
}
end_test:
for (i = 0; i < ARRAY_SIZE(client); i++) {
if (!client[i])
break;
i915_request_put(client[i]);
}
/* Flush the semaphores on error */
smp_store_mb(result[0], -1);
if (igt_live_test_end(&t))
err = -EIO;
if (err)
break;
}
i915_vma_unpin_and_release(&global, I915_VMA_RELEASE_MAP);
return err;
}
static int live_preempt_timeout(void *arg)
{
struct intel_gt *gt = arg;
struct i915_gem_context *ctx_hi, *ctx_lo;
struct igt_spinner spin_lo;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = -ENOMEM;
/*
* Check that we force preemption to occur by cancelling the previous
* context if it refuses to yield the GPU.
*/
if (!IS_ACTIVE(CONFIG_DRM_I915_PREEMPT_TIMEOUT))
return 0;
if (!HAS_LOGICAL_RING_PREEMPTION(gt->i915))
return 0;
if (!intel_has_reset_engine(gt))
return 0;
if (igt_spinner_init(&spin_lo, gt))
return -ENOMEM;
ctx_hi = kernel_context(gt->i915);
if (!ctx_hi)
goto err_spin_lo;
ctx_hi->sched.priority =
I915_USER_PRIORITY(I915_CONTEXT_MAX_USER_PRIORITY);
ctx_lo = kernel_context(gt->i915);
if (!ctx_lo)
goto err_ctx_hi;
ctx_lo->sched.priority =
I915_USER_PRIORITY(I915_CONTEXT_MIN_USER_PRIORITY);
for_each_engine(engine, gt, id) {
unsigned long saved_timeout;
struct i915_request *rq;
if (!intel_engine_has_preemption(engine))
continue;
rq = spinner_create_request(&spin_lo, ctx_lo, engine,
MI_NOOP); /* preemption disabled */
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_ctx_lo;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin_lo, rq)) {
intel_gt_set_wedged(gt);
err = -EIO;
goto err_ctx_lo;
}
rq = igt_request_alloc(ctx_hi, engine);
if (IS_ERR(rq)) {
igt_spinner_end(&spin_lo);
err = PTR_ERR(rq);
goto err_ctx_lo;
}
/* Flush the previous CS ack before changing timeouts */
while (READ_ONCE(engine->execlists.pending[0]))
cpu_relax();
saved_timeout = engine->props.preempt_timeout_ms;
engine->props.preempt_timeout_ms = 1; /* in ms, -> 1 jiffie */
i915_request_get(rq);
i915_request_add(rq);
intel_engine_flush_submission(engine);
engine->props.preempt_timeout_ms = saved_timeout;
if (i915_request_wait(rq, 0, HZ / 10) < 0) {
intel_gt_set_wedged(gt);
i915_request_put(rq);
err = -ETIME;
goto err_ctx_lo;
}
igt_spinner_end(&spin_lo);
i915_request_put(rq);
}
err = 0;
err_ctx_lo:
kernel_context_close(ctx_lo);
err_ctx_hi:
kernel_context_close(ctx_hi);
err_spin_lo:
igt_spinner_fini(&spin_lo);
return err;
}
static int random_range(struct rnd_state *rnd, int min, int max)
{
return i915_prandom_u32_max_state(max - min, rnd) + min;
}
static int random_priority(struct rnd_state *rnd)
{
return random_range(rnd, I915_PRIORITY_MIN, I915_PRIORITY_MAX);
}
struct preempt_smoke {
struct intel_gt *gt;
struct i915_gem_context **contexts;
struct intel_engine_cs *engine;
struct drm_i915_gem_object *batch;
unsigned int ncontext;
struct rnd_state prng;
unsigned long count;
};
static struct i915_gem_context *smoke_context(struct preempt_smoke *smoke)
{
return smoke->contexts[i915_prandom_u32_max_state(smoke->ncontext,
&smoke->prng)];
}
static int smoke_submit(struct preempt_smoke *smoke,
struct i915_gem_context *ctx, int prio,
struct drm_i915_gem_object *batch)
{
struct i915_request *rq;
struct i915_vma *vma = NULL;
int err = 0;
if (batch) {
struct i915_address_space *vm;
vm = i915_gem_context_get_vm_rcu(ctx);
vma = i915_vma_instance(batch, vm, NULL);
i915_vm_put(vm);
if (IS_ERR(vma))
return PTR_ERR(vma);
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err)
return err;
}
ctx->sched.priority = prio;
rq = igt_request_alloc(ctx, smoke->engine);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto unpin;
}
if (vma) {
i915_vma_lock(vma);
err = i915_request_await_object(rq, vma->obj, false);
if (!err)
err = i915_vma_move_to_active(vma, rq, 0);
if (!err)
err = rq->engine->emit_bb_start(rq,
vma->node.start,
PAGE_SIZE, 0);
i915_vma_unlock(vma);
}
i915_request_add(rq);
unpin:
if (vma)
i915_vma_unpin(vma);
return err;
}
static int smoke_crescendo_thread(void *arg)
{
struct preempt_smoke *smoke = arg;
IGT_TIMEOUT(end_time);
unsigned long count;
count = 0;
do {
struct i915_gem_context *ctx = smoke_context(smoke);
int err;
err = smoke_submit(smoke,
ctx, count % I915_PRIORITY_MAX,
smoke->batch);
if (err)
return err;
count++;
} while (!__igt_timeout(end_time, NULL));
smoke->count = count;
return 0;
}
static int smoke_crescendo(struct preempt_smoke *smoke, unsigned int flags)
#define BATCH BIT(0)
{
struct task_struct *tsk[I915_NUM_ENGINES] = {};
struct preempt_smoke arg[I915_NUM_ENGINES];
struct intel_engine_cs *engine;
enum intel_engine_id id;
unsigned long count;
int err = 0;
for_each_engine(engine, smoke->gt, id) {
arg[id] = *smoke;
arg[id].engine = engine;
if (!(flags & BATCH))
arg[id].batch = NULL;
arg[id].count = 0;
tsk[id] = kthread_run(smoke_crescendo_thread, &arg,
"igt/smoke:%d", id);
if (IS_ERR(tsk[id])) {
err = PTR_ERR(tsk[id]);
break;
}
get_task_struct(tsk[id]);
}
yield(); /* start all threads before we kthread_stop() */
count = 0;
for_each_engine(engine, smoke->gt, id) {
int status;
if (IS_ERR_OR_NULL(tsk[id]))
continue;
status = kthread_stop(tsk[id]);
if (status && !err)
err = status;
count += arg[id].count;
put_task_struct(tsk[id]);
}
pr_info("Submitted %lu crescendo:%x requests across %d engines and %d contexts\n",
count, flags,
RUNTIME_INFO(smoke->gt->i915)->num_engines, smoke->ncontext);
return 0;
}
static int smoke_random(struct preempt_smoke *smoke, unsigned int flags)
{
enum intel_engine_id id;
IGT_TIMEOUT(end_time);
unsigned long count;
count = 0;
do {
for_each_engine(smoke->engine, smoke->gt, id) {
struct i915_gem_context *ctx = smoke_context(smoke);
int err;
err = smoke_submit(smoke,
ctx, random_priority(&smoke->prng),
flags & BATCH ? smoke->batch : NULL);
if (err)
return err;
count++;
}
} while (!__igt_timeout(end_time, NULL));
pr_info("Submitted %lu random:%x requests across %d engines and %d contexts\n",
count, flags,
RUNTIME_INFO(smoke->gt->i915)->num_engines, smoke->ncontext);
return 0;
}
static int live_preempt_smoke(void *arg)
{
struct preempt_smoke smoke = {
.gt = arg,
.prng = I915_RND_STATE_INITIALIZER(i915_selftest.random_seed),
.ncontext = 1024,
};
const unsigned int phase[] = { 0, BATCH };
struct igt_live_test t;
int err = -ENOMEM;
u32 *cs;
int n;
if (!HAS_LOGICAL_RING_PREEMPTION(smoke.gt->i915))
return 0;
smoke.contexts = kmalloc_array(smoke.ncontext,
sizeof(*smoke.contexts),
GFP_KERNEL);
if (!smoke.contexts)
return -ENOMEM;
smoke.batch =
i915_gem_object_create_internal(smoke.gt->i915, PAGE_SIZE);
if (IS_ERR(smoke.batch)) {
err = PTR_ERR(smoke.batch);
goto err_free;
}
cs = i915_gem_object_pin_map(smoke.batch, I915_MAP_WB);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
goto err_batch;
}
for (n = 0; n < PAGE_SIZE / sizeof(*cs) - 1; n++)
cs[n] = MI_ARB_CHECK;
cs[n] = MI_BATCH_BUFFER_END;
i915_gem_object_flush_map(smoke.batch);
i915_gem_object_unpin_map(smoke.batch);
if (igt_live_test_begin(&t, smoke.gt->i915, __func__, "all")) {
err = -EIO;
goto err_batch;
}
for (n = 0; n < smoke.ncontext; n++) {
smoke.contexts[n] = kernel_context(smoke.gt->i915);
if (!smoke.contexts[n])
goto err_ctx;
}
for (n = 0; n < ARRAY_SIZE(phase); n++) {
err = smoke_crescendo(&smoke, phase[n]);
if (err)
goto err_ctx;
err = smoke_random(&smoke, phase[n]);
if (err)
goto err_ctx;
}
err_ctx:
if (igt_live_test_end(&t))
err = -EIO;
for (n = 0; n < smoke.ncontext; n++) {
if (!smoke.contexts[n])
break;
kernel_context_close(smoke.contexts[n]);
}
err_batch:
i915_gem_object_put(smoke.batch);
err_free:
kfree(smoke.contexts);
return err;
}
static int nop_virtual_engine(struct intel_gt *gt,
struct intel_engine_cs **siblings,
unsigned int nsibling,
unsigned int nctx,
unsigned int flags)
#define CHAIN BIT(0)
{
IGT_TIMEOUT(end_time);
struct i915_request *request[16] = {};
struct intel_context *ve[16];
unsigned long n, prime, nc;
struct igt_live_test t;
