| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/arch/arm/mm/dma-mapping.c |
| * |
| * Copyright (C) 2000-2004 Russell King |
| * |
| * DMA uncached mapping support. |
| */ |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/genalloc.h> |
| #include <linux/gfp.h> |
| #include <linux/errno.h> |
| #include <linux/list.h> |
| #include <linux/init.h> |
| #include <linux/device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dma-contiguous.h> |
| #include <linux/highmem.h> |
| #include <linux/memblock.h> |
| #include <linux/slab.h> |
| #include <linux/iommu.h> |
| #include <linux/io.h> |
| #include <linux/vmalloc.h> |
| #include <linux/sizes.h> |
| #include <linux/cma.h> |
| |
| #include <asm/memory.h> |
| #include <asm/highmem.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/mach/arch.h> |
| #include <asm/dma-iommu.h> |
| #include <asm/mach/map.h> |
| #include <asm/system_info.h> |
| #include <asm/dma-contiguous.h> |
| |
| #include "dma.h" |
| #include "mm.h" |
| |
| struct arm_dma_alloc_args { |
| struct device *dev; |
| size_t size; |
| gfp_t gfp; |
| pgprot_t prot; |
| const void *caller; |
| bool want_vaddr; |
| int coherent_flag; |
| }; |
| |
| struct arm_dma_free_args { |
| struct device *dev; |
| size_t size; |
| void *cpu_addr; |
| struct page *page; |
| bool want_vaddr; |
| }; |
| |
| #define NORMAL 0 |
| #define COHERENT 1 |
| |
| struct arm_dma_allocator { |
| void *(*alloc)(struct arm_dma_alloc_args *args, |
| struct page **ret_page); |
| void (*free)(struct arm_dma_free_args *args); |
| }; |
| |
| struct arm_dma_buffer { |
| struct list_head list; |
| void *virt; |
| struct arm_dma_allocator *allocator; |
| }; |
| |
| static LIST_HEAD(arm_dma_bufs); |
| static DEFINE_SPINLOCK(arm_dma_bufs_lock); |
| |
| static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) |
| { |
| struct arm_dma_buffer *buf, *found = NULL; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&arm_dma_bufs_lock, flags); |
| list_for_each_entry(buf, &arm_dma_bufs, list) { |
| if (buf->virt == virt) { |
| list_del(&buf->list); |
| found = buf; |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); |
| return found; |
| } |
| |
| /* |
| * The DMA API is built upon the notion of "buffer ownership". A buffer |
| * is either exclusively owned by the CPU (and therefore may be accessed |
| * by it) or exclusively owned by the DMA device. These helper functions |
| * represent the transitions between these two ownership states. |
| * |
| * Note, however, that on later ARMs, this notion does not work due to |
| * speculative prefetches. We model our approach on the assumption that |
| * the CPU does do speculative prefetches, which means we clean caches |
| * before transfers and delay cache invalidation until transfer completion. |
| * |
| */ |
| static void __dma_page_cpu_to_dev(struct page *, unsigned long, |
| size_t, enum dma_data_direction); |
| static void __dma_page_dev_to_cpu(struct page *, unsigned long, |
| size_t, enum dma_data_direction); |
| |
| /** |
| * arm_dma_map_page - map a portion of a page for streaming DMA |
| * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices |
| * @page: page that buffer resides in |
| * @offset: offset into page for start of buffer |
| * @size: size of buffer to map |
| * @dir: DMA transfer direction |
| * |
| * Ensure that any data held in the cache is appropriately discarded |
| * or written back. |
| * |
| * The device owns this memory once this call has completed. The CPU |
| * can regain ownership by calling dma_unmap_page(). |
| */ |
| static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) |
| __dma_page_cpu_to_dev(page, offset, size, dir); |
| return pfn_to_dma(dev, page_to_pfn(page)) + offset; |
| } |
| |
| static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| return pfn_to_dma(dev, page_to_pfn(page)) + offset; |
| } |
| |
| /** |
| * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() |
| * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices |
| * @handle: DMA address of buffer |
| * @size: size of buffer (same as passed to dma_map_page) |
| * @dir: DMA transfer direction (same as passed to dma_map_page) |
| * |
| * Unmap a page streaming mode DMA translation. The handle and size |
| * must match what was provided in the previous dma_map_page() call. |
| * All other usages are undefined. |
| * |
| * After this call, reads by the CPU to the buffer are guaranteed to see |
| * whatever the device wrote there. |
| */ |
| static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, |
| size_t size, enum dma_data_direction dir, unsigned long attrs) |
| { |
| if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) |
| __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), |
| handle & ~PAGE_MASK, size, dir); |
| } |
| |
| static void arm_dma_sync_single_for_cpu(struct device *dev, |
| dma_addr_t handle, size_t size, enum dma_data_direction dir) |
| { |
| unsigned int offset = handle & (PAGE_SIZE - 1); |
| struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); |
| __dma_page_dev_to_cpu(page, offset, size, dir); |
| } |
| |
| static void arm_dma_sync_single_for_device(struct device *dev, |
| dma_addr_t handle, size_t size, enum dma_data_direction dir) |
| { |
| unsigned int offset = handle & (PAGE_SIZE - 1); |
| struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); |
| __dma_page_cpu_to_dev(page, offset, size, dir); |
| } |
| |
| const struct dma_map_ops arm_dma_ops = { |
| .alloc = arm_dma_alloc, |
| .free = arm_dma_free, |
| .mmap = arm_dma_mmap, |
| .get_sgtable = arm_dma_get_sgtable, |
| .map_page = arm_dma_map_page, |
| .unmap_page = arm_dma_unmap_page, |
| .map_sg = arm_dma_map_sg, |
| .unmap_sg = arm_dma_unmap_sg, |
| .map_resource = dma_direct_map_resource, |
| .sync_single_for_cpu = arm_dma_sync_single_for_cpu, |
| .sync_single_for_device = arm_dma_sync_single_for_device, |
| .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu, |
| .sync_sg_for_device = arm_dma_sync_sg_for_device, |
| .dma_supported = arm_dma_supported, |
| }; |
| EXPORT_SYMBOL(arm_dma_ops); |
| |
| static void *arm_coherent_dma_alloc(struct device *dev, size_t size, |
| dma_addr_t *handle, gfp_t gfp, unsigned long attrs); |
| static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, |
| dma_addr_t handle, unsigned long attrs); |
| static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs); |
| |
| const struct dma_map_ops arm_coherent_dma_ops = { |
| .alloc = arm_coherent_dma_alloc, |
| .free = arm_coherent_dma_free, |
| .mmap = arm_coherent_dma_mmap, |
| .get_sgtable = arm_dma_get_sgtable, |
| .map_page = arm_coherent_dma_map_page, |
| .map_sg = arm_dma_map_sg, |
| .map_resource = dma_direct_map_resource, |
| .dma_supported = arm_dma_supported, |
| }; |
| EXPORT_SYMBOL(arm_coherent_dma_ops); |
| |
| static int __dma_supported(struct device *dev, u64 mask, bool warn) |
| { |
| unsigned long max_dma_pfn; |
| |
| /* |
| * If the mask allows for more memory than we can address, |
| * and we actually have that much memory, then we must |
| * indicate that DMA to this device is not supported. |
| */ |
| if (sizeof(mask) != sizeof(dma_addr_t) && |
| mask > (dma_addr_t)~0 && |
| dma_to_pfn(dev, ~0) < max_pfn - 1) { |
| if (warn) { |
| dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n", |
| mask); |
| dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n"); |
| } |
| return 0; |
| } |
| |
| max_dma_pfn = min(max_pfn, arm_dma_pfn_limit); |
| |
| /* |
| * Translate the device's DMA mask to a PFN limit. This |
| * PFN number includes the page which we can DMA to. |
| */ |
| if (dma_to_pfn(dev, mask) < max_dma_pfn) { |
| if (warn) |
| dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n", |
| mask, |
| dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1, |
| max_dma_pfn + 1); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static u64 get_coherent_dma_mask(struct device *dev) |
| { |
