| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2014-2019 Intel Corporation |
| */ |
| |
| #include "gt/intel_gt.h" |
| #include "gt/intel_gt_irq.h" |
| #include "gt/intel_gt_pm_irq.h" |
| #include "intel_guc.h" |
| #include "intel_guc_ads.h" |
| #include "intel_guc_submission.h" |
| #include "i915_drv.h" |
| |
| /** |
| * DOC: GuC |
| * |
| * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is |
| * designed to offload some of the functionality usually performed by the host |
| * driver; currently the main operations it can take care of are: |
| * |
| * - Authentication of the HuC, which is required to fully enable HuC usage. |
| * - Low latency graphics context scheduling (a.k.a. GuC submission). |
| * - GT Power management. |
| * |
| * The enable_guc module parameter can be used to select which of those |
| * operations to enable within GuC. Note that not all the operations are |
| * supported on all gen9+ platforms. |
| * |
| * Enabling the GuC is not mandatory and therefore the firmware is only loaded |
| * if at least one of the operations is selected. However, not loading the GuC |
| * might result in the loss of some features that do require the GuC (currently |
| * just the HuC, but more are expected to land in the future). |
| */ |
| |
| void intel_guc_notify(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| |
| /* |
| * On Gen11+, the value written to the register is passes as a payload |
| * to the FW. However, the FW currently treats all values the same way |
| * (H2G interrupt), so we can just write the value that the HW expects |
| * on older gens. |
| */ |
| intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); |
| } |
| |
| static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) |
| { |
| GEM_BUG_ON(!guc->send_regs.base); |
| GEM_BUG_ON(!guc->send_regs.count); |
| GEM_BUG_ON(i >= guc->send_regs.count); |
| |
| return _MMIO(guc->send_regs.base + 4 * i); |
| } |
| |
| void intel_guc_init_send_regs(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| enum forcewake_domains fw_domains = 0; |
| unsigned int i; |
| |
| if (INTEL_GEN(gt->i915) >= 11) { |
| guc->send_regs.base = |
| i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); |
| guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; |
| } else { |
| guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); |
| guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; |
| BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); |
| } |
| |
| for (i = 0; i < guc->send_regs.count; i++) { |
| fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, |
| guc_send_reg(guc, i), |
| FW_REG_READ | FW_REG_WRITE); |
| } |
| guc->send_regs.fw_domains = fw_domains; |
| } |
| |
| static void gen9_reset_guc_interrupts(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| |
| assert_rpm_wakelock_held(>->i915->runtime_pm); |
| |
| spin_lock_irq(>->irq_lock); |
| gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); |
| spin_unlock_irq(>->irq_lock); |
| } |
| |
| static void gen9_enable_guc_interrupts(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| |
| assert_rpm_wakelock_held(>->i915->runtime_pm); |
| |
| spin_lock_irq(>->irq_lock); |
| if (!guc->interrupts.enabled) { |
| WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & |
| gt->pm_guc_events); |
| guc->interrupts.enabled = true; |
| gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); |
| } |
| spin_unlock_irq(>->irq_lock); |
| } |
| |
| static void gen9_disable_guc_interrupts(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| |
| assert_rpm_wakelock_held(>->i915->runtime_pm); |
| |
| spin_lock_irq(>->irq_lock); |
| guc->interrupts.enabled = false; |
| |
| gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); |
| |
| spin_unlock_irq(>->irq_lock); |
| intel_synchronize_irq(gt->i915); |
| |
| gen9_reset_guc_interrupts(guc); |
| } |
| |
| static void gen11_reset_guc_interrupts(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| |
| spin_lock_irq(>->irq_lock); |
| gen11_gt_reset_one_iir(gt, 0, GEN11_GUC); |
| spin_unlock_irq(>->irq_lock); |
| } |
| |
| static void gen11_enable_guc_interrupts(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| |
| spin_lock_irq(>->irq_lock); |
| if (!guc->interrupts.enabled) { |
| u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST); |
| |
| WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC)); |
| intel_uncore_write(gt->uncore, |
| GEN11_GUC_SG_INTR_ENABLE, events); |
| intel_uncore_write(gt->uncore, |
| GEN11_GUC_SG_INTR_MASK, ~events); |
| guc->interrupts.enabled = true; |