ktime_t times[2] = {};
int err;
GEM_BUG_ON(!nctx || nctx > ARRAY_SIZE(ve));
for (n = 0; n < nctx; n++) {
ve[n] = intel_execlists_create_virtual(siblings, nsibling);
if (IS_ERR(ve[n])) {
err = PTR_ERR(ve[n]);
nctx = n;
goto out;
}
err = intel_context_pin(ve[n]);
if (err) {
intel_context_put(ve[n]);
nctx = n;
goto out;
}
}
err = igt_live_test_begin(&t, gt->i915, __func__, ve[0]->engine->name);
if (err)
goto out;
for_each_prime_number_from(prime, 1, 8192) {
times[1] = ktime_get_raw();
if (flags & CHAIN) {
for (nc = 0; nc < nctx; nc++) {
for (n = 0; n < prime; n++) {
struct i915_request *rq;
rq = i915_request_create(ve[nc]);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out;
}
if (request[nc])
i915_request_put(request[nc]);
request[nc] = i915_request_get(rq);
i915_request_add(rq);
}
}
} else {
for (n = 0; n < prime; n++) {
for (nc = 0; nc < nctx; nc++) {
struct i915_request *rq;
rq = i915_request_create(ve[nc]);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out;
}
if (request[nc])
i915_request_put(request[nc]);
request[nc] = i915_request_get(rq);
i915_request_add(rq);
}
}
}
for (nc = 0; nc < nctx; nc++) {
if (i915_request_wait(request[nc], 0, HZ / 10) < 0) {
pr_err("%s(%s): wait for %llx:%lld timed out\n",
__func__, ve[0]->engine->name,
request[nc]->fence.context,
request[nc]->fence.seqno);
GEM_TRACE("%s(%s) failed at request %llx:%lld\n",
__func__, ve[0]->engine->name,
request[nc]->fence.context,
request[nc]->fence.seqno);
GEM_TRACE_DUMP();
intel_gt_set_wedged(gt);
break;
}
}
times[1] = ktime_sub(ktime_get_raw(), times[1]);
if (prime == 1)
times[0] = times[1];
for (nc = 0; nc < nctx; nc++) {
i915_request_put(request[nc]);
request[nc] = NULL;
}
if (__igt_timeout(end_time, NULL))
break;
}
err = igt_live_test_end(&t);
if (err)
goto out;
pr_info("Requestx%d latencies on %s: 1 = %lluns, %lu = %lluns\n",
nctx, ve[0]->engine->name, ktime_to_ns(times[0]),
prime, div64_u64(ktime_to_ns(times[1]), prime));
out:
if (igt_flush_test(gt->i915))
err = -EIO;
for (nc = 0; nc < nctx; nc++) {
i915_request_put(request[nc]);
intel_context_unpin(ve[nc]);
intel_context_put(ve[nc]);
}
return err;
}
static int live_virtual_engine(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *siblings[MAX_ENGINE_INSTANCE + 1];
struct intel_engine_cs *engine;
enum intel_engine_id id;
unsigned int class, inst;
int err;
if (intel_uc_uses_guc_submission(&gt->uc))
return 0;
for_each_engine(engine, gt, id) {
err = nop_virtual_engine(gt, &engine, 1, 1, 0);
if (err) {
pr_err("Failed to wrap engine %s: err=%d\n",
engine->name, err);
return err;
}
}
for (class = 0; class <= MAX_ENGINE_CLASS; class++) {
int nsibling, n;
nsibling = 0;
for (inst = 0; inst <= MAX_ENGINE_INSTANCE; inst++) {
if (!gt->engine_class[class][inst])
continue;
siblings[nsibling++] = gt->engine_class[class][inst];
}
if (nsibling < 2)
continue;
for (n = 1; n <= nsibling + 1; n++) {
err = nop_virtual_engine(gt, siblings, nsibling,
n, 0);
if (err)
return err;
}
err = nop_virtual_engine(gt, siblings, nsibling, n, CHAIN);
if (err)
return err;
}
return 0;
}
static int mask_virtual_engine(struct intel_gt *gt,
struct intel_engine_cs **siblings,
unsigned int nsibling)
{
struct i915_request *request[MAX_ENGINE_INSTANCE + 1];
struct intel_context *ve;
struct igt_live_test t;
unsigned int n;
int err;
/*
* Check that by setting the execution mask on a request, we can
* restrict it to our desired engine within the virtual engine.
*/
ve = intel_execlists_create_virtual(siblings, nsibling);
if (IS_ERR(ve)) {
err = PTR_ERR(ve);
goto out_close;
}
err = intel_context_pin(ve);
if (err)
goto out_put;
err = igt_live_test_begin(&t, gt->i915, __func__, ve->engine->name);
if (err)
goto out_unpin;
for (n = 0; n < nsibling; n++) {
request[n] = i915_request_create(ve);
if (IS_ERR(request[n])) {
err = PTR_ERR(request[n]);
nsibling = n;
goto out;
}
/* Reverse order as it's more likely to be unnatural */
request[n]->execution_mask = siblings[nsibling - n - 1]->mask;
i915_request_get(request[n]);
i915_request_add(request[n]);
}
for (n = 0; n < nsibling; n++) {
if (i915_request_wait(request[n], 0, HZ / 10) < 0) {
pr_err("%s(%s): wait for %llx:%lld timed out\n",
__func__, ve->engine->name,
request[n]->fence.context,
request[n]->fence.seqno);
GEM_TRACE("%s(%s) failed at request %llx:%lld\n",
__func__, ve->engine->name,
request[n]->fence.context,
request[n]->fence.seqno);
GEM_TRACE_DUMP();
intel_gt_set_wedged(gt);
err = -EIO;
goto out;
}
if (request[n]->engine != siblings[nsibling - n - 1]) {
pr_err("Executed on wrong sibling '%s', expected '%s'\n",
request[n]->engine->name,
siblings[nsibling - n - 1]->name);
err = -EINVAL;
goto out;
}
}
err = igt_live_test_end(&t);
out:
if (igt_flush_test(gt->i915))
err = -EIO;
for (n = 0; n < nsibling; n++)
i915_request_put(request[n]);
out_unpin:
intel_context_unpin(ve);
out_put:
intel_context_put(ve);
out_close:
return err;
}
static int live_virtual_mask(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *siblings[MAX_ENGINE_INSTANCE + 1];
unsigned int class, inst;
int err;
if (intel_uc_uses_guc_submission(&gt->uc))
return 0;
for (class = 0; class <= MAX_ENGINE_CLASS; class++) {
unsigned int nsibling;
nsibling = 0;
for (inst = 0; inst <= MAX_ENGINE_INSTANCE; inst++) {
if (!gt->engine_class[class][inst])
break;
siblings[nsibling++] = gt->engine_class[class][inst];
}
if (nsibling < 2)
continue;
err = mask_virtual_engine(gt, siblings, nsibling);
if (err)
return err;
}
return 0;
}
static int preserved_virtual_engine(struct intel_gt *gt,
struct intel_engine_cs **siblings,
unsigned int nsibling)
{
struct i915_request *last = NULL;
struct intel_context *ve;
struct i915_vma *scratch;
struct igt_live_test t;
unsigned int n;
int err = 0;
u32 *cs;
scratch = create_scratch(siblings[0]->gt);
if (IS_ERR(scratch))
return PTR_ERR(scratch);
err = i915_vma_sync(scratch);
if (err)
goto out_scratch;
ve = intel_execlists_create_virtual(siblings, nsibling);
if (IS_ERR(ve)) {
err = PTR_ERR(ve);
goto out_scratch;
}
err = intel_context_pin(ve);
if (err)
goto out_put;
err = igt_live_test_begin(&t, gt->i915, __func__, ve->engine->name);
if (err)
goto out_unpin;
for (n = 0; n < NUM_GPR_DW; n++) {
struct intel_engine_cs *engine = siblings[n % nsibling];
struct i915_request *rq;
rq = i915_request_create(ve);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out_end;
}
i915_request_put(last);
last = i915_request_get(rq);
cs = intel_ring_begin(rq, 8);
if (IS_ERR(cs)) {
i915_request_add(rq);
err = PTR_ERR(cs);
goto out_end;
}
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
*cs++ = CS_GPR(engine, n);
*cs++ = i915_ggtt_offset(scratch) + n * sizeof(u32);
*cs++ = 0;
*cs++ = MI_LOAD_REGISTER_IMM(1);
*cs++ = CS_GPR(engine, (n + 1) % NUM_GPR_DW);
*cs++ = n + 1;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
/* Restrict this request to run on a particular engine */
rq->execution_mask = engine->mask;
i915_request_add(rq);
}
if (i915_request_wait(last, 0, HZ / 5) < 0) {
err = -ETIME;
goto out_end;
}
cs = i915_gem_object_pin_map(scratch->obj, I915_MAP_WB);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
goto out_end;
}
for (n = 0; n < NUM_GPR_DW; n++) {
if (cs[n] != n) {
pr_err("Incorrect value[%d] found for GPR[%d]\n",
cs[n], n);
err = -EINVAL;
break;
}
}
i915_gem_object_unpin_map(scratch->obj);
out_end:
if (igt_live_test_end(&t))
err = -EIO;
i915_request_put(last);
out_unpin:
intel_context_unpin(ve);
out_put:
intel_context_put(ve);
out_scratch:
i915_vma_unpin_and_release(&scratch, 0);
return err;
}
static int live_virtual_preserved(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *siblings[MAX_ENGINE_INSTANCE + 1];
unsigned int class, inst;
/*
* Check that the context image retains non-privileged (user) registers
* from one engine to the next. For this we check that the CS_GPR
* are preserved.