| u64 mask = (u64)DMA_BIT_MASK(32); |
| |
| if (dev) { |
| mask = dev->coherent_dma_mask; |
| |
| /* |
| * Sanity check the DMA mask - it must be non-zero, and |
| * must be able to be satisfied by a DMA allocation. |
| */ |
| if (mask == 0) { |
| dev_warn(dev, "coherent DMA mask is unset\n"); |
| return 0; |
| } |
| |
| if (!__dma_supported(dev, mask, true)) |
| return 0; |
| } |
| |
| return mask; |
| } |
| |
| static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) |
| { |
| /* |
| * Ensure that the allocated pages are zeroed, and that any data |
| * lurking in the kernel direct-mapped region is invalidated. |
| */ |
| if (PageHighMem(page)) { |
| phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); |
| phys_addr_t end = base + size; |
| while (size > 0) { |
| void *ptr = kmap_atomic(page); |
| memset(ptr, 0, PAGE_SIZE); |
| if (coherent_flag != COHERENT) |
| dmac_flush_range(ptr, ptr + PAGE_SIZE); |
| kunmap_atomic(ptr); |
| page++; |
| size -= PAGE_SIZE; |
| } |
| if (coherent_flag != COHERENT) |
| outer_flush_range(base, end); |
| } else { |
| void *ptr = page_address(page); |
| memset(ptr, 0, size); |
| if (coherent_flag != COHERENT) { |
| dmac_flush_range(ptr, ptr + size); |
| outer_flush_range(__pa(ptr), __pa(ptr) + size); |
| } |
| } |
| } |
| |
| /* |
| * Allocate a DMA buffer for 'dev' of size 'size' using the |
| * specified gfp mask. Note that 'size' must be page aligned. |
| */ |
| static struct page *__dma_alloc_buffer(struct device *dev, size_t size, |
| gfp_t gfp, int coherent_flag) |
| { |
| unsigned long order = get_order(size); |
| struct page *page, *p, *e; |
| |
| page = alloc_pages(gfp, order); |
| if (!page) |
| return NULL; |
| |
| /* |
| * Now split the huge page and free the excess pages |
| */ |
| split_page(page, order); |
| for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) |
| __free_page(p); |
| |
| __dma_clear_buffer(page, size, coherent_flag); |
| |
| return page; |
| } |
| |
| /* |
| * Free a DMA buffer. 'size' must be page aligned. |
| */ |
| static void __dma_free_buffer(struct page *page, size_t size) |
| { |
| struct page *e = page + (size >> PAGE_SHIFT); |
| |
| while (page < e) { |
| __free_page(page); |
| page++; |
| } |
| } |
| |
| static void *__alloc_from_contiguous(struct device *dev, size_t size, |
| pgprot_t prot, struct page **ret_page, |
| const void *caller, bool want_vaddr, |
| int coherent_flag, gfp_t gfp); |
| |
| static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, |
| pgprot_t prot, struct page **ret_page, |
| const void *caller, bool want_vaddr); |
| |
| static void * |
| __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, |
| const void *caller) |
| { |
| /* |
| * DMA allocation can be mapped to user space, so lets |
| * set VM_USERMAP flags too. |
| */ |
| return dma_common_contiguous_remap(page, size, |
| VM_ARM_DMA_CONSISTENT | VM_USERMAP, |
| prot, caller); |
| } |
| |
| static void __dma_free_remap(void *cpu_addr, size_t size) |
| { |
| dma_common_free_remap(cpu_addr, size, |
| VM_ARM_DMA_CONSISTENT | VM_USERMAP); |
| } |
| |
| #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K |
| static struct gen_pool *atomic_pool __ro_after_init; |
| |
| static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; |
| |
| static int __init early_coherent_pool(char *p) |
| { |
| atomic_pool_size = memparse(p, &p); |
| return 0; |
| } |
| early_param("coherent_pool", early_coherent_pool); |
| |
| /* |
| * Initialise the coherent pool for atomic allocations. |
| */ |
| static int __init atomic_pool_init(void) |
| { |
| pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); |
| gfp_t gfp = GFP_KERNEL | GFP_DMA; |
| struct page *page; |
| void *ptr; |
| |
| atomic_pool = gen_pool_create(PAGE_SHIFT, -1); |
| if (!atomic_pool) |
| goto out; |
| /* |
| * The atomic pool is only used for non-coherent allocations |
| * so we must pass NORMAL for coherent_flag. |
| */ |
| if (dev_get_cma_area(NULL)) |
| ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, |
| &page, atomic_pool_init, true, NORMAL, |
| GFP_KERNEL); |
| else |
| ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, |
| &page, atomic_pool_init, true); |
| if (ptr) { |
| int ret; |
| |
| ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, |
| page_to_phys(page), |
| atomic_pool_size, -1); |
| if (ret) |
| goto destroy_genpool; |
| |
| gen_pool_set_algo(atomic_pool, |
| gen_pool_first_fit_order_align, |
| NULL); |
| pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", |
| atomic_pool_size / 1024); |
| return 0; |
| } |
| |
| destroy_genpool: |
| gen_pool_destroy(atomic_pool); |
| atomic_pool = NULL; |
| out: |
| pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", |
| atomic_pool_size / 1024); |
| return -ENOMEM; |
| } |
| /* |
| * CMA is activated by core_initcall, so we must be called after it. |
| */ |
| postcore_initcall(atomic_pool_init); |
| |
| struct dma_contig_early_reserve { |
| phys_addr_t base; |
| unsigned long size; |
| }; |
| |
| static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; |
| |
| static int dma_mmu_remap_num __initdata; |
| |
| void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) |
| { |
| dma_mmu_remap[dma_mmu_remap_num].base = base; |
| dma_mmu_remap[dma_mmu_remap_num].size = size; |
| dma_mmu_remap_num++; |
| } |
| |
| void __init dma_contiguous_remap(void) |
| { |
| int i; |
| for (i = 0; i < dma_mmu_remap_num; i++) { |
| phys_addr_t start = dma_mmu_remap[i].base; |
| phys_addr_t end = start + dma_mmu_remap[i].size; |
| struct map_desc map; |
| unsigned long addr; |
| |
| if (end > arm_lowmem_limit) |
| end = arm_lowmem_limit; |
| if (start >= end) |
| continue; |
| |
| map.pfn = __phys_to_pfn(start); |
| map.virtual = __phys_to_virt(start); |
| map.length = end - start; |
| map.type = MT_MEMORY_DMA_READY; |
| |
| /* |
| * Clear previous low-memory mapping to ensure that the |
| * TLB does not see any conflicting entries, then flush |
| * the TLB of the old entries before creating new mappings. |
| * |
| * This ensures that any speculatively loaded TLB entries |
| * (even though they may be rare) can not cause any problems, |
| * and ensures that this code is architecturally compliant. |
| */ |
| for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); |
| addr += PMD_SIZE) |
| pmd_clear(pmd_off_k(addr)); |
| |
| flush_tlb_kernel_range(__phys_to_virt(start), |
| __phys_to_virt(end)); |
| |
| iotable_init(&map, 1); |
| } |
| } |
| |
| static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data) |
| { |
| struct page *page = virt_to_page(addr); |
| pgprot_t prot = *(pgprot_t *)data; |
| |
| set_pte_ext(pte, mk_pte(page, prot), 0); |
| return 0; |
| } |
| |
| static void __dma_remap(struct page *page, size_t size, pgprot_t prot) |
| { |
| unsigned long start = (unsigned long) page_address(page); |
| unsigned end = start + size; |
| |
| apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); |
| flush_tlb_kernel_range(start, end); |
| } |
| |
| static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, |
| pgprot_t prot, struct page **ret_page, |
| const void *caller, bool want_vaddr) |
| { |
| struct page *page; |
| void *ptr = NULL; |
| /* |
| * __alloc_remap_buffer is only called when the device is |
| * non-coherent |
| */ |
| page = __dma_alloc_buffer(dev, size, gfp, NORMAL); |
| if (!page) |
| return NULL; |
| if (!want_vaddr) |
| goto out; |
| |
| ptr = __dma_alloc_remap(page, size, gfp, prot, caller); |
| if (!ptr) { |
| __dma_free_buffer(page, size); |
| return NULL; |
| } |
| |
| out: |
| *ret_page = page; |
| return ptr; |
| } |
| |
| static void *__alloc_from_pool(size_t size, struct page **ret_page) |
| { |
| unsigned long val; |
| void *ptr = NULL; |
| |
| if (!atomic_pool) { |
| WARN(1, "coherent pool not initialised!\n"); |
| return NULL; |
| } |
| |
| val = gen_pool_alloc(atomic_pool, size); |
| if (val) { |
| phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); |