| } |
| spin_unlock_irq(>->irq_lock); |
| } |
| |
| static void gen11_disable_guc_interrupts(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| |
| spin_lock_irq(>->irq_lock); |
| guc->interrupts.enabled = false; |
| |
| intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0); |
| intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0); |
| |
| spin_unlock_irq(>->irq_lock); |
| intel_synchronize_irq(gt->i915); |
| |
| gen11_reset_guc_interrupts(guc); |
| } |
| |
| void intel_guc_init_early(struct intel_guc *guc) |
| { |
| struct drm_i915_private *i915 = guc_to_gt(guc)->i915; |
| |
| intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC); |
| intel_guc_ct_init_early(&guc->ct); |
| intel_guc_log_init_early(&guc->log); |
| intel_guc_submission_init_early(guc); |
| |
| mutex_init(&guc->send_mutex); |
| spin_lock_init(&guc->irq_lock); |
| if (INTEL_GEN(i915) >= 11) { |
| guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; |
| guc->interrupts.reset = gen11_reset_guc_interrupts; |
| guc->interrupts.enable = gen11_enable_guc_interrupts; |
| guc->interrupts.disable = gen11_disable_guc_interrupts; |
| } else { |
| guc->notify_reg = GUC_SEND_INTERRUPT; |
| guc->interrupts.reset = gen9_reset_guc_interrupts; |
| guc->interrupts.enable = gen9_enable_guc_interrupts; |
| guc->interrupts.disable = gen9_disable_guc_interrupts; |
| } |
| } |
| |
| static u32 guc_ctl_debug_flags(struct intel_guc *guc) |
| { |
| u32 level = intel_guc_log_get_level(&guc->log); |
| u32 flags = 0; |
| |
| if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) |
| flags |= GUC_LOG_DISABLED; |
| else |
| flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << |
| GUC_LOG_VERBOSITY_SHIFT; |
| |
| return flags; |
| } |
| |
| static u32 guc_ctl_feature_flags(struct intel_guc *guc) |
| { |
| u32 flags = 0; |
| |
| if (!intel_guc_submission_is_used(guc)) |
| flags |= GUC_CTL_DISABLE_SCHEDULER; |
| |
| return flags; |
| } |
| |
| static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc) |
| { |
| u32 flags = 0; |
| |
| if (intel_guc_submission_is_used(guc)) { |
| u32 ctxnum, base; |
| |
| base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool); |
| ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16; |
| |
| base >>= PAGE_SHIFT; |
| flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) | |
| (ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT); |
| } |
| return flags; |
| } |
| |
| static u32 guc_ctl_log_params_flags(struct intel_guc *guc) |
| { |
| u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT; |
| u32 flags; |
| |
| #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0) |
| #define UNIT SZ_1M |
| #define FLAG GUC_LOG_ALLOC_IN_MEGABYTE |
| #else |
| #define UNIT SZ_4K |
| #define FLAG 0 |
| #endif |
| |
| BUILD_BUG_ON(!CRASH_BUFFER_SIZE); |
| BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT)); |
| BUILD_BUG_ON(!DPC_BUFFER_SIZE); |
| BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT)); |
| BUILD_BUG_ON(!ISR_BUFFER_SIZE); |
| BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT)); |
| |
| BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) > |
| (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT)); |
| BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) > |
| (GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT)); |
| BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) > |
| (GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT)); |
| |
| flags = GUC_LOG_VALID | |
| GUC_LOG_NOTIFY_ON_HALF_FULL | |
| FLAG | |
| ((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) | |
| ((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) | |
| ((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) | |
| (offset << GUC_LOG_BUF_ADDR_SHIFT); |
| |
| #undef UNIT |
| #undef FLAG |
| |
| return flags; |
| } |
| |
| static u32 guc_ctl_ads_flags(struct intel_guc *guc) |
| { |
| u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; |
| u32 flags = ads << GUC_ADS_ADDR_SHIFT; |
| |
| return flags; |
| } |
| |
| /* |
| * Initialise the GuC parameter block before starting the firmware |
| * transfer. These parameters are read by the firmware on startup |
| * and cannot be changed thereafter. |
| */ |
| static void guc_init_params(struct intel_guc *guc) |
| { |
| u32 *params = guc->params; |
| int i; |
| |
| BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); |
| |
| params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc); |
| params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); |