*/
if (intel_uc_uses_guc_submission(&gt->uc))
return 0;
/* As we use CS_GPR we cannot run before they existed on all engines. */
if (INTEL_GEN(gt->i915) < 9)
return 0;
for (class = 0; class <= MAX_ENGINE_CLASS; class++) {
int nsibling, err;
nsibling = 0;
for (inst = 0; inst <= MAX_ENGINE_INSTANCE; inst++) {
if (!gt->engine_class[class][inst])
continue;
siblings[nsibling++] = gt->engine_class[class][inst];
}
if (nsibling < 2)
continue;
err = preserved_virtual_engine(gt, siblings, nsibling);
if (err)
return err;
}
return 0;
}
static int bond_virtual_engine(struct intel_gt *gt,
unsigned int class,
struct intel_engine_cs **siblings,
unsigned int nsibling,
unsigned int flags)
#define BOND_SCHEDULE BIT(0)
{
struct intel_engine_cs *master;
struct i915_request *rq[16];
enum intel_engine_id id;
struct igt_spinner spin;
unsigned long n;
int err;
/*
* A set of bonded requests is intended to be run concurrently
* across a number of engines. We use one request per-engine
* and a magic fence to schedule each of the bonded requests
* at the same time. A consequence of our current scheduler is that
* we only move requests to the HW ready queue when the request
* becomes ready, that is when all of its prerequisite fences have
* been signaled. As one of those fences is the master submit fence,
* there is a delay on all secondary fences as the HW may be
* currently busy. Equally, as all the requests are independent,
* they may have other fences that delay individual request
* submission to HW. Ergo, we do not guarantee that all requests are
* immediately submitted to HW at the same time, just that if the
* rules are abided by, they are ready at the same time as the
* first is submitted. Userspace can embed semaphores in its batch
* to ensure parallel execution of its phases as it requires.
* Though naturally it gets requested that perhaps the scheduler should
* take care of parallel execution, even across preemption events on
* different HW. (The proper answer is of course "lalalala".)
*
* With the submit-fence, we have identified three possible phases
* of synchronisation depending on the master fence: queued (not
* ready), executing, and signaled. The first two are quite simple
* and checked below. However, the signaled master fence handling is
* contentious. Currently we do not distinguish between a signaled
* fence and an expired fence, as once signaled it does not convey
* any information about the previous execution. It may even be freed
* and hence checking later it may not exist at all. Ergo we currently
* do not apply the bonding constraint for an already signaled fence,
* as our expectation is that it should not constrain the secondaries
* and is outside of the scope of the bonded request API (i.e. all
* userspace requests are meant to be running in parallel). As
* it imposes no constraint, and is effectively a no-op, we do not
* check below as normal execution flows are checked extensively above.
*
* XXX Is the degenerate handling of signaled submit fences the
* expected behaviour for userpace?
*/
GEM_BUG_ON(nsibling >= ARRAY_SIZE(rq) - 1);
if (igt_spinner_init(&spin, gt))
return -ENOMEM;
err = 0;
rq[0] = ERR_PTR(-ENOMEM);
for_each_engine(master, gt, id) {
struct i915_sw_fence fence = {};
struct intel_context *ce;
if (master->class == class)
continue;
ce = intel_context_create(master);
if (IS_ERR(ce)) {
err = PTR_ERR(ce);
goto out;
}
memset_p((void *)rq, ERR_PTR(-EINVAL), ARRAY_SIZE(rq));
rq[0] = igt_spinner_create_request(&spin, ce, MI_NOOP);
intel_context_put(ce);
if (IS_ERR(rq[0])) {
err = PTR_ERR(rq[0]);
goto out;
}
i915_request_get(rq[0]);
if (flags & BOND_SCHEDULE) {
onstack_fence_init(&fence);
err = i915_sw_fence_await_sw_fence_gfp(&rq[0]->submit,
&fence,
GFP_KERNEL);
}
i915_request_add(rq[0]);
if (err < 0)
goto out;
if (!(flags & BOND_SCHEDULE) &&
!igt_wait_for_spinner(&spin, rq[0])) {
err = -EIO;
goto out;
}
for (n = 0; n < nsibling; n++) {
struct intel_context *ve;
ve = intel_execlists_create_virtual(siblings, nsibling);
if (IS_ERR(ve)) {
err = PTR_ERR(ve);
onstack_fence_fini(&fence);
goto out;
}
err = intel_virtual_engine_attach_bond(ve->engine,
master,
siblings[n]);
if (err) {
intel_context_put(ve);
onstack_fence_fini(&fence);
goto out;
}
err = intel_context_pin(ve);
intel_context_put(ve);
if (err) {
onstack_fence_fini(&fence);
goto out;
}
rq[n + 1] = i915_request_create(ve);
intel_context_unpin(ve);
if (IS_ERR(rq[n + 1])) {
err = PTR_ERR(rq[n + 1]);
onstack_fence_fini(&fence);
goto out;
}
i915_request_get(rq[n + 1]);
err = i915_request_await_execution(rq[n + 1],
&rq[0]->fence,
ve->engine->bond_execute);
i915_request_add(rq[n + 1]);
if (err < 0) {
onstack_fence_fini(&fence);
goto out;
}
}
onstack_fence_fini(&fence);
intel_engine_flush_submission(master);
igt_spinner_end(&spin);
if (i915_request_wait(rq[0], 0, HZ / 10) < 0) {
pr_err("Master request did not execute (on %s)!\n",
rq[0]->engine->name);
err = -EIO;
goto out;
}
for (n = 0; n < nsibling; n++) {
if (i915_request_wait(rq[n + 1], 0,
MAX_SCHEDULE_TIMEOUT) < 0) {
err = -EIO;
goto out;
}
if (rq[n + 1]->engine != siblings[n]) {
pr_err("Bonded request did not execute on target engine: expected %s, used %s; master was %s\n",
siblings[n]->name,
rq[n + 1]->engine->name,
rq[0]->engine->name);
err = -EINVAL;
goto out;
}
}
for (n = 0; !IS_ERR(rq[n]); n++)
i915_request_put(rq[n]);
rq[0] = ERR_PTR(-ENOMEM);
}
out:
for (n = 0; !IS_ERR(rq[n]); n++)
i915_request_put(rq[n]);
if (igt_flush_test(gt->i915))
err = -EIO;
igt_spinner_fini(&spin);
return err;
}
static int live_virtual_bond(void *arg)
{
static const struct phase {
const char *name;
unsigned int flags;
} phases[] = {
{ "", 0 },
{ "schedule", BOND_SCHEDULE },
{ },
};
struct intel_gt *gt = arg;
struct intel_engine_cs *siblings[MAX_ENGINE_INSTANCE + 1];
unsigned int class, inst;
int err;
if (intel_uc_uses_guc_submission(&gt->uc))
return 0;
for (class = 0; class <= MAX_ENGINE_CLASS; class++) {
const struct phase *p;
int nsibling;
nsibling = 0;
for (inst = 0; inst <= MAX_ENGINE_INSTANCE; inst++) {
if (!gt->engine_class[class][inst])
break;
GEM_BUG_ON(nsibling == ARRAY_SIZE(siblings));
siblings[nsibling++] = gt->engine_class[class][inst];
}
if (nsibling < 2)
continue;
for (p = phases; p->name; p++) {
err = bond_virtual_engine(gt,
class, siblings, nsibling,
p->flags);
if (err) {
pr_err("%s(%s): failed class=%d, nsibling=%d, err=%d\n",
__func__, p->name, class, nsibling, err);
return err;
}
}
}
return 0;
}
static int reset_virtual_engine(struct intel_gt *gt,
struct intel_engine_cs **siblings,
unsigned int nsibling)
{
struct intel_engine_cs *engine;
struct intel_context *ve;
unsigned long *heartbeat;
struct igt_spinner spin;
struct i915_request *rq;
unsigned int n;
int err = 0;
/*
* In order to support offline error capture for fast preempt reset,
* we need to decouple the guilty request and ensure that it and its
* descendents are not executed while the capture is in progress.