| |
| *ret_page = phys_to_page(phys); |
| ptr = (void *)val; |
| } |
| |
| return ptr; |
| } |
| |
| static bool __in_atomic_pool(void *start, size_t size) |
| { |
| return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); |
| } |
| |
| static int __free_from_pool(void *start, size_t size) |
| { |
| if (!__in_atomic_pool(start, size)) |
| return 0; |
| |
| gen_pool_free(atomic_pool, (unsigned long)start, size); |
| |
| return 1; |
| } |
| |
| static void *__alloc_from_contiguous(struct device *dev, size_t size, |
| pgprot_t prot, struct page **ret_page, |
| const void *caller, bool want_vaddr, |
| int coherent_flag, gfp_t gfp) |
| { |
| unsigned long order = get_order(size); |
| size_t count = size >> PAGE_SHIFT; |
| struct page *page; |
| void *ptr = NULL; |
| |
| page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN); |
| if (!page) |
| return NULL; |
| |
| __dma_clear_buffer(page, size, coherent_flag); |
| |
| if (!want_vaddr) |
| goto out; |
| |
| if (PageHighMem(page)) { |
| ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller); |
| if (!ptr) { |
| dma_release_from_contiguous(dev, page, count); |
| return NULL; |
| } |
| } else { |
| __dma_remap(page, size, prot); |
| ptr = page_address(page); |
| } |
| |
| out: |
| *ret_page = page; |
| return ptr; |
| } |
| |
| static void __free_from_contiguous(struct device *dev, struct page *page, |
| void *cpu_addr, size_t size, bool want_vaddr) |
| { |
| if (want_vaddr) { |
| if (PageHighMem(page)) |
| __dma_free_remap(cpu_addr, size); |
| else |
| __dma_remap(page, size, PAGE_KERNEL); |
| } |
| dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); |
| } |
| |
| static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) |
| { |
| prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? |
| pgprot_writecombine(prot) : |
| pgprot_dmacoherent(prot); |
| return prot; |
| } |
| |
| static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, |
| struct page **ret_page) |
| { |
| struct page *page; |
| /* __alloc_simple_buffer is only called when the device is coherent */ |
| page = __dma_alloc_buffer(dev, size, gfp, COHERENT); |
| if (!page) |
| return NULL; |
| |
| *ret_page = page; |
| return page_address(page); |
| } |
| |
| static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, |
| struct page **ret_page) |
| { |
| return __alloc_simple_buffer(args->dev, args->size, args->gfp, |
| ret_page); |
| } |
| |
| static void simple_allocator_free(struct arm_dma_free_args *args) |
| { |
| __dma_free_buffer(args->page, args->size); |
| } |
| |
| static struct arm_dma_allocator simple_allocator = { |
| .alloc = simple_allocator_alloc, |
| .free = simple_allocator_free, |
| }; |
| |
| static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, |
| struct page **ret_page) |
| { |
| return __alloc_from_contiguous(args->dev, args->size, args->prot, |
| ret_page, args->caller, |
| args->want_vaddr, args->coherent_flag, |
| args->gfp); |
| } |
| |
| static void cma_allocator_free(struct arm_dma_free_args *args) |
| { |
| __free_from_contiguous(args->dev, args->page, args->cpu_addr, |
| args->size, args->want_vaddr); |
| } |
| |
| static struct arm_dma_allocator cma_allocator = { |
| .alloc = cma_allocator_alloc, |
| .free = cma_allocator_free, |
| }; |
| |
| static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, |
| struct page **ret_page) |
| { |
| return __alloc_from_pool(args->size, ret_page); |
| } |
| |
| static void pool_allocator_free(struct arm_dma_free_args *args) |
| { |
| __free_from_pool(args->cpu_addr, args->size); |
| } |
| |
| static struct arm_dma_allocator pool_allocator = { |
| .alloc = pool_allocator_alloc, |
| .free = pool_allocator_free, |
| }; |
| |
| static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, |
| struct page **ret_page) |
| { |
| return __alloc_remap_buffer(args->dev, args->size, args->gfp, |
| args->prot, ret_page, args->caller, |
| args->want_vaddr); |
| } |
| |
| static void remap_allocator_free(struct arm_dma_free_args *args) |
| { |
| if (args->want_vaddr) |
| __dma_free_remap(args->cpu_addr, args->size); |
| |
| __dma_free_buffer(args->page, args->size); |
| } |
| |
| static struct arm_dma_allocator remap_allocator = { |
| .alloc = remap_allocator_alloc, |
| .free = remap_allocator_free, |
| }; |
| |
| static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, |
| gfp_t gfp, pgprot_t prot, bool is_coherent, |
| unsigned long attrs, const void *caller) |
| { |
| u64 mask = get_coherent_dma_mask(dev); |
| struct page *page = NULL; |
| void *addr; |
| bool allowblock, cma; |
| struct arm_dma_buffer *buf; |
| struct arm_dma_alloc_args args = { |
| .dev = dev, |
| .size = PAGE_ALIGN(size), |
| .gfp = gfp, |
| .prot = prot, |
| .caller = caller, |
| .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), |
| .coherent_flag = is_coherent ? COHERENT : NORMAL, |
| }; |
| |
| #ifdef CONFIG_DMA_API_DEBUG |
| u64 limit = (mask + 1) & ~mask; |
| if (limit && size >= limit) { |
| dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", |
| size, mask); |
| return NULL; |
| } |
| #endif |
| |
| if (!mask) |
| return NULL; |
| |
| buf = kzalloc(sizeof(*buf), |
| gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); |
| if (!buf) |
| return NULL; |
| |
| if (mask < 0xffffffffULL) |
| gfp |= GFP_DMA; |
| |
| /* |
| * Following is a work-around (a.k.a. hack) to prevent pages |
| * with __GFP_COMP being passed to split_page() which cannot |
| * handle them. The real problem is that this flag probably |
| * should be 0 on ARM as it is not supported on this |
| * platform; see CONFIG_HUGETLBFS. |
| */ |
| gfp &= ~(__GFP_COMP); |
| args.gfp = gfp; |
| |
| *handle = DMA_MAPPING_ERROR; |
| allowblock = gfpflags_allow_blocking(gfp); |
| cma = allowblock ? dev_get_cma_area(dev) : false; |
| |
| if (cma) |
| buf->allocator = &cma_allocator; |
| else if (is_coherent) |
| buf->allocator = &simple_allocator; |
| else if (allowblock) |
| buf->allocator = &remap_allocator; |
| else |
| buf->allocator = &pool_allocator; |
| |
| addr = buf->allocator->alloc(&args, &page); |
| |
| if (page) { |
| unsigned long flags; |
| |
| *handle = pfn_to_dma(dev, page_to_pfn(page)); |
| buf->virt = args.want_vaddr ? addr : page; |
| |
| spin_lock_irqsave(&arm_dma_bufs_lock, flags); |
| list_add(&buf->list, &arm_dma_bufs); |
| spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); |
| } else { |
| kfree(buf); |
| } |
| |
| return args.want_vaddr ? addr : page; |
| } |
| |
| /* |
| * Allocate DMA-coherent memory space and return both the kernel remapped |
| * virtual and bus address for that space. |
| */ |
| void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, |
| gfp_t gfp, unsigned long attrs) |
| { |
| pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); |
| |
| return __dma_alloc(dev, size, handle, gfp, prot, false, |
| attrs, __builtin_return_address(0)); |
| } |
| |
| static void *arm_coherent_dma_alloc(struct device *dev, size_t size, |
| dma_addr_t *handle, gfp_t gfp, unsigned long attrs) |
| { |
| return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true, |
| attrs, __builtin_return_address(0)); |
| } |
| |
| static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| int ret = -ENXIO; |
| unsigned long nr_vma_pages = vma_pages(vma); |
| unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| unsigned long pfn = dma_to_pfn(dev, dma_addr); |
| unsigned long off = vma->vm_pgoff; |
| |
| if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) |
| return ret; |
| |
| if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { |
| ret = remap_pfn_range(vma, vma->vm_start, |
| pfn + off, |
| vma->vm_end - vma->vm_start, |
| vma->vm_page_prot); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Create userspace mapping for the DMA-coherent memory. |
| */ |
| static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); |
| } |
| |
| int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); |