| params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); |
| params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); |
| params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); |
| |
| for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) |
| DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]); |
| } |
| |
| /* |
| * Initialise the GuC parameter block before starting the firmware |
| * transfer. These parameters are read by the firmware on startup |
| * and cannot be changed thereafter. |
| */ |
| void intel_guc_write_params(struct intel_guc *guc) |
| { |
| struct intel_uncore *uncore = guc_to_gt(guc)->uncore; |
| int i; |
| |
| /* |
| * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and |
| * they are power context saved so it's ok to release forcewake |
| * when we are done here and take it again at xfer time. |
| */ |
| intel_uncore_forcewake_get(uncore, FORCEWAKE_BLITTER); |
| |
| intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); |
| |
| for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) |
| intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); |
| |
| intel_uncore_forcewake_put(uncore, FORCEWAKE_BLITTER); |
| } |
| |
| int intel_guc_init(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| int ret; |
| |
| ret = intel_uc_fw_init(&guc->fw); |
| if (ret) |
| goto out; |
| |
| ret = intel_guc_log_create(&guc->log); |
| if (ret) |
| goto err_fw; |
| |
| ret = intel_guc_ads_create(guc); |
| if (ret) |
| goto err_log; |
| GEM_BUG_ON(!guc->ads_vma); |
| |
| ret = intel_guc_ct_init(&guc->ct); |
| if (ret) |
| goto err_ads; |
| |
| if (intel_guc_submission_is_used(guc)) { |
| /* |
| * This is stuff we need to have available at fw load time |
| * if we are planning to enable submission later |
| */ |
| ret = intel_guc_submission_init(guc); |
| if (ret) |
| goto err_ct; |
| } |
| |
| /* now that everything is perma-pinned, initialize the parameters */ |
| guc_init_params(guc); |
| |
| /* We need to notify the guc whenever we change the GGTT */ |
| i915_ggtt_enable_guc(gt->ggtt); |
| |
| intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); |
| |
| return 0; |
| |
| err_ct: |
| intel_guc_ct_fini(&guc->ct); |
| err_ads: |
| intel_guc_ads_destroy(guc); |
| err_log: |
| intel_guc_log_destroy(&guc->log); |
| err_fw: |
| intel_uc_fw_fini(&guc->fw); |
| out: |
| i915_probe_error(gt->i915, "failed with %d\n", ret); |
| return ret; |
| } |
| |
| void intel_guc_fini(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| |
| if (!intel_uc_fw_is_loadable(&guc->fw)) |
| return; |
| |
| i915_ggtt_disable_guc(gt->ggtt); |
| |
| if (intel_guc_submission_is_used(guc)) |
| intel_guc_submission_fini(guc); |
| |
| intel_guc_ct_fini(&guc->ct); |
| |
| intel_guc_ads_destroy(guc); |
| intel_guc_log_destroy(&guc->log); |
| intel_uc_fw_fini(&guc->fw); |
| } |
| |
| /* |
| * This function implements the MMIO based host to GuC interface. |
| */ |
| int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len, |
| u32 *response_buf, u32 response_buf_size) |
| { |
| struct intel_uncore *uncore = guc_to_gt(guc)->uncore; |
| u32 status; |
| int i; |
| int ret; |
| |
| GEM_BUG_ON(!len); |
| GEM_BUG_ON(len > guc->send_regs.count); |
| |
| /* We expect only action code */ |
| GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK); |
| |
| /* If CT is available, we expect to use MMIO only during init/fini */ |
| GEM_BUG_ON(*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER && |
| *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER); |
| |
| mutex_lock(&guc->send_mutex); |
| intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); |
| |
| for (i = 0; i < len; i++) |
| intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]); |
| |
| intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); |
| |
| intel_guc_notify(guc); |
| |
| /* |
| * No GuC command should ever take longer than 10ms. |
| * Fast commands should still complete in 10us. |
| */ |
| ret = __intel_wait_for_register_fw(uncore, |
| guc_send_reg(guc, 0), |
| INTEL_GUC_MSG_TYPE_MASK, |
| INTEL_GUC_MSG_TYPE_RESPONSE << |
| INTEL_GUC_MSG_TYPE_SHIFT, |
| 10, 10, &status); |
| /* If GuC explicitly returned an error, convert it to -EIO */ |
| if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status)) |
| ret = -EIO; |
| |
| if (ret) { |
| DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n", |
| action[0], ret, status); |
| goto out; |
| } |
| |
| if (response_buf) { |
| int count = min(response_buf_size, guc->send_regs.count - 1); |
| |
| for (i = 0; i < count; i++) |
| response_buf[i] = intel_uncore_read(uncore, |