*/
heartbeat = kmalloc_array(nsibling, sizeof(*heartbeat), GFP_KERNEL);
if (!heartbeat)
return -ENOMEM;
if (igt_spinner_init(&spin, gt)) {
err = -ENOMEM;
goto out_free;
}
ve = intel_execlists_create_virtual(siblings, nsibling);
if (IS_ERR(ve)) {
err = PTR_ERR(ve);
goto out_spin;
}
for (n = 0; n < nsibling; n++)
engine_heartbeat_disable(siblings[n], &heartbeat[n]);
rq = igt_spinner_create_request(&spin, ve, MI_ARB_CHECK);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto out_heartbeat;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin, rq)) {
intel_gt_set_wedged(gt);
err = -ETIME;
goto out_heartbeat;
}
engine = rq->engine;
GEM_BUG_ON(engine == ve->engine);
/* Take ownership of the reset and tasklet */
if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
&gt->reset.flags)) {
intel_gt_set_wedged(gt);
err = -EBUSY;
goto out_heartbeat;
}
tasklet_disable(&engine->execlists.tasklet);
engine->execlists.tasklet.func(engine->execlists.tasklet.data);
GEM_BUG_ON(execlists_active(&engine->execlists) != rq);
/* Fake a preemption event; failed of course */
spin_lock_irq(&engine->active.lock);
__unwind_incomplete_requests(engine);
spin_unlock_irq(&engine->active.lock);
GEM_BUG_ON(rq->engine != ve->engine);
/* Reset the engine while keeping our active request on hold */
execlists_hold(engine, rq);
GEM_BUG_ON(!i915_request_on_hold(rq));
intel_engine_reset(engine, NULL);
GEM_BUG_ON(rq->fence.error != -EIO);
/* Release our grasp on the engine, letting CS flow again */
tasklet_enable(&engine->execlists.tasklet);
clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, &gt->reset.flags);
/* Check that we do not resubmit the held request */
i915_request_get(rq);
if (!i915_request_wait(rq, 0, HZ / 5)) {
pr_err("%s: on hold request completed!\n",
engine->name);
intel_gt_set_wedged(gt);
err = -EIO;
goto out_rq;
}
GEM_BUG_ON(!i915_request_on_hold(rq));
/* But is resubmitted on release */
execlists_unhold(engine, rq);
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
pr_err("%s: held request did not complete!\n",
engine->name);
intel_gt_set_wedged(gt);
err = -ETIME;
}
out_rq:
i915_request_put(rq);
out_heartbeat:
for (n = 0; n < nsibling; n++)
engine_heartbeat_enable(siblings[n], heartbeat[n]);
intel_context_put(ve);
out_spin:
igt_spinner_fini(&spin);
out_free:
kfree(heartbeat);
return err;
}
static int live_virtual_reset(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *siblings[MAX_ENGINE_INSTANCE + 1];
unsigned int class, inst;
/*
* Check that we handle a reset event within a virtual engine.
* Only the physical engine is reset, but we have to check the flow
* of the virtual requests around the reset, and make sure it is not
* forgotten.
*/
if (intel_uc_uses_guc_submission(&gt->uc))
return 0;
if (!intel_has_reset_engine(gt))
return 0;
for (class = 0; class <= MAX_ENGINE_CLASS; class++) {
int nsibling, err;
nsibling = 0;
for (inst = 0; inst <= MAX_ENGINE_INSTANCE; inst++) {
if (!gt->engine_class[class][inst])
continue;
siblings[nsibling++] = gt->engine_class[class][inst];
}
if (nsibling < 2)
continue;
err = reset_virtual_engine(gt, siblings, nsibling);
if (err)
return err;
}
return 0;
}
int intel_execlists_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(live_sanitycheck),
SUBTEST(live_unlite_switch),
SUBTEST(live_unlite_preempt),
SUBTEST(live_pin_rewind),
SUBTEST(live_hold_reset),
SUBTEST(live_error_interrupt),
SUBTEST(live_timeslice_preempt),
SUBTEST(live_timeslice_rewind),
SUBTEST(live_timeslice_queue),
SUBTEST(live_busywait_preempt),
SUBTEST(live_preempt),
SUBTEST(live_late_preempt),
SUBTEST(live_nopreempt),
SUBTEST(live_preempt_cancel),
SUBTEST(live_suppress_self_preempt),
SUBTEST(live_suppress_wait_preempt),
SUBTEST(live_chain_preempt),
SUBTEST(live_preempt_gang),
SUBTEST(live_preempt_timeout),
SUBTEST(live_preempt_user),
SUBTEST(live_preempt_smoke),
SUBTEST(live_virtual_engine),
SUBTEST(live_virtual_mask),
SUBTEST(live_virtual_preserved),
SUBTEST(live_virtual_bond),
SUBTEST(live_virtual_reset),
};
if (!HAS_EXECLISTS(i915))
return 0;
if (intel_gt_is_wedged(&i915->gt))
return 0;
return intel_gt_live_subtests(tests, &i915->gt);
}
static int emit_semaphore_signal(struct intel_context *ce, void *slot)
{
const u32 offset =
i915_ggtt_offset(ce->engine->status_page.vma) +
offset_in_page(slot);
struct i915_request *rq;
u32 *cs;
rq = intel_context_create_request(ce);
if (IS_ERR(rq))
return PTR_ERR(rq);
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs)) {
i915_request_add(rq);
return PTR_ERR(cs);
}
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = offset;
*cs++ = 0;
*cs++ = 1;
intel_ring_advance(rq, cs);
rq->sched.attr.priority = I915_PRIORITY_BARRIER;
i915_request_add(rq);
return 0;
}
static int context_flush(struct intel_context *ce, long timeout)
{
struct i915_request *rq;
struct dma_fence *fence;
int err = 0;
rq = intel_engine_create_kernel_request(ce->engine);
if (IS_ERR(rq))
return PTR_ERR(rq);
fence = i915_active_fence_get(&ce->timeline->last_request);
if (fence) {
i915_request_await_dma_fence(rq, fence);
dma_fence_put(fence);
}
rq = i915_request_get(rq);
i915_request_add(rq);
if (i915_request_wait(rq, 0, timeout) < 0)
err = -ETIME;
i915_request_put(rq);
rmb(); /* We know the request is written, make sure all state is too! */
return err;
}
static int live_lrc_layout(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
u32 *lrc;
int err;
/*
* Check the registers offsets we use to create the initial reg state
* match the layout saved by HW.
*/
lrc = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!lrc)
return -ENOMEM;
err = 0;
for_each_engine(engine, gt, id) {
u32 *hw;
int dw;
if (!engine->default_state)
continue;
hw = shmem_pin_map(engine->default_state);
if (IS_ERR(hw)) {
err = PTR_ERR(hw);
break;
}
hw += LRC_STATE_OFFSET / sizeof(*hw);
execlists_init_reg_state(memset(lrc, POISON_INUSE, PAGE_SIZE),
engine->kernel_context,
engine,
engine->kernel_context->ring,
true);
dw = 0;
do {
u32 lri = hw[dw];
if (lri == 0) {
dw++;
continue;
}
if (lrc[dw] == 0) {
pr_debug("%s: skipped instruction %x at dword %d\n",
engine->name, lri, dw);
dw++;
continue;
}
if ((lri & GENMASK(31, 23)) != MI_INSTR(0x22, 0)) {
pr_err("%s: Expected LRI command at dword %d, found %08x\n",
engine->name, dw, lri);
err = -EINVAL;
break;
}
if (lrc[dw] != lri) {
pr_err("%s: LRI command mismatch at dword %d, expected %08x found %08x\n",
engine->name, dw, lri, lrc[dw]);
err = -EINVAL;
break;
}
lri &= 0x7f;
lri++;
dw++;
while (lri) {
if (hw[dw] != lrc[dw]) {
pr_err("%s: Different registers found at dword %d, expected %x, found %x\n",
engine->name, dw, hw[dw], lrc[dw]);
err = -EINVAL;
break;
}
/*
* Skip over the actual register value as we
* expect that to differ.
*/
dw += 2;
lri -= 2;
}
} while ((lrc[dw] & ~BIT(0)) != MI_BATCH_BUFFER_END);
if (err) {
pr_info("%s: HW register image:\n", engine->name);
igt_hexdump(hw, PAGE_SIZE);
pr_info("%s: SW register image:\n", engine->name);
igt_hexdump(lrc, PAGE_SIZE);
}
shmem_unpin_map(engine->default_state, hw);
if (err)
break;
}
kfree(lrc);
return err;
}
static int find_offset(const u32 *lri, u32 offset)
{
int i;
for (i = 0; i < PAGE_SIZE / sizeof(u32); i++)
if (lri[i] == offset)
return i;
return -1;
}
static int live_lrc_fixed(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
/*
* Check the assumed register offsets match the actual locations in
* the context image.