| return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); |
| } |
| |
| /* |
| * Free a buffer as defined by the above mapping. |
| */ |
| static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, |
| dma_addr_t handle, unsigned long attrs, |
| bool is_coherent) |
| { |
| struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); |
| struct arm_dma_buffer *buf; |
| struct arm_dma_free_args args = { |
| .dev = dev, |
| .size = PAGE_ALIGN(size), |
| .cpu_addr = cpu_addr, |
| .page = page, |
| .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), |
| }; |
| |
| buf = arm_dma_buffer_find(cpu_addr); |
| if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) |
| return; |
| |
| buf->allocator->free(&args); |
| kfree(buf); |
| } |
| |
| void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, |
| dma_addr_t handle, unsigned long attrs) |
| { |
| __arm_dma_free(dev, size, cpu_addr, handle, attrs, false); |
| } |
| |
| static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr, |
| dma_addr_t handle, unsigned long attrs) |
| { |
| __arm_dma_free(dev, size, cpu_addr, handle, attrs, true); |
| } |
| |
| /* |
| * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems |
| * that the intention is to allow exporting memory allocated via the |
| * coherent DMA APIs through the dma_buf API, which only accepts a |
| * scattertable. This presents a couple of problems: |
| * 1. Not all memory allocated via the coherent DMA APIs is backed by |
| * a struct page |
| * 2. Passing coherent DMA memory into the streaming APIs is not allowed |
| * as we will try to flush the memory through a different alias to that |
| * actually being used (and the flushes are redundant.) |
| */ |
| int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt, |
| void *cpu_addr, dma_addr_t handle, size_t size, |
| unsigned long attrs) |
| { |
| unsigned long pfn = dma_to_pfn(dev, handle); |
| struct page *page; |
| int ret; |
| |
| /* If the PFN is not valid, we do not have a struct page */ |
| if (!pfn_valid(pfn)) |
| return -ENXIO; |
| |
| page = pfn_to_page(pfn); |
| |
| ret = sg_alloc_table(sgt, 1, GFP_KERNEL); |
| if (unlikely(ret)) |
| return ret; |
| |
| sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); |
| return 0; |
| } |
| |
| static void dma_cache_maint_page(struct page *page, unsigned long offset, |
| size_t size, enum dma_data_direction dir, |
| void (*op)(const void *, size_t, int)) |
| { |
| unsigned long pfn; |
| size_t left = size; |
| |
| pfn = page_to_pfn(page) + offset / PAGE_SIZE; |
| offset %= PAGE_SIZE; |
| |
| /* |
| * A single sg entry may refer to multiple physically contiguous |
| * pages. But we still need to process highmem pages individually. |
| * If highmem is not configured then the bulk of this loop gets |
| * optimized out. |
| */ |
| do { |
| size_t len = left; |
| void *vaddr; |
| |
| page = pfn_to_page(pfn); |
| |
| if (PageHighMem(page)) { |
| if (len + offset > PAGE_SIZE) |
| len = PAGE_SIZE - offset; |
| |
| if (cache_is_vipt_nonaliasing()) { |
| vaddr = kmap_atomic(page); |
| op(vaddr + offset, len, dir); |
| kunmap_atomic(vaddr); |
| } else { |
| vaddr = kmap_high_get(page); |
| if (vaddr) { |
| op(vaddr + offset, len, dir); |
| kunmap_high(page); |
| } |
| } |
| } else { |
| vaddr = page_address(page) + offset; |
| op(vaddr, len, dir); |
| } |
| offset = 0; |
| pfn++; |
| left -= len; |
| } while (left); |
| } |
| |
| /* |
| * Make an area consistent for devices. |
| * Note: Drivers should NOT use this function directly, as it will break |
| * platforms with CONFIG_DMABOUNCE. |
| * Use the driver DMA support - see dma-mapping.h (dma_sync_*) |
| */ |
| static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, |
| size_t size, enum dma_data_direction dir) |
| { |
| phys_addr_t paddr; |
| |
| dma_cache_maint_page(page, off, size, dir, dmac_map_area); |
| |
| paddr = page_to_phys(page) + off; |
| if (dir == DMA_FROM_DEVICE) { |
| outer_inv_range(paddr, paddr + size); |
| } else { |
| outer_clean_range(paddr, paddr + size); |
| } |
| /* FIXME: non-speculating: flush on bidirectional mappings? */ |
| } |
| |
| static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, |
| size_t size, enum dma_data_direction dir) |
| { |
| phys_addr_t paddr = page_to_phys(page) + off; |
| |
| /* FIXME: non-speculating: not required */ |
| /* in any case, don't bother invalidating if DMA to device */ |
| if (dir != DMA_TO_DEVICE) { |
| outer_inv_range(paddr, paddr + size); |
| |
| dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); |
| } |
| |
| /* |
| * Mark the D-cache clean for these pages to avoid extra flushing. |
| */ |
| if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { |
| unsigned long pfn; |
| size_t left = size; |
| |
| pfn = page_to_pfn(page) + off / PAGE_SIZE; |
| off %= PAGE_SIZE; |
| if (off) { |
| pfn++; |
| left -= PAGE_SIZE - off; |
| } |
| while (left >= PAGE_SIZE) { |
| page = pfn_to_page(pfn++); |
| set_bit(PG_dcache_clean, &page->flags); |
| left -= PAGE_SIZE; |
| } |
| } |
| } |
| |
| /** |
| * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA |
| * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices |
| * @sg: list of buffers |
| * @nents: number of buffers to map |
| * @dir: DMA transfer direction |
| * |
| * Map a set of buffers described by scatterlist in streaming mode for DMA. |
| * This is the scatter-gather version of the dma_map_single interface. |
| * Here the scatter gather list elements are each tagged with the |
| * appropriate dma address and length. They are obtained via |
| * sg_dma_{address,length}. |
| * |
| * Device ownership issues as mentioned for dma_map_single are the same |
| * here. |
| */ |
| int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| struct scatterlist *s; |
| int i, j; |
| |
| for_each_sg(sg, s, nents, i) { |
| #ifdef CONFIG_NEED_SG_DMA_LENGTH |
| s->dma_length = s->length; |
| #endif |
| s->dma_address = ops->map_page(dev, sg_page(s), s->offset, |
| s->length, dir, attrs); |
| if (dma_mapping_error(dev, s->dma_address)) |
| goto bad_mapping; |
| } |
| return nents; |
| |
| bad_mapping: |
| for_each_sg(sg, s, i, j) |
| ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); |
| return 0; |
| } |
| |
| /** |
| * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg |
| * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices |
| * @sg: list of buffers |
| * @nents: number of buffers to unmap (same as was passed to dma_map_sg) |
| * @dir: DMA transfer direction (same as was passed to dma_map_sg) |
| * |
| * Unmap a set of streaming mode DMA translations. Again, CPU access |
| * rules concerning calls here are the same as for dma_unmap_single(). |
| */ |
| void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| struct scatterlist *s; |
| |
| int i; |
| |
| for_each_sg(sg, s, nents, i) |
| ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); |
| } |
| |
| /** |
| * arm_dma_sync_sg_for_cpu |
| * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices |
| * @sg: list of buffers |
| * @nents: number of buffers to map (returned from dma_map_sg) |
| * @dir: DMA transfer direction (same as was passed to dma_map_sg) |
| */ |
| void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| struct scatterlist *s; |
| int i; |
| |
| for_each_sg(sg, s, nents, i) |
| ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, |
| dir); |
| } |
| |
| /** |
| * arm_dma_sync_sg_for_device |
| * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices |
| * @sg: list of buffers |
| * @nents: number of buffers to map (returned from dma_map_sg) |
| * @dir: DMA transfer direction (same as was passed to dma_map_sg) |
| */ |
| void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| struct scatterlist *s; |
| int i; |
| |
| for_each_sg(sg, s, nents, i) |
| ops->sync_single_for_device(dev, sg_dma_address(s), s->length, |
| dir); |
| } |
| |
| /* |
| * Return whether the given device DMA address mask can be supported |