| guc_send_reg(guc, i + 1)); |
| } |
| |
| /* Use data from the GuC response as our return value */ |
| ret = INTEL_GUC_MSG_TO_DATA(status); |
| |
| out: |
| intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); |
| mutex_unlock(&guc->send_mutex); |
| |
| return ret; |
| } |
| |
| int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, |
| const u32 *payload, u32 len) |
| { |
| u32 msg; |
| |
| if (unlikely(!len)) |
| return -EPROTO; |
| |
| /* Make sure to handle only enabled messages */ |
| msg = payload[0] & guc->msg_enabled_mask; |
| |
| if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER | |
| INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)) |
| intel_guc_log_handle_flush_event(&guc->log); |
| |
| return 0; |
| } |
| |
| int intel_guc_sample_forcewake(struct intel_guc *guc) |
| { |
| struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; |
| u32 action[2]; |
| |
| action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE; |
| /* WaRsDisableCoarsePowerGating:skl,cnl */ |
| if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv)) |
| action[1] = 0; |
| else |
| /* bit 0 and 1 are for Render and Media domain separately */ |
| action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA; |
| |
| return intel_guc_send(guc, action, ARRAY_SIZE(action)); |
| } |
| |
| /** |
| * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode |
| * @guc: intel_guc structure |
| * @rsa_offset: rsa offset w.r.t ggtt base of huc vma |
| * |
| * Triggers a HuC firmware authentication request to the GuC via intel_guc_send |
| * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by |
| * intel_huc_auth(). |
| * |
| * Return: non-zero code on error |
| */ |
| int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) |
| { |
| u32 action[] = { |
| INTEL_GUC_ACTION_AUTHENTICATE_HUC, |
| rsa_offset |
| }; |
| |
| return intel_guc_send(guc, action, ARRAY_SIZE(action)); |
| } |
| |
| /** |
| * intel_guc_suspend() - notify GuC entering suspend state |
| * @guc: the guc |
| */ |
| int intel_guc_suspend(struct intel_guc *guc) |
| { |
| struct intel_uncore *uncore = guc_to_gt(guc)->uncore; |
| int ret; |
| u32 status; |
| u32 action[] = { |
| INTEL_GUC_ACTION_ENTER_S_STATE, |
| GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */ |
| }; |
| |
| /* |
| * If GuC communication is enabled but submission is not supported, |
| * we do not need to suspend the GuC. |
| */ |
| if (!intel_guc_submission_is_used(guc) || !intel_guc_is_ready(guc)) |
| return 0; |
| |
| /* |
| * The ENTER_S_STATE action queues the save/restore operation in GuC FW |
| * and then returns, so waiting on the H2G is not enough to guarantee |
| * GuC is done. When all the processing is done, GuC writes |
| * INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll |
| * on that. Note that GuC does not ensure that the value in the register |
| * is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is |
| * in progress so we need to take care of that ourselves as well. |
| */ |
| |
| intel_uncore_write(uncore, SOFT_SCRATCH(14), |
| INTEL_GUC_SLEEP_STATE_INVALID_MASK); |
| |
| ret = intel_guc_send(guc, action, ARRAY_SIZE(action)); |
| if (ret) |
| return ret; |
| |
| ret = __intel_wait_for_register(uncore, SOFT_SCRATCH(14), |
| INTEL_GUC_SLEEP_STATE_INVALID_MASK, |
| 0, 0, 10, &status); |
| if (ret) |
| return ret; |
| |
| if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) { |
| DRM_ERROR("GuC failed to change sleep state. " |
| "action=0x%x, err=%u\n", |
| action[0], status); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * intel_guc_reset_engine() - ask GuC to reset an engine |
| * @guc: intel_guc structure |
| * @engine: engine to be reset |
| */ |
| int intel_guc_reset_engine(struct intel_guc *guc, |
| struct intel_engine_cs *engine) |
| { |
| /* XXX: to be implemented with submission interface rework */ |
| |
| return -ENODEV; |
| } |
| |
| /** |
| * intel_guc_resume() - notify GuC resuming from suspend state |
| * @guc: the guc |
| */ |
| int intel_guc_resume(struct intel_guc *guc) |
| { |
| u32 action[] = { |
| INTEL_GUC_ACTION_EXIT_S_STATE, |
| GUC_POWER_D0, |
| }; |
| |
| /* |
| * If GuC communication is enabled but submission is not supported, |
| * we do not need to resume the GuC but we do need to enable the |
| * GuC communication on resume (above). |
| */ |
| if (!intel_guc_submission_is_used(guc) || !intel_guc_is_ready(guc)) |
| return 0; |
| |
| return intel_guc_send(guc, action, ARRAY_SIZE(action)); |
| } |
| |
| /** |
| * DOC: GuC Memory Management |