*/
for_each_engine(engine, gt, id) {
const struct {
u32 reg;
u32 offset;
const char *name;
} tbl[] = {
{
i915_mmio_reg_offset(RING_START(engine->mmio_base)),
CTX_RING_START - 1,
"RING_START"
},
{
i915_mmio_reg_offset(RING_CTL(engine->mmio_base)),
CTX_RING_CTL - 1,
"RING_CTL"
},
{
i915_mmio_reg_offset(RING_HEAD(engine->mmio_base)),
CTX_RING_HEAD - 1,
"RING_HEAD"
},
{
i915_mmio_reg_offset(RING_TAIL(engine->mmio_base)),
CTX_RING_TAIL - 1,
"RING_TAIL"
},
{
i915_mmio_reg_offset(RING_MI_MODE(engine->mmio_base)),
lrc_ring_mi_mode(engine),
"RING_MI_MODE"
},
{
i915_mmio_reg_offset(RING_BBSTATE(engine->mmio_base)),
CTX_BB_STATE - 1,
"BB_STATE"
},
{
i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(engine->mmio_base)),
lrc_ring_wa_bb_per_ctx(engine),
"RING_BB_PER_CTX_PTR"
},
{
i915_mmio_reg_offset(RING_INDIRECT_CTX(engine->mmio_base)),
lrc_ring_indirect_ptr(engine),
"RING_INDIRECT_CTX_PTR"
},
{
i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(engine->mmio_base)),
lrc_ring_indirect_offset(engine),
"RING_INDIRECT_CTX_OFFSET"
},
{
i915_mmio_reg_offset(RING_CTX_TIMESTAMP(engine->mmio_base)),
CTX_TIMESTAMP - 1,
"RING_CTX_TIMESTAMP"
},
{
i915_mmio_reg_offset(GEN8_RING_CS_GPR(engine->mmio_base, 0)),
lrc_ring_gpr0(engine),
"RING_CS_GPR0"
},
{
i915_mmio_reg_offset(RING_CMD_BUF_CCTL(engine->mmio_base)),
lrc_ring_cmd_buf_cctl(engine),
"RING_CMD_BUF_CCTL"
},
{ },
}, *t;
u32 *hw;
if (!engine->default_state)
continue;
hw = shmem_pin_map(engine->default_state);
if (IS_ERR(hw)) {
err = PTR_ERR(hw);
break;
}
hw += LRC_STATE_OFFSET / sizeof(*hw);
for (t = tbl; t->name; t++) {
int dw = find_offset(hw, t->reg);
if (dw != t->offset) {
pr_err("%s: Offset for %s [0x%x] mismatch, found %x, expected %x\n",
engine->name,
t->name,
t->reg,
dw,
t->offset);
err = -EINVAL;
}
}
shmem_unpin_map(engine->default_state, hw);
}
return err;
}
static int __live_lrc_state(struct intel_engine_cs *engine,
struct i915_vma *scratch)
{
struct intel_context *ce;
struct i915_request *rq;
enum {
RING_START_IDX = 0,
RING_TAIL_IDX,
MAX_IDX
};
u32 expected[MAX_IDX];
u32 *cs;
int err;
int n;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
err = intel_context_pin(ce);
if (err)
goto err_put;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_unpin;
}
cs = intel_ring_begin(rq, 4 * MAX_IDX);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
i915_request_add(rq);
goto err_unpin;
}
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
*cs++ = i915_mmio_reg_offset(RING_START(engine->mmio_base));
*cs++ = i915_ggtt_offset(scratch) + RING_START_IDX * sizeof(u32);
*cs++ = 0;
expected[RING_START_IDX] = i915_ggtt_offset(ce->ring->vma);
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
*cs++ = i915_mmio_reg_offset(RING_TAIL(engine->mmio_base));
*cs++ = i915_ggtt_offset(scratch) + RING_TAIL_IDX * sizeof(u32);
*cs++ = 0;
i915_vma_lock(scratch);
err = i915_request_await_object(rq, scratch->obj, true);
if (!err)
err = i915_vma_move_to_active(scratch, rq, EXEC_OBJECT_WRITE);
i915_vma_unlock(scratch);
i915_request_get(rq);
i915_request_add(rq);
if (err)
goto err_rq;
intel_engine_flush_submission(engine);
expected[RING_TAIL_IDX] = ce->ring->tail;
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
err = -ETIME;
goto err_rq;
}
cs = i915_gem_object_pin_map(scratch->obj, I915_MAP_WB);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
goto err_rq;
}
for (n = 0; n < MAX_IDX; n++) {
if (cs[n] != expected[n]) {
pr_err("%s: Stored register[%d] value[0x%x] did not match expected[0x%x]\n",
engine->name, n, cs[n], expected[n]);
err = -EINVAL;
break;
}
}
i915_gem_object_unpin_map(scratch->obj);
err_rq:
i915_request_put(rq);
err_unpin:
intel_context_unpin(ce);
err_put:
intel_context_put(ce);
return err;
}
static int live_lrc_state(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
struct i915_vma *scratch;
enum intel_engine_id id;
int err = 0;
/*
* Check the live register state matches what we expect for this
* intel_context.
*/
scratch = create_scratch(gt);
if (IS_ERR(scratch))
return PTR_ERR(scratch);
for_each_engine(engine, gt, id) {
err = __live_lrc_state(engine, scratch);
if (err)
break;
}
if (igt_flush_test(gt->i915))
err = -EIO;
i915_vma_unpin_and_release(&scratch, 0);
return err;
}
static int gpr_make_dirty(struct intel_context *ce)
{
struct i915_request *rq;
u32 *cs;
int n;
rq = intel_context_create_request(ce);
if (IS_ERR(rq))
return PTR_ERR(rq);
cs = intel_ring_begin(rq, 2 * NUM_GPR_DW + 2);
if (IS_ERR(cs)) {
i915_request_add(rq);
return PTR_ERR(cs);
}
*cs++ = MI_LOAD_REGISTER_IMM(NUM_GPR_DW);
for (n = 0; n < NUM_GPR_DW; n++) {
*cs++ = CS_GPR(ce->engine, n);
*cs++ = STACK_MAGIC;
}
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
rq->sched.attr.priority = I915_PRIORITY_BARRIER;
i915_request_add(rq);
return 0;
}
static struct i915_request *
__gpr_read(struct intel_context *ce, struct i915_vma *scratch, u32 *slot)
{
const u32 offset =
i915_ggtt_offset(ce->engine->status_page.vma) +
offset_in_page(slot);
struct i915_request *rq;
u32 *cs;
int err;
int n;
rq = intel_context_create_request(ce);
if (IS_ERR(rq))
return rq;
cs = intel_ring_begin(rq, 6 + 4 * NUM_GPR_DW);
if (IS_ERR(cs)) {
i915_request_add(rq);
return ERR_CAST(cs);
}
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
*cs++ = MI_NOOP;
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_NEQ_SDD;
*cs++ = 0;
*cs++ = offset;
*cs++ = 0;
for (n = 0; n < NUM_GPR_DW; n++) {
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
*cs++ = CS_GPR(ce->engine, n);
*cs++ = i915_ggtt_offset(scratch) + n * sizeof(u32);
*cs++ = 0;
}
i915_vma_lock(scratch);
err = i915_request_await_object(rq, scratch->obj, true);
if (!err)
err = i915_vma_move_to_active(scratch, rq, EXEC_OBJECT_WRITE);
i915_vma_unlock(scratch);
i915_request_get(rq);
i915_request_add(rq);
if (err) {
i915_request_put(rq);
rq = ERR_PTR(err);
}
return rq;
}
static int __live_lrc_gpr(struct intel_engine_cs *engine,
struct i915_vma *scratch,
bool preempt)
{
u32 *slot = memset32(engine->status_page.addr + 1000, 0, 4);
struct intel_context *ce;
struct i915_request *rq;
u32 *cs;
int err;
int n;
if (INTEL_GEN(engine->i915) < 9 && engine->class != RENDER_CLASS)
return 0; /* GPR only on rcs0 for gen8 */
err = gpr_make_dirty(engine->kernel_context);
if (err)
return err;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
rq = __gpr_read(ce, scratch, slot);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_put;
}
err = wait_for_submit(engine, rq, HZ / 2);
if (err)
goto err_rq;
if (preempt) {
err = gpr_make_dirty(engine->kernel_context);
if (err)
goto err_rq;
err = emit_semaphore_signal(engine->kernel_context, slot);
if (err)
goto err_rq;
} else {
slot[0] = 1;
wmb();
}
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
err = -ETIME;
goto err_rq;
}
cs = i915_gem_object_pin_map(scratch->obj, I915_MAP_WB);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
goto err_rq;
}
for (n = 0; n < NUM_GPR_DW; n++) {
if (cs[n]) {
pr_err("%s: GPR[%d].%s was not zero, found 0x%08x!\n",
engine->name,
n / 2, n & 1 ? "udw" : "ldw",
cs[n]);
err = -EINVAL;
break;
}
}
i915_gem_object_unpin_map(scratch->obj);
err_rq:
memset32(&slot[0], -1, 4);
wmb();
i915_request_put(rq);
err_put:
intel_context_put(ce);
return err;
}
static int live_lrc_gpr(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
struct i915_vma *scratch;
enum intel_engine_id id;
int err = 0;
/*
* Check that GPR registers are cleared in new contexts as we need
* to avoid leaking any information from previous contexts.