| * properly. For example, if your device can only drive the low 24-bits |
| * during bus mastering, then you would pass 0x00ffffff as the mask |
| * to this function. |
| */ |
| int arm_dma_supported(struct device *dev, u64 mask) |
| { |
| return __dma_supported(dev, mask, false); |
| } |
| |
| static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent) |
| { |
| return coherent ? &arm_coherent_dma_ops : &arm_dma_ops; |
| } |
| |
| #ifdef CONFIG_ARM_DMA_USE_IOMMU |
| |
| static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) |
| { |
| int prot = 0; |
| |
| if (attrs & DMA_ATTR_PRIVILEGED) |
| prot |= IOMMU_PRIV; |
| |
| switch (dir) { |
| case DMA_BIDIRECTIONAL: |
| return prot | IOMMU_READ | IOMMU_WRITE; |
| case DMA_TO_DEVICE: |
| return prot | IOMMU_READ; |
| case DMA_FROM_DEVICE: |
| return prot | IOMMU_WRITE; |
| default: |
| return prot; |
| } |
| } |
| |
| /* IOMMU */ |
| |
| static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); |
| |
| static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, |
| size_t size) |
| { |
| unsigned int order = get_order(size); |
| unsigned int align = 0; |
| unsigned int count, start; |
| size_t mapping_size = mapping->bits << PAGE_SHIFT; |
| unsigned long flags; |
| dma_addr_t iova; |
| int i; |
| |
| if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) |
| order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; |
| |
| count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| align = (1 << order) - 1; |
| |
| spin_lock_irqsave(&mapping->lock, flags); |
| for (i = 0; i < mapping->nr_bitmaps; i++) { |
| start = bitmap_find_next_zero_area(mapping->bitmaps[i], |
| mapping->bits, 0, count, align); |
| |
| if (start > mapping->bits) |
| continue; |
| |
| bitmap_set(mapping->bitmaps[i], start, count); |
| break; |
| } |
| |
| /* |
| * No unused range found. Try to extend the existing mapping |
| * and perform a second attempt to reserve an IO virtual |
| * address range of size bytes. |
| */ |
| if (i == mapping->nr_bitmaps) { |
| if (extend_iommu_mapping(mapping)) { |
| spin_unlock_irqrestore(&mapping->lock, flags); |
| return DMA_MAPPING_ERROR; |
| } |
| |
| start = bitmap_find_next_zero_area(mapping->bitmaps[i], |
| mapping->bits, 0, count, align); |
| |
| if (start > mapping->bits) { |
| spin_unlock_irqrestore(&mapping->lock, flags); |
| return DMA_MAPPING_ERROR; |
| } |
| |
| bitmap_set(mapping->bitmaps[i], start, count); |
| } |
| spin_unlock_irqrestore(&mapping->lock, flags); |
| |
| iova = mapping->base + (mapping_size * i); |
| iova += start << PAGE_SHIFT; |
| |
| return iova; |
| } |
| |
| static inline void __free_iova(struct dma_iommu_mapping *mapping, |
| dma_addr_t addr, size_t size) |
| { |
| unsigned int start, count; |
| size_t mapping_size = mapping->bits << PAGE_SHIFT; |
| unsigned long flags; |
| dma_addr_t bitmap_base; |
| u32 bitmap_index; |
| |
| if (!size) |
| return; |
| |
| bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; |
| BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); |
| |
| bitmap_base = mapping->base + mapping_size * bitmap_index; |
| |
| start = (addr - bitmap_base) >> PAGE_SHIFT; |
| |
| if (addr + size > bitmap_base + mapping_size) { |
| /* |
| * The address range to be freed reaches into the iova |
| * range of the next bitmap. This should not happen as |
| * we don't allow this in __alloc_iova (at the |
| * moment). |
| */ |
| BUG(); |
| } else |
| count = size >> PAGE_SHIFT; |
| |
| spin_lock_irqsave(&mapping->lock, flags); |
| bitmap_clear(mapping->bitmaps[bitmap_index], start, count); |
| spin_unlock_irqrestore(&mapping->lock, flags); |
| } |
| |
| /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ |
| static const int iommu_order_array[] = { 9, 8, 4, 0 }; |
| |
| static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, |
| gfp_t gfp, unsigned long attrs, |
| int coherent_flag) |
| { |
| struct page **pages; |
| int count = size >> PAGE_SHIFT; |
| int array_size = count * sizeof(struct page *); |
| int i = 0; |
| int order_idx = 0; |
| |
| if (array_size <= PAGE_SIZE) |
| pages = kzalloc(array_size, GFP_KERNEL); |
| else |
| pages = vzalloc(array_size); |
| if (!pages) |
| return NULL; |
| |
| if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) |
| { |
| unsigned long order = get_order(size); |
| struct page *page; |
| |
| page = dma_alloc_from_contiguous(dev, count, order, |
| gfp & __GFP_NOWARN); |
| if (!page) |
| goto error; |
| |
| __dma_clear_buffer(page, size, coherent_flag); |
| |
| for (i = 0; i < count; i++) |
| pages[i] = page + i; |
| |
| return pages; |
| } |
| |
| /* Go straight to 4K chunks if caller says it's OK. */ |
| if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) |
| order_idx = ARRAY_SIZE(iommu_order_array) - 1; |
| |
| /* |
| * IOMMU can map any pages, so himem can also be used here |
| */ |
| gfp |= __GFP_NOWARN | __GFP_HIGHMEM; |
| |
| while (count) { |
| int j, order; |
| |
| order = iommu_order_array[order_idx]; |
| |
| /* Drop down when we get small */ |
| if (__fls(count) < order) { |
| order_idx++; |
| continue; |
| } |
| |
| if (order) { |
| /* See if it's easy to allocate a high-order chunk */ |
| pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); |
| |
| /* Go down a notch at first sign of pressure */ |
| if (!pages[i]) { |
| order_idx++; |
| continue; |
| } |
| } else { |
| pages[i] = alloc_pages(gfp, 0); |
| if (!pages[i]) |
| goto error; |
| } |
| |
| if (order) { |
| split_page(pages[i], order); |
| j = 1 << order; |
| while (--j) |
| pages[i + j] = pages[i] + j; |
| } |
| |
| __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); |
| i += 1 << order; |
| count -= 1 << order; |
| } |
| |
| return pages; |
| error: |
| while (i--) |
| if (pages[i]) |
| __free_pages(pages[i], 0); |
| kvfree(pages); |
| return NULL; |
| } |
| |
| static int __iommu_free_buffer(struct device *dev, struct page **pages, |
| size_t size, unsigned long attrs) |
| { |
| int count = size >> PAGE_SHIFT; |
| int i; |
| |
| if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { |
| dma_release_from_contiguous(dev, pages[0], count); |
| } else { |
| for (i = 0; i < count; i++) |
| if (pages[i]) |
| __free_pages(pages[i], 0); |
| } |
| |
| kvfree(pages); |
| return 0; |
| } |
| |
| /* |
| * Create a CPU mapping for a specified pages |
| */ |
| static void * |
| __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot, |
| const void *caller) |
| { |
| return dma_common_pages_remap(pages, size, |
| VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller); |
| } |
| |
| /* |
| * Create a mapping in device IO address space for specified pages |
| */ |
| static dma_addr_t |
| __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, |
| unsigned long attrs) |
| { |
| struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| dma_addr_t dma_addr, iova; |
| int i; |
| |
| dma_addr = __alloc_iova(mapping, size); |
| if (dma_addr == DMA_MAPPING_ERROR) |
| return dma_addr; |
| |
| iova = dma_addr; |
| for (i = 0; i < count; ) { |
| int ret; |
| |
| unsigned int next_pfn = page_to_pfn(pages[i]) + 1; |
| phys_addr_t phys = page_to_phys(pages[i]); |
| unsigned int len, j; |
| |
| for (j = i + 1; j < count; j++, next_pfn++) |
| if (page_to_pfn(pages[j]) != next_pfn) |
| break; |
| |
| len = (j - i) << PAGE_SHIFT; |
| ret = iommu_map(mapping->domain, iova, phys, len, |
| __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs)); |
| if (ret < 0) |
| goto fail; |
| iova += len; |
| i = j; |
| } |
| return dma_addr; |
| fail: |
| iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); |
| __free_iova(mapping, dma_addr, size); |
| return DMA_MAPPING_ERROR; |
| } |
| |
| static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) |
| { |
| struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| |
| /* |
| * add optional in-page offset from iova to size and align |
| * result to page size |
| */ |