| * |
| * GuC can't allocate any memory for its own usage, so all the allocations must |
| * be handled by the host driver. GuC accesses the memory via the GGTT, with the |
| * exception of the top and bottom parts of the 4GB address space, which are |
| * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) |
| * or other parts of the HW. The driver must take care not to place objects that |
| * the GuC is going to access in these reserved ranges. The layout of the GuC |
| * address space is shown below: |
| * |
| * :: |
| * |
| * +===========> +====================+ <== FFFF_FFFF |
| * ^ | Reserved | |
| * | +====================+ <== GUC_GGTT_TOP |
| * | | | |
| * | | DRAM | |
| * GuC | | |
| * Address +===> +====================+ <== GuC ggtt_pin_bias |
| * Space ^ | | |
| * | | | | |
| * | GuC | GuC | |
| * | WOPCM | WOPCM | |
| * | Size | | |
| * | | | | |
| * v v | | |
| * +=======+===> +====================+ <== 0000_0000 |
| * |
| * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM |
| * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped |
| * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. |
| */ |
| |
| /** |
| * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage |
| * @guc: the guc |
| * @size: size of area to allocate (both virtual space and memory) |
| * |
| * This is a wrapper to create an object for use with the GuC. In order to |
| * use it inside the GuC, an object needs to be pinned lifetime, so we allocate |
| * both some backing storage and a range inside the Global GTT. We must pin |
| * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that |
| * range is reserved inside GuC. |
| * |
| * Return: A i915_vma if successful, otherwise an ERR_PTR. |
| */ |
| struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| struct drm_i915_gem_object *obj; |
| struct i915_vma *vma; |
| u64 flags; |
| int ret; |
| |
| obj = i915_gem_object_create_shmem(gt->i915, size); |
| if (IS_ERR(obj)) |
| return ERR_CAST(obj); |
| |
| vma = i915_vma_instance(obj, >->ggtt->vm, NULL); |
| if (IS_ERR(vma)) |
| goto err; |
| |
| flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); |
| ret = i915_ggtt_pin(vma, 0, flags); |
| if (ret) { |
| vma = ERR_PTR(ret); |
| goto err; |
| } |
| |
| return i915_vma_make_unshrinkable(vma); |
| |
| err: |
| i915_gem_object_put(obj); |
| return vma; |
| } |
| |
| /** |
| * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage |
| * @guc: the guc |
| * @size: size of area to allocate (both virtual space and memory) |
| * @out_vma: return variable for the allocated vma pointer |
| * @out_vaddr: return variable for the obj mapping |
| * |
| * This wrapper calls intel_guc_allocate_vma() and then maps the allocated |
| * object with I915_MAP_WB. |
| * |
| * Return: 0 if successful, a negative errno code otherwise. |
| */ |
| int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, |
| struct i915_vma **out_vma, void **out_vaddr) |
| { |
| struct i915_vma *vma; |
| void *vaddr; |
| |
| vma = intel_guc_allocate_vma(guc, size); |
| if (IS_ERR(vma)) |
| return PTR_ERR(vma); |
| |
| vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); |
| if (IS_ERR(vaddr)) { |
| i915_vma_unpin_and_release(&vma, 0); |
| return PTR_ERR(vaddr); |
| } |
| |
| *out_vma = vma; |
| *out_vaddr = vaddr; |
| |
| return 0; |
| } |
| |
| /** |
| * intel_guc_load_status - dump information about GuC load status |
| * @guc: the GuC |
| * @p: the &drm_printer |
| * |
| * Pretty printer for GuC load status. |
| */ |
| void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| struct intel_uncore *uncore = gt->uncore; |
| intel_wakeref_t wakeref; |
| |
| if (!intel_guc_is_supported(guc)) { |
| drm_printf(p, "GuC not supported\n"); |
| return; |
| } |
| |
| if (!intel_guc_is_wanted(guc)) { |
| drm_printf(p, "GuC disabled\n"); |
| return; |
| } |
| |
| intel_uc_fw_dump(&guc->fw, p); |
| |
| with_intel_runtime_pm(uncore->rpm, wakeref) { |
| u32 status = intel_uncore_read(uncore, GUC_STATUS); |
| u32 i; |
| |
| drm_printf(p, "\nGuC status 0x%08x:\n", status); |
| drm_printf(p, "\tBootrom status = 0x%x\n", |
| (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); |
| drm_printf(p, "\tuKernel status = 0x%x\n", |
| (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); |
| drm_printf(p, "\tMIA Core status = 0x%x\n", |
| (status & GS_MIA_MASK) >> GS_MIA_SHIFT); |
| drm_puts(p, "\nScratch registers:\n"); |
| for (i = 0; i < 16; i++) { |
| drm_printf(p, "\t%2d: \t0x%x\n", |
| i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); |
| } |
| } |
| } |