*/
scratch = create_scratch(gt);
if (IS_ERR(scratch))
return PTR_ERR(scratch);
for_each_engine(engine, gt, id) {
unsigned long heartbeat;
engine_heartbeat_disable(engine, &heartbeat);
err = __live_lrc_gpr(engine, scratch, false);
if (err)
goto err;
err = __live_lrc_gpr(engine, scratch, true);
if (err)
goto err;
err:
engine_heartbeat_enable(engine, heartbeat);
if (igt_flush_test(gt->i915))
err = -EIO;
if (err)
break;
}
i915_vma_unpin_and_release(&scratch, 0);
return err;
}
static struct i915_request *
create_timestamp(struct intel_context *ce, void *slot, int idx)
{
const u32 offset =
i915_ggtt_offset(ce->engine->status_page.vma) +
offset_in_page(slot);
struct i915_request *rq;
u32 *cs;
int err;
rq = intel_context_create_request(ce);
if (IS_ERR(rq))
return rq;
cs = intel_ring_begin(rq, 10);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
goto err;
}
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
*cs++ = MI_NOOP;
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_NEQ_SDD;
*cs++ = 0;
*cs++ = offset;
*cs++ = 0;
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
*cs++ = i915_mmio_reg_offset(RING_CTX_TIMESTAMP(rq->engine->mmio_base));
*cs++ = offset + idx * sizeof(u32);
*cs++ = 0;
intel_ring_advance(rq, cs);
rq->sched.attr.priority = I915_PRIORITY_MASK;
err = 0;
err:
i915_request_get(rq);
i915_request_add(rq);
if (err) {
i915_request_put(rq);
return ERR_PTR(err);
}
return rq;
}
struct lrc_timestamp {
struct intel_engine_cs *engine;
struct intel_context *ce[2];
u32 poison;
};
static bool timestamp_advanced(u32 start, u32 end)
{
return (s32)(end - start) > 0;
}
static int __lrc_timestamp(const struct lrc_timestamp *arg, bool preempt)
{
u32 *slot = memset32(arg->engine->status_page.addr + 1000, 0, 4);
struct i915_request *rq;
u32 timestamp;
int err = 0;
arg->ce[0]->lrc_reg_state[CTX_TIMESTAMP] = arg->poison;
rq = create_timestamp(arg->ce[0], slot, 1);
if (IS_ERR(rq))
return PTR_ERR(rq);
err = wait_for_submit(rq->engine, rq, HZ / 2);
if (err)
goto err;
if (preempt) {
arg->ce[1]->lrc_reg_state[CTX_TIMESTAMP] = 0xdeadbeef;
err = emit_semaphore_signal(arg->ce[1], slot);
if (err)
goto err;
} else {
slot[0] = 1;
wmb();
}
/* And wait for switch to kernel (to save our context to memory) */
err = context_flush(arg->ce[0], HZ / 2);
if (err)
goto err;
if (!timestamp_advanced(arg->poison, slot[1])) {
pr_err("%s(%s): invalid timestamp on restore, context:%x, request:%x\n",
arg->engine->name, preempt ? "preempt" : "simple",
arg->poison, slot[1]);
err = -EINVAL;
}
timestamp = READ_ONCE(arg->ce[0]->lrc_reg_state[CTX_TIMESTAMP]);
if (!timestamp_advanced(slot[1], timestamp)) {
pr_err("%s(%s): invalid timestamp on save, request:%x, context:%x\n",
arg->engine->name, preempt ? "preempt" : "simple",
slot[1], timestamp);
err = -EINVAL;
}
err:
memset32(slot, -1, 4);
i915_request_put(rq);
return err;
}
static int live_lrc_timestamp(void *arg)
{
struct lrc_timestamp data = {};
struct intel_gt *gt = arg;
enum intel_engine_id id;
const u32 poison[] = {
0,
S32_MAX,
(u32)S32_MAX + 1,
U32_MAX,
};
/*
* We want to verify that the timestamp is saved and restore across
* context switches and is monotonic.
*
* So we do this with a little bit of LRC poisoning to check various
* boundary conditions, and see what happens if we preempt the context
* with a second request (carrying more poison into the timestamp).
*/
for_each_engine(data.engine, gt, id) {
unsigned long heartbeat;
int i, err = 0;
engine_heartbeat_disable(data.engine, &heartbeat);
for (i = 0; i < ARRAY_SIZE(data.ce); i++) {
struct intel_context *tmp;
tmp = intel_context_create(data.engine);
if (IS_ERR(tmp)) {
err = PTR_ERR(tmp);
goto err;
}
err = intel_context_pin(tmp);
if (err) {
intel_context_put(tmp);
goto err;
}
data.ce[i] = tmp;
}
for (i = 0; i < ARRAY_SIZE(poison); i++) {
data.poison = poison[i];
err = __lrc_timestamp(&data, false);
if (err)
break;
err = __lrc_timestamp(&data, true);
if (err)
break;
}
err:
engine_heartbeat_enable(data.engine, heartbeat);
for (i = 0; i < ARRAY_SIZE(data.ce); i++) {
if (!data.ce[i])
break;
intel_context_unpin(data.ce[i]);
intel_context_put(data.ce[i]);
}
if (igt_flush_test(gt->i915))
err = -EIO;
if (err)
return err;
}
return 0;
}
static struct i915_vma *
create_user_vma(struct i915_address_space *vm, unsigned long size)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int err;
obj = i915_gem_object_create_internal(vm->i915, size);
if (IS_ERR(obj))
return ERR_CAST(obj);
vma = i915_vma_instance(obj, vm, NULL);
if (IS_ERR(vma)) {
i915_gem_object_put(obj);
return vma;
}
err = i915_vma_pin(vma, 0, 0, PIN_USER);
if (err) {
i915_gem_object_put(obj);
return ERR_PTR(err);
}
return vma;
}
static struct i915_vma *
store_context(struct intel_context *ce, struct i915_vma *scratch)
{
struct i915_vma *batch;
u32 dw, x, *cs, *hw;
u32 *defaults;
batch = create_user_vma(ce->vm, SZ_64K);
if (IS_ERR(batch))
return batch;
cs = i915_gem_object_pin_map(batch->obj, I915_MAP_WC);
if (IS_ERR(cs)) {
i915_vma_put(batch);
return ERR_CAST(cs);
}
defaults = shmem_pin_map(ce->engine->default_state);
if (!defaults) {
i915_gem_object_unpin_map(batch->obj);
i915_vma_put(batch);
return ERR_PTR(-ENOMEM);
}
x = 0;
dw = 0;
hw = defaults;
hw += LRC_STATE_OFFSET / sizeof(*hw);
do {
u32 len = hw[dw] & 0x7f;
if (hw[dw] == 0) {
dw++;
continue;
}
if ((hw[dw] & GENMASK(31, 23)) != MI_INSTR(0x22, 0)) {
dw += len + 2;
continue;
}
dw++;
len = (len + 1) / 2;
while (len--) {
*cs++ = MI_STORE_REGISTER_MEM_GEN8;
*cs++ = hw[dw];
*cs++ = lower_32_bits(scratch->node.start + x);
*cs++ = upper_32_bits(scratch->node.start + x);
dw += 2;
x += 4;
}
} while (dw < PAGE_SIZE / sizeof(u32) &&
(hw[dw] & ~BIT(0)) != MI_BATCH_BUFFER_END);
*cs++ = MI_BATCH_BUFFER_END;
shmem_unpin_map(ce->engine->default_state, defaults);
i915_gem_object_flush_map(batch->obj);
i915_gem_object_unpin_map(batch->obj);
return batch;
}
static int move_to_active(struct i915_request *rq,
struct i915_vma *vma,
unsigned int flags)
{
int err;
i915_vma_lock(vma);
err = i915_request_await_object(rq, vma->obj, flags);
if (!err)
err = i915_vma_move_to_active(vma, rq, flags);
i915_vma_unlock(vma);
return err;
}
static struct i915_request *
record_registers(struct intel_context *ce,
struct i915_vma *before,
struct i915_vma *after,
u32 *sema)
{
struct i915_vma *b_before, *b_after;
struct i915_request *rq;
u32 *cs;
int err;
b_before = store_context(ce, before);
if (IS_ERR(b_before))
return ERR_CAST(b_before);
b_after = store_context(ce, after);
if (IS_ERR(b_after)) {
rq = ERR_CAST(b_after);
goto err_before;
}
rq = intel_context_create_request(ce);
if (IS_ERR(rq))
goto err_after;
err = move_to_active(rq, before, EXEC_OBJECT_WRITE);
if (err)
goto err_rq;
err = move_to_active(rq, b_before, 0);
if (err)
goto err_rq;
err = move_to_active(rq, after, EXEC_OBJECT_WRITE);
if (err)
goto err_rq;
err = move_to_active(rq, b_after, 0);
if (err)
goto err_rq;
cs = intel_ring_begin(rq, 14);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
goto err_rq;
}
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
*cs++ = MI_BATCH_BUFFER_START_GEN8 | BIT(8);
*cs++ = lower_32_bits(b_before->node.start);
*cs++ = upper_32_bits(b_before->node.start);