| size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); |
| iova &= PAGE_MASK; |
| |
| iommu_unmap(mapping->domain, iova, size); |
| __free_iova(mapping, iova, size); |
| return 0; |
| } |
| |
| static struct page **__atomic_get_pages(void *addr) |
| { |
| struct page *page; |
| phys_addr_t phys; |
| |
| phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); |
| page = phys_to_page(phys); |
| |
| return (struct page **)page; |
| } |
| |
| static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) |
| { |
| struct vm_struct *area; |
| |
| if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) |
| return __atomic_get_pages(cpu_addr); |
| |
| if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) |
| return cpu_addr; |
| |
| area = find_vm_area(cpu_addr); |
| if (area && (area->flags & VM_ARM_DMA_CONSISTENT)) |
| return area->pages; |
| return NULL; |
| } |
| |
| static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, |
| dma_addr_t *handle, int coherent_flag, |
| unsigned long attrs) |
| { |
| struct page *page; |
| void *addr; |
| |
| if (coherent_flag == COHERENT) |
| addr = __alloc_simple_buffer(dev, size, gfp, &page); |
| else |
| addr = __alloc_from_pool(size, &page); |
| if (!addr) |
| return NULL; |
| |
| *handle = __iommu_create_mapping(dev, &page, size, attrs); |
| if (*handle == DMA_MAPPING_ERROR) |
| goto err_mapping; |
| |
| return addr; |
| |
| err_mapping: |
| __free_from_pool(addr, size); |
| return NULL; |
| } |
| |
| static void __iommu_free_atomic(struct device *dev, void *cpu_addr, |
| dma_addr_t handle, size_t size, int coherent_flag) |
| { |
| __iommu_remove_mapping(dev, handle, size); |
| if (coherent_flag == COHERENT) |
| __dma_free_buffer(virt_to_page(cpu_addr), size); |
| else |
| __free_from_pool(cpu_addr, size); |
| } |
| |
| static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size, |
| dma_addr_t *handle, gfp_t gfp, unsigned long attrs, |
| int coherent_flag) |
| { |
| pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); |
| struct page **pages; |
| void *addr = NULL; |
| |
| *handle = DMA_MAPPING_ERROR; |
| size = PAGE_ALIGN(size); |
| |
| if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp)) |
| return __iommu_alloc_simple(dev, size, gfp, handle, |
| coherent_flag, attrs); |
| |
| /* |
| * Following is a work-around (a.k.a. hack) to prevent pages |
| * with __GFP_COMP being passed to split_page() which cannot |
| * handle them. The real problem is that this flag probably |
| * should be 0 on ARM as it is not supported on this |
| * platform; see CONFIG_HUGETLBFS. |
| */ |
| gfp &= ~(__GFP_COMP); |
| |
| pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); |
| if (!pages) |
| return NULL; |
| |
| *handle = __iommu_create_mapping(dev, pages, size, attrs); |
| if (*handle == DMA_MAPPING_ERROR) |
| goto err_buffer; |
| |
| if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) |
| return pages; |
| |
| addr = __iommu_alloc_remap(pages, size, gfp, prot, |
| __builtin_return_address(0)); |
| if (!addr) |
| goto err_mapping; |
| |
| return addr; |
| |
| err_mapping: |
| __iommu_remove_mapping(dev, *handle, size); |
| err_buffer: |
| __iommu_free_buffer(dev, pages, size, attrs); |
| return NULL; |
| } |
| |
| static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, |
| dma_addr_t *handle, gfp_t gfp, unsigned long attrs) |
| { |
| return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL); |
| } |
| |
| static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size, |
| dma_addr_t *handle, gfp_t gfp, unsigned long attrs) |
| { |
| return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT); |
| } |
| |
| static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| struct page **pages = __iommu_get_pages(cpu_addr, attrs); |
| unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| int err; |
| |
| if (!pages) |
| return -ENXIO; |
| |
| if (vma->vm_pgoff >= nr_pages) |
| return -ENXIO; |
| |
| err = vm_map_pages(vma, pages, nr_pages); |
| if (err) |
| pr_err("Remapping memory failed: %d\n", err); |
| |
| return err; |
| } |
| static int arm_iommu_mmap_attrs(struct device *dev, |
| struct vm_area_struct *vma, void *cpu_addr, |
| dma_addr_t dma_addr, size_t size, unsigned long attrs) |
| { |
| vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); |
| |
| return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); |
| } |
| |
| static int arm_coherent_iommu_mmap_attrs(struct device *dev, |
| struct vm_area_struct *vma, void *cpu_addr, |
| dma_addr_t dma_addr, size_t size, unsigned long attrs) |
| { |
| return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs); |
| } |
| |
| /* |
| * free a page as defined by the above mapping. |
| * Must not be called with IRQs disabled. |
| */ |
| void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, |
| dma_addr_t handle, unsigned long attrs, int coherent_flag) |
| { |
| struct page **pages; |
| size = PAGE_ALIGN(size); |
| |
| if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { |
| __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); |
| return; |
| } |
| |
| pages = __iommu_get_pages(cpu_addr, attrs); |
| if (!pages) { |
| WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); |
| return; |
| } |
| |
| if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) { |
| dma_common_free_remap(cpu_addr, size, |
| VM_ARM_DMA_CONSISTENT | VM_USERMAP); |
| } |
| |
| __iommu_remove_mapping(dev, handle, size); |
| __iommu_free_buffer(dev, pages, size, attrs); |
| } |
| |
| void arm_iommu_free_attrs(struct device *dev, size_t size, |
| void *cpu_addr, dma_addr_t handle, unsigned long attrs) |
| { |
| __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL); |
| } |
| |
| void arm_coherent_iommu_free_attrs(struct device *dev, size_t size, |
| void *cpu_addr, dma_addr_t handle, unsigned long attrs) |
| { |
| __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT); |
| } |
| |
| static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, |
| void *cpu_addr, dma_addr_t dma_addr, |
| size_t size, unsigned long attrs) |
| { |
| unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| struct page **pages = __iommu_get_pages(cpu_addr, attrs); |
| |
| if (!pages) |
| return -ENXIO; |
| |
| return sg_alloc_table_from_pages(sgt, pages, count, 0, size, |
| GFP_KERNEL); |
| } |
| |
| /* |
| * Map a part of the scatter-gather list into contiguous io address space |
| */ |
| static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, |
| size_t size, dma_addr_t *handle, |
| enum dma_data_direction dir, unsigned long attrs, |
| bool is_coherent) |
| { |
| struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| dma_addr_t iova, iova_base; |
| int ret = 0; |
| unsigned int count; |
| struct scatterlist *s; |
| int prot; |
| |
| size = PAGE_ALIGN(size); |
| *handle = DMA_MAPPING_ERROR; |
| |
| iova_base = iova = __alloc_iova(mapping, size); |
| if (iova == DMA_MAPPING_ERROR) |
| return -ENOMEM; |
| |
| for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { |
| phys_addr_t phys = page_to_phys(sg_page(s)); |
| unsigned int len = PAGE_ALIGN(s->offset + s->length); |
| |
| if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) |
| __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); |
| |
| prot = __dma_info_to_prot(dir, attrs); |
| |
| ret = iommu_map(mapping->domain, iova, phys, len, prot); |
| if (ret < 0) |
| goto fail; |
| count += len >> PAGE_SHIFT; |
| iova += len; |
| } |
| *handle = iova_base; |
| |
| return 0; |
| fail: |
| iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); |
| __free_iova(mapping, iova_base, size); |
| return ret; |
| } |
| |
| static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, |
| enum dma_data_direction dir, unsigned long attrs, |
| bool is_coherent) |
| { |
| struct scatterlist *s = sg, *dma = sg, *start = sg; |
| int i, count = 0; |
| unsigned int offset = s->offset; |
| unsigned int size = s->offset + s->length; |
| unsigned int max = dma_get_max_seg_size(dev); |
| |
| for (i = 1; i < nents; i++) { |
| s = sg_next(s); |
| |
| s->dma_address = DMA_MAPPING_ERROR; |
| s->dma_length = 0; |
| |
| if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { |
| if (__map_sg_chunk(dev, start, size, &dma->dma_address, |
| dir, attrs, is_coherent) < 0) |
| goto bad_mapping; |
| |
| dma->dma_address += offset; |
| dma->dma_length = size - offset; |
| |
| size = offset = s->offset; |
| start = s; |
| dma = sg_next(dma); |
| count += 1; |
| } |
| size += s->length; |
| } |
| if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs, |
| is_coherent) < 0) |
| goto bad_mapping; |
| |
| dma->dma_address += offset; |
| dma->dma_length = size - offset; |
| |
| return count+1; |
| |
| bad_mapping: |
| for_each_sg(sg, s, count, i) |
| __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); |
| return 0; |
| } |
| |
| /** |
| * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA |
| * @dev: valid struct device pointer |
| * @sg: list of buffers |
| * @nents: number of buffers to map |
| * @dir: DMA transfer direction |
| * |
| * Map a set of i/o coherent buffers described by scatterlist in streaming |
| * mode for DMA. The scatter gather list elements are merged together (if |
| * possible) and tagged with the appropriate dma address and length. They are |
| * obtained via sg_dma_{address,length}. |
| */ |
| int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir, unsigned long attrs) |
| { |
| return __iommu_map_sg(dev, sg, nents, dir, attrs, true); |
| } |
| |
| /** |
| * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA |
| * @dev: valid struct device pointer |
| * @sg: list of buffers |
| * @nents: number of buffers to map |
| * @dir: DMA transfer direction |
| * |
| * Map a set of buffers described by scatterlist in streaming mode for DMA. |
| * The scatter gather list elements are merged together (if possible) and |
| * tagged with the appropriate dma address and length. They are obtained via |
| * sg_dma_{address,length}. |
| */ |
| int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir, unsigned long attrs) |
| { |
| return __iommu_map_sg(dev, sg, nents, dir, attrs, false); |
| } |
| |
| static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir, |
| unsigned long attrs, bool is_coherent) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| for_each_sg(sg, s, nents, i) { |
| if (sg_dma_len(s)) |
| __iommu_remove_mapping(dev, sg_dma_address(s), |
| sg_dma_len(s)); |
| if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) |
| __dma_page_dev_to_cpu(sg_page(s), s->offset, |
| s->length, dir); |
| } |
| } |
| |
| /** |
| * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg |
| * @dev: valid struct device pointer |
| * @sg: list of buffers |
| * @nents: number of buffers to unmap (same as was passed to dma_map_sg) |
| * @dir: DMA transfer direction (same as was passed to dma_map_sg) |
| * |
| * Unmap a set of streaming mode DMA translations. Again, CPU access |
| * rules concerning calls here are the same as for dma_unmap_single(). |
| */ |
| void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| __iommu_unmap_sg(dev, sg, nents, dir, attrs, true); |
| } |
| |
| /** |
| * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg |
| * @dev: valid struct device pointer |
| * @sg: list of buffers |
| * @nents: number of buffers to unmap (same as was passed to dma_map_sg) |
| * @dir: DMA transfer direction (same as was passed to dma_map_sg) |
| * |
| * Unmap a set of streaming mode DMA translations. Again, CPU access |
| * rules concerning calls here are the same as for dma_unmap_single(). |
| */ |
| void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, |
| enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| __iommu_unmap_sg(dev, sg, nents, dir, attrs, false); |
| } |
| |
| /** |
| * arm_iommu_sync_sg_for_cpu |
| * @dev: valid struct device pointer |
| * @sg: list of buffers |
| * @nents: number of buffers to map (returned from dma_map_sg) |
| * @dir: DMA transfer direction (same as was passed to dma_map_sg) |
| */ |
| void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| for_each_sg(sg, s, nents, i) |
| __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); |
| |
| } |
| |
| /** |
| * arm_iommu_sync_sg_for_device |
| * @dev: valid struct device pointer |
| * @sg: list of buffers |
| * @nents: number of buffers to map (returned from dma_map_sg) |
| * @dir: DMA transfer direction (same as was passed to dma_map_sg) |
| */ |
| void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, |
| int nents, enum dma_data_direction dir) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| for_each_sg(sg, s, nents, i) |
| __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); |
| } |
| |
| |
| /** |
| * arm_coherent_iommu_map_page |
| * @dev: valid struct device pointer |
| * @page: page that buffer resides in |
| * @offset: offset into page for start of buffer |
| * @size: size of buffer to map |
| * @dir: DMA transfer direction |
| * |
| * Coherent IOMMU aware version of arm_dma_map_page() |
| */ |
| static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| dma_addr_t dma_addr; |
| int ret, prot, len = PAGE_ALIGN(size + offset); |
| |
| dma_addr = __alloc_iova(mapping, len); |
| if (dma_addr == DMA_MAPPING_ERROR) |
| return dma_addr; |
| |
| prot = __dma_info_to_prot(dir, attrs); |
| |
| ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot); |
| if (ret < 0) |
| goto fail; |
| |
| return dma_addr + offset; |
| fail: |
| __free_iova(mapping, dma_addr, len); |
| return DMA_MAPPING_ERROR; |
| } |
| |
| /** |
| * arm_iommu_map_page |
| * @dev: valid struct device pointer |
| * @page: page that buffer resides in |
| * @offset: offset into page for start of buffer |
| * @size: size of buffer to map |
| * @dir: DMA transfer direction |
| * |
| * IOMMU aware version of arm_dma_map_page() |
| */ |
| static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) |
| __dma_page_cpu_to_dev(page, offset, size, dir); |
| |
| return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs); |
| } |
| |
| /** |
| * arm_coherent_iommu_unmap_page |
| * @dev: valid struct device pointer |
| * @handle: DMA address of buffer |
| * @size: size of buffer (same as passed to dma_map_page) |
| * @dir: DMA transfer direction (same as passed to dma_map_page) |
| * |
| * Coherent IOMMU aware version of arm_dma_unmap_page() |
| */ |
| static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle, |
| size_t size, enum dma_data_direction dir, unsigned long attrs) |
| { |
| struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| dma_addr_t iova = handle & PAGE_MASK; |
| int offset = handle & ~PAGE_MASK; |
| int len = PAGE_ALIGN(size + offset); |
| |
| if (!iova) |
| return; |
| |
| iommu_unmap(mapping->domain, iova, len); |
| __free_iova(mapping, iova, len); |
| } |
| |
| /** |
| * arm_iommu_unmap_page |
| * @dev: valid struct device pointer |
| * @handle: DMA address of buffer |
| * @size: size of buffer (same as passed to dma_map_page) |
| * @dir: DMA transfer direction (same as passed to dma_map_page) |
| * |
| * IOMMU aware version of arm_dma_unmap_page() |
| */ |
| static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, |
| size_t size, enum dma_data_direction dir, unsigned long attrs) |
| { |
| struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| dma_addr_t iova = handle & PAGE_MASK; |
| struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); |
| int offset = handle & ~PAGE_MASK; |
| int len = PAGE_ALIGN(size + offset); |
| |
| if (!iova) |
| return; |
| |
| if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) |
| __dma_page_dev_to_cpu(page, offset, size, dir); |
| |
| iommu_unmap(mapping->domain, iova, len); |
| __free_iova(mapping, iova, len); |
| } |
| |
| /** |
| * arm_iommu_map_resource - map a device resource for DMA |
| * @dev: valid struct device pointer |