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_NEQ_SDD;
*cs++ = 0;
*cs++ = i915_ggtt_offset(ce->engine->status_page.vma) +
offset_in_page(sema);
*cs++ = 0;
*cs++ = MI_NOOP;
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
*cs++ = MI_BATCH_BUFFER_START_GEN8 | BIT(8);
*cs++ = lower_32_bits(b_after->node.start);
*cs++ = upper_32_bits(b_after->node.start);
intel_ring_advance(rq, cs);
WRITE_ONCE(*sema, 0);
i915_request_get(rq);
i915_request_add(rq);
err_after:
i915_vma_put(b_after);
err_before:
i915_vma_put(b_before);
return rq;
err_rq:
i915_request_add(rq);
rq = ERR_PTR(err);
goto err_after;
}
static struct i915_vma *load_context(struct intel_context *ce, u32 poison)
{
struct i915_vma *batch;
u32 dw, *cs, *hw;
u32 *defaults;
batch = create_user_vma(ce->vm, SZ_64K);
if (IS_ERR(batch))
return batch;
cs = i915_gem_object_pin_map(batch->obj, I915_MAP_WC);
if (IS_ERR(cs)) {
i915_vma_put(batch);
return ERR_CAST(cs);
}
defaults = shmem_pin_map(ce->engine->default_state);
if (!defaults) {
i915_gem_object_unpin_map(batch->obj);
i915_vma_put(batch);
return ERR_PTR(-ENOMEM);
}
dw = 0;
hw = defaults;
hw += LRC_STATE_OFFSET / sizeof(*hw);
do {
u32 len = hw[dw] & 0x7f;
if (hw[dw] == 0) {
dw++;
continue;
}
if ((hw[dw] & GENMASK(31, 23)) != MI_INSTR(0x22, 0)) {
dw += len + 2;
continue;
}
dw++;
len = (len + 1) / 2;
*cs++ = MI_LOAD_REGISTER_IMM(len);
while (len--) {
*cs++ = hw[dw];
*cs++ = poison;
dw += 2;
}
} while (dw < PAGE_SIZE / sizeof(u32) &&
(hw[dw] & ~BIT(0)) != MI_BATCH_BUFFER_END);
*cs++ = MI_BATCH_BUFFER_END;
shmem_unpin_map(ce->engine->default_state, defaults);
i915_gem_object_flush_map(batch->obj);
i915_gem_object_unpin_map(batch->obj);
return batch;
}
static int poison_registers(struct intel_context *ce, u32 poison, u32 *sema)
{
struct i915_request *rq;
struct i915_vma *batch;
u32 *cs;
int err;
batch = load_context(ce, poison);
if (IS_ERR(batch))
return PTR_ERR(batch);
rq = intel_context_create_request(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_batch;
}
err = move_to_active(rq, batch, 0);
if (err)
goto err_rq;
cs = intel_ring_begin(rq, 8);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
goto err_rq;
}
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
*cs++ = MI_BATCH_BUFFER_START_GEN8 | BIT(8);
*cs++ = lower_32_bits(batch->node.start);
*cs++ = upper_32_bits(batch->node.start);
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = i915_ggtt_offset(ce->engine->status_page.vma) +
offset_in_page(sema);
*cs++ = 0;
*cs++ = 1;
intel_ring_advance(rq, cs);
rq->sched.attr.priority = I915_PRIORITY_BARRIER;
err_rq:
i915_request_add(rq);
err_batch:
i915_vma_put(batch);
return err;
}
static bool is_moving(u32 a, u32 b)
{
return a != b;
}
static int compare_isolation(struct intel_engine_cs *engine,
struct i915_vma *ref[2],
struct i915_vma *result[2],
struct intel_context *ce,
u32 poison)
{
u32 x, dw, *hw, *lrc;
u32 *A[2], *B[2];
u32 *defaults;
int err = 0;
A[0] = i915_gem_object_pin_map(ref[0]->obj, I915_MAP_WC);
if (IS_ERR(A[0]))
return PTR_ERR(A[0]);
A[1] = i915_gem_object_pin_map(ref[1]->obj, I915_MAP_WC);
if (IS_ERR(A[1])) {
err = PTR_ERR(A[1]);
goto err_A0;
}
B[0] = i915_gem_object_pin_map(result[0]->obj, I915_MAP_WC);
if (IS_ERR(B[0])) {
err = PTR_ERR(B[0]);
goto err_A1;
}
B[1] = i915_gem_object_pin_map(result[1]->obj, I915_MAP_WC);
if (IS_ERR(B[1])) {
err = PTR_ERR(B[1]);
goto err_B0;
}
lrc = i915_gem_object_pin_map(ce->state->obj,
i915_coherent_map_type(engine->i915));
if (IS_ERR(lrc)) {
err = PTR_ERR(lrc);
goto err_B1;
}
lrc += LRC_STATE_OFFSET / sizeof(*hw);
defaults = shmem_pin_map(ce->engine->default_state);
if (!defaults) {
err = -ENOMEM;
goto err_lrc;
}
x = 0;
dw = 0;
hw = defaults;
hw += LRC_STATE_OFFSET / sizeof(*hw);
do {
u32 len = hw[dw] & 0x7f;
if (hw[dw] == 0) {
dw++;
continue;
}
if ((hw[dw] & GENMASK(31, 23)) != MI_INSTR(0x22, 0)) {
dw += len + 2;
continue;
}
dw++;
len = (len + 1) / 2;
while (len--) {
if (!is_moving(A[0][x], A[1][x]) &&
(A[0][x] != B[0][x] || A[1][x] != B[1][x])) {
switch (hw[dw] & 4095) {
case 0x30: /* RING_HEAD */
case 0x34: /* RING_TAIL */
break;
default:
pr_err("%s[%d]: Mismatch for register %4x, default %08x, reference %08x, result (%08x, %08x), poison %08x, context %08x\n",
engine->name, dw,
hw[dw], hw[dw + 1],
A[0][x], B[0][x], B[1][x],
poison, lrc[dw + 1]);
err = -EINVAL;
}
}
dw += 2;
x++;
}
} while (dw < PAGE_SIZE / sizeof(u32) &&
(hw[dw] & ~BIT(0)) != MI_BATCH_BUFFER_END);
shmem_unpin_map(ce->engine->default_state, defaults);
err_lrc:
i915_gem_object_unpin_map(ce->state->obj);
err_B1:
i915_gem_object_unpin_map(result[1]->obj);
err_B0:
i915_gem_object_unpin_map(result[0]->obj);
err_A1:
i915_gem_object_unpin_map(ref[1]->obj);
err_A0:
i915_gem_object_unpin_map(ref[0]->obj);
return err;
}
static int __lrc_isolation(struct intel_engine_cs *engine, u32 poison)
{
u32 *sema = memset32(engine->status_page.addr + 1000, 0, 1);
struct i915_vma *ref[2], *result[2];
struct intel_context *A, *B;
struct i915_request *rq;
int err;
A = intel_context_create(engine);
if (IS_ERR(A))
return PTR_ERR(A);
B = intel_context_create(engine);
if (IS_ERR(B)) {
err = PTR_ERR(B);
goto err_A;
}
ref[0] = create_user_vma(A->vm, SZ_64K);
if (IS_ERR(ref[0])) {
err = PTR_ERR(ref[0]);
goto err_B;
}
ref[1] = create_user_vma(A->vm, SZ_64K);
if (IS_ERR(ref[1])) {
err = PTR_ERR(ref[1]);
goto err_ref0;
}
rq = record_registers(A, ref[0], ref[1], sema);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_ref1;
}
WRITE_ONCE(*sema, 1);
wmb();
if (i915_request_wait(rq, 0, HZ / 2) < 0) {
i915_request_put(rq);
err = -ETIME;
goto err_ref1;
}
i915_request_put(rq);
result[0] = create_user_vma(A->vm, SZ_64K);
if (IS_ERR(result[0])) {
err = PTR_ERR(result[0]);
goto err_ref1;
}
result[1] = create_user_vma(A->vm, SZ_64K);
if (IS_ERR(result[1])) {
err = PTR_ERR(result[1]);
goto err_result0;
}
rq = record_registers(A, result[0], result[1], sema);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_result1;
}
err = poison_registers(B, poison, sema);
if (err) {
WRITE_ONCE(*sema, -1);
i915_request_put(rq);
goto err_result1;
}
if (i915_request_wait(rq, 0, HZ / 2) < 0) {
i915_request_put(rq);
err = -ETIME;
goto err_result1;
}
i915_request_put(rq);
err = compare_isolation(engine, ref, result, A, poison);
err_result1:
i915_vma_put(result[1]);
err_result0:
i915_vma_put(result[0]);
err_ref1:
i915_vma_put(ref[1]);
err_ref0:
i915_vma_put(ref[0]);
err_B:
intel_context_put(B);
err_A:
intel_context_put(A);
return err;
}
static bool skip_isolation(const struct intel_engine_cs *engine)
{
if (engine->class == COPY_ENGINE_CLASS && INTEL_GEN(engine->i915) == 9)
return true;
if (engine->class == RENDER_CLASS && INTEL_GEN(engine->i915) == 11)
return true;
return false;
}
static int live_lrc_isolation(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
const u32 poison[] = {
STACK_MAGIC,
0x3a3a3a3a,
0x5c5c5c5c,
0xffffffff,
0xffff0000,
};
int err = 0;
/*
* Our goal is try and verify that per-context state cannot be
* tampered with by another non-privileged client.
*
* We take the list of context registers from the LRI in the default
* context image and attempt to modify that list from a remote context.
*/
for_each_engine(engine, gt, id) {
int i;
/* Just don't even ask */
if (!IS_ENABLED(CONFIG_DRM_I915_SELFTEST_BROKEN) &&
skip_isolation(engine))
continue;
intel_engine_pm_get(engine);
for (i = 0; i < ARRAY_SIZE(poison); i++) {
int result;
result = __lrc_isolation(engine, poison[i]);
if (result && !err)
err = result;
result = __lrc_isolation(engine, ~poison[i]);
if (result && !err)
err = result;
}
intel_engine_pm_put(engine);
if (igt_flush_test(gt->i915)) {
err = -EIO;
break;
}
}
return err;
}
static int indirect_ctx_submit_req(struct intel_context *ce)
{
struct i915_request *rq;
int err = 0;
rq = intel_context_create_request(ce);
if (IS_ERR(rq))
return PTR_ERR(rq);
i915_request_get(rq);
i915_request_add(rq);
if (i915_request_wait(rq, 0, HZ / 5) < 0)
err = -ETIME;
i915_request_put(rq);
return err;
}
#define CTX_BB_CANARY_OFFSET (3 * 1024)
#define CTX_BB_CANARY_INDEX (CTX_BB_CANARY_OFFSET / sizeof(u32))
static u32 *
emit_indirect_ctx_bb_canary(const struct intel_context *ce, u32 *cs)
{
*cs++ = MI_STORE_REGISTER_MEM_GEN8 |
MI_SRM_LRM_GLOBAL_GTT |
MI_LRI_LRM_CS_MMIO;
*cs++ = i915_mmio_reg_offset(RING_START(0));
*cs++ = i915_ggtt_offset(ce->state) +
context_wa_bb_offset(ce) +
CTX_BB_CANARY_OFFSET;
*cs++ = 0;
return cs;
}
static void
indirect_ctx_bb_setup(struct intel_context *ce)
{
u32 *cs = context_indirect_bb(ce);
cs[CTX_BB_CANARY_INDEX] = 0xdeadf00d;
setup_indirect_ctx_bb(ce, ce->engine, emit_indirect_ctx_bb_canary);
}
static bool check_ring_start(struct intel_context *ce)
{
const u32 * const ctx_bb = (void *)(ce->lrc_reg_state) -
LRC_STATE_OFFSET + context_wa_bb_offset(ce);
if (ctx_bb[CTX_BB_CANARY_INDEX] == ce->lrc_reg_state[CTX_RING_START])
return true;
pr_err("ring start mismatch: canary 0x%08x vs state 0x%08x\n",
ctx_bb[CTX_BB_CANARY_INDEX],
ce->lrc_reg_state[CTX_RING_START]);
return false;
}
static int indirect_ctx_bb_check(struct intel_context *ce)
{
int err;
err = indirect_ctx_submit_req(ce);
if (err)
return err;
if (!check_ring_start(ce))
return -EINVAL;
return 0;
}
static int __live_lrc_indirect_ctx_bb(struct intel_engine_cs *engine)
{
struct intel_context *a, *b;
int err;
a = intel_context_create(engine);
if (IS_ERR(a))
return PTR_ERR(a);
err = intel_context_pin(a);
if (err)
goto put_a;
b = intel_context_create(engine);
if (IS_ERR(b)) {
err = PTR_ERR(b);
goto unpin_a;
}
err = intel_context_pin(b);
if (err)
goto put_b;
/* We use the already reserved extra page in context state */
if (!a->wa_bb_page) {
GEM_BUG_ON(b->wa_bb_page);
GEM_BUG_ON(INTEL_GEN(engine->i915) == 12);
goto unpin_b;
}
/*
* In order to test that our per context bb is truly per context,
* and executes at the intended spot on context restoring process,
* make the batch store the ring start value to memory.
* As ring start is restored apriori of starting the indirect ctx bb and
* as it will be different for each context, it fits to this purpose.
*/
indirect_ctx_bb_setup(a);
indirect_ctx_bb_setup(b);
err = indirect_ctx_bb_check(a);
if (err)
goto unpin_b;
err = indirect_ctx_bb_check(b);
unpin_b:
intel_context_unpin(b);
put_b:
intel_context_put(b);
unpin_a:
intel_context_unpin(a);
put_a:
intel_context_put(a);
return err;
}
static int live_lrc_indirect_ctx_bb(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
for_each_engine(engine, gt, id) {
intel_engine_pm_get(engine);
err = __live_lrc_indirect_ctx_bb(engine);
intel_engine_pm_put(engine);
if (igt_flush_test(gt->i915))
err = -EIO;
if (err)
break;
}
return err;
}
static void garbage_reset(struct intel_engine_cs *engine,
struct i915_request *rq)
{
const unsigned int bit = I915_RESET_ENGINE + engine->id;
unsigned long *lock = &engine->gt->reset.flags;
if (test_and_set_bit(bit, lock))
return;
tasklet_disable(&engine->execlists.tasklet);
if (!rq->fence.error)
intel_engine_reset(engine, NULL);
tasklet_enable(&engine->execlists.tasklet);
clear_and_wake_up_bit(bit, lock);
}
static struct i915_request *garbage(struct intel_context *ce,
struct rnd_state *prng)
{
struct i915_request *rq;
int err;
err = intel_context_pin(ce);
if (err)
return ERR_PTR(err);
prandom_bytes_state(prng,
ce->lrc_reg_state,
ce->engine->context_size -
LRC_STATE_OFFSET);
rq = intel_context_create_request(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_unpin;
}
i915_request_get(rq);
i915_request_add(rq);
return rq;
err_unpin:
intel_context_unpin(ce);
return ERR_PTR(err);
}
static int __lrc_garbage(struct intel_engine_cs *engine, struct rnd_state *prng)
{
struct intel_context *ce;
struct i915_request *hang;
int err = 0;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
hang = garbage(ce, prng);
if (IS_ERR(hang)) {
err = PTR_ERR(hang);
goto err_ce;
}
if (wait_for_submit(engine, hang, HZ / 2)) {
i915_request_put(hang);
err = -ETIME;
goto err_ce;
}
intel_context_set_banned(ce);
garbage_reset(engine, hang);
intel_engine_flush_submission(engine);
if (!hang->fence.error) {
i915_request_put(hang);
pr_err("%s: corrupted context was not reset\n",
engine->name);
err = -EINVAL;
goto err_ce;
}
if (i915_request_wait(hang, 0, HZ / 2) < 0) {
pr_err("%s: corrupted context did not recover\n",
engine->name);
i915_request_put(hang);
err = -EIO;
goto err_ce;
}
i915_request_put(hang);
err_ce:
intel_context_put(ce);
return err;
}
static int live_lrc_garbage(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
/*
* Verify that we can recover if one context state is completely
* corrupted.
*/
if (!IS_ENABLED(CONFIG_DRM_I915_SELFTEST_BROKEN))
return 0;
for_each_engine(engine, gt, id) {
I915_RND_STATE(prng);
int err = 0, i;
if (!intel_has_reset_engine(engine->gt))
continue;
intel_engine_pm_get(engine);
for (i = 0; i < 3; i++) {
err = __lrc_garbage(engine, &prng);
if (err)
break;
}
intel_engine_pm_put(engine);
if (igt_flush_test(gt->i915))
err = -EIO;
if (err)
return err;
}
return 0;
}
static int __live_pphwsp_runtime(struct intel_engine_cs *engine)
{
struct intel_context *ce;
struct i915_request *rq;
IGT_TIMEOUT(end_time);
int err;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
ce->runtime.num_underflow = 0;
ce->runtime.max_underflow = 0;
do {
unsigned int loop = 1024;
while (loop) {
rq = intel_context_create_request(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_rq;
}
if (--loop == 0)
i915_request_get(rq);
i915_request_add(rq);
}
if (__igt_timeout(end_time, NULL))
break;
i915_request_put(rq);
} while (1);
err = i915_request_wait(rq, 0, HZ / 5);
if (err < 0) {
pr_err("%s: request not completed!\n", engine->name);
goto err_wait;
}
igt_flush_test(engine->i915);
pr_info("%s: pphwsp runtime %lluns, average %lluns\n",
engine->name,
intel_context_get_total_runtime_ns(ce),
intel_context_get_avg_runtime_ns(ce));
err = 0;
if (ce->runtime.num_underflow) {
pr_err("%s: pphwsp underflow %u time(s), max %u cycles!\n",
engine->name,
ce->runtime.num_underflow,
ce->runtime.max_underflow);
GEM_TRACE_DUMP();
err = -EOVERFLOW;
}
err_wait:
i915_request_put(rq);
err_rq:
intel_context_put(ce);
return err;
}
static int live_pphwsp_runtime(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err = 0;
/*
* Check that cumulative context runtime as stored in the pphwsp[16]
* is monotonic.
*/
for_each_engine(engine, gt, id) {
err = __live_pphwsp_runtime(engine);
if (err)
break;
}
if (igt_flush_test(gt->i915))
err = -EIO;
return err;
}
int intel_lrc_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(live_lrc_layout),
SUBTEST(live_lrc_fixed),
SUBTEST(live_lrc_state),
SUBTEST(live_lrc_gpr),
SUBTEST(live_lrc_isolation),
SUBTEST(live_lrc_timestamp),
SUBTEST(live_lrc_garbage),
SUBTEST(live_pphwsp_runtime),
SUBTEST(live_lrc_indirect_ctx_bb),
};
if (!HAS_LOGICAL_RING_CONTEXTS(i915))
return 0;
return intel_gt_live_subtests(tests, &i915->gt);
}