| * @phys_addr: physical address of resource |
| * @size: size of resource to map |
| * @dir: DMA transfer direction |
| */ |
| static dma_addr_t arm_iommu_map_resource(struct device *dev, |
| phys_addr_t phys_addr, size_t size, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| dma_addr_t dma_addr; |
| int ret, prot; |
| phys_addr_t addr = phys_addr & PAGE_MASK; |
| unsigned int offset = phys_addr & ~PAGE_MASK; |
| size_t len = PAGE_ALIGN(size + offset); |
| |
| dma_addr = __alloc_iova(mapping, len); |
| if (dma_addr == DMA_MAPPING_ERROR) |
| return dma_addr; |
| |
| prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; |
| |
| ret = iommu_map(mapping->domain, dma_addr, addr, len, prot); |
| if (ret < 0) |
| goto fail; |
| |
| return dma_addr + offset; |
| fail: |
| __free_iova(mapping, dma_addr, len); |
| return DMA_MAPPING_ERROR; |
| } |
| |
| /** |
| * arm_iommu_unmap_resource - unmap a device DMA resource |
| * @dev: valid struct device pointer |
| * @dma_handle: DMA address to resource |
| * @size: size of resource to map |
| * @dir: DMA transfer direction |
| */ |
| static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, |
| size_t size, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| dma_addr_t iova = dma_handle & PAGE_MASK; |
| unsigned int offset = dma_handle & ~PAGE_MASK; |
| size_t len = PAGE_ALIGN(size + offset); |
| |
| if (!iova) |
| return; |
| |
| iommu_unmap(mapping->domain, iova, len); |
| __free_iova(mapping, iova, len); |
| } |
| |
| static void arm_iommu_sync_single_for_cpu(struct device *dev, |
| dma_addr_t handle, size_t size, enum dma_data_direction dir) |
| { |
| struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| dma_addr_t iova = handle & PAGE_MASK; |
| struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); |
| unsigned int offset = handle & ~PAGE_MASK; |
| |
| if (!iova) |
| return; |
| |
| __dma_page_dev_to_cpu(page, offset, size, dir); |
| } |
| |
| static void arm_iommu_sync_single_for_device(struct device *dev, |
| dma_addr_t handle, size_t size, enum dma_data_direction dir) |
| { |
| struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| dma_addr_t iova = handle & PAGE_MASK; |
| struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); |
| unsigned int offset = handle & ~PAGE_MASK; |
| |
| if (!iova) |
| return; |
| |
| __dma_page_cpu_to_dev(page, offset, size, dir); |
| } |
| |
| const struct dma_map_ops iommu_ops = { |
| .alloc = arm_iommu_alloc_attrs, |
| .free = arm_iommu_free_attrs, |
| .mmap = arm_iommu_mmap_attrs, |
| .get_sgtable = arm_iommu_get_sgtable, |
| |
| .map_page = arm_iommu_map_page, |
| .unmap_page = arm_iommu_unmap_page, |
| .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, |
| .sync_single_for_device = arm_iommu_sync_single_for_device, |
| |
| .map_sg = arm_iommu_map_sg, |
| .unmap_sg = arm_iommu_unmap_sg, |
| .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, |
| .sync_sg_for_device = arm_iommu_sync_sg_for_device, |
| |
| .map_resource = arm_iommu_map_resource, |
| .unmap_resource = arm_iommu_unmap_resource, |
| |
| .dma_supported = arm_dma_supported, |
| }; |
| |
| const struct dma_map_ops iommu_coherent_ops = { |
| .alloc = arm_coherent_iommu_alloc_attrs, |
| .free = arm_coherent_iommu_free_attrs, |
| .mmap = arm_coherent_iommu_mmap_attrs, |
| .get_sgtable = arm_iommu_get_sgtable, |
| |
| .map_page = arm_coherent_iommu_map_page, |
| .unmap_page = arm_coherent_iommu_unmap_page, |
| |
| .map_sg = arm_coherent_iommu_map_sg, |
| .unmap_sg = arm_coherent_iommu_unmap_sg, |
| |
| .map_resource = arm_iommu_map_resource, |
| .unmap_resource = arm_iommu_unmap_resource, |
| |
| .dma_supported = arm_dma_supported, |
| }; |
| |
| /** |
| * arm_iommu_create_mapping |
| * @bus: pointer to the bus holding the client device (for IOMMU calls) |
| * @base: start address of the valid IO address space |
| * @size: maximum size of the valid IO address space |
| * |
| * Creates a mapping structure which holds information about used/unused |
| * IO address ranges, which is required to perform memory allocation and |
| * mapping with IOMMU aware functions. |
| * |
| * The client device need to be attached to the mapping with |
| * arm_iommu_attach_device function. |
| */ |
| struct dma_iommu_mapping * |
| arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size) |
| { |
| unsigned int bits = size >> PAGE_SHIFT; |
| unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); |
| struct dma_iommu_mapping *mapping; |
| int extensions = 1; |
| int err = -ENOMEM; |
| |
| /* currently only 32-bit DMA address space is supported */ |
| if (size > DMA_BIT_MASK(32) + 1) |
| return ERR_PTR(-ERANGE); |
| |
| if (!bitmap_size) |
| return ERR_PTR(-EINVAL); |
| |
| if (bitmap_size > PAGE_SIZE) { |
| extensions = bitmap_size / PAGE_SIZE; |
| bitmap_size = PAGE_SIZE; |
| } |
| |
| mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); |
| if (!mapping) |
| goto err; |
| |
| mapping->bitmap_size = bitmap_size; |
| mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *), |
| GFP_KERNEL); |
| if (!mapping->bitmaps) |
| goto err2; |
| |
| mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); |
| if (!mapping->bitmaps[0]) |
| goto err3; |
| |
| mapping->nr_bitmaps = 1; |
| mapping->extensions = extensions; |
| mapping->base = base; |
| mapping->bits = BITS_PER_BYTE * bitmap_size; |
| |
| spin_lock_init(&mapping->lock); |
| |
| mapping->domain = iommu_domain_alloc(bus); |
| if (!mapping->domain) |
| goto err4; |
| |
| kref_init(&mapping->kref); |
| return mapping; |
| err4: |
| kfree(mapping->bitmaps[0]); |
| err3: |
| kfree(mapping->bitmaps); |
| err2: |
| kfree(mapping); |
| err: |
| return ERR_PTR(err); |
| } |
| EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); |
| |
| static void release_iommu_mapping(struct kref *kref) |
| { |
| int i; |
| struct dma_iommu_mapping *mapping = |
| container_of(kref, struct dma_iommu_mapping, kref); |
| |
| iommu_domain_free(mapping->domain); |
| for (i = 0; i < mapping->nr_bitmaps; i++) |
| kfree(mapping->bitmaps[i]); |
| kfree(mapping->bitmaps); |
| kfree(mapping); |
| } |
| |
| static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) |
| { |
| int next_bitmap; |
| |
| if (mapping->nr_bitmaps >= mapping->extensions) |
| return -EINVAL; |
| |
| next_bitmap = mapping->nr_bitmaps; |
| mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, |
| GFP_ATOMIC); |
| if (!mapping->bitmaps[next_bitmap]) |
| return -ENOMEM; |
| |
| mapping->nr_bitmaps++; |
| |
| return 0; |
| } |
| |
| void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) |
| { |
| if (mapping) |
| kref_put(&mapping->kref, release_iommu_mapping); |
| } |
| EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); |
| |
| static int __arm_iommu_attach_device(struct device *dev, |
| struct dma_iommu_mapping *mapping) |
| { |
| int err; |
| |
| err = iommu_attach_device(mapping->domain, dev); |
| if (err) |
| return err; |
| |
| kref_get(&mapping->kref); |
| to_dma_iommu_mapping(dev) = mapping; |
| |
| pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); |
| return 0; |
| } |
| |
| /** |
| * arm_iommu_attach_device |
| * @dev: valid struct device pointer |
| * @mapping: io address space mapping structure (returned from |
| * arm_iommu_create_mapping) |
| * |
| * Attaches specified io address space mapping to the provided device. |
| * This replaces the dma operations (dma_map_ops pointer) with the |
| * IOMMU aware version. |
| * |
| * More than one client might be attached to the same io address space |
| * mapping. |
| */ |
| int arm_iommu_attach_device(struct device *dev, |
| struct dma_iommu_mapping *mapping) |
| { |
| int err; |
| |
| err = __arm_iommu_attach_device(dev, mapping); |
| if (err) |
| return err; |
| |
| set_dma_ops(dev, &iommu_ops); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(arm_iommu_attach_device); |
| |
| /** |
| * arm_iommu_detach_device |
| * @dev: valid struct device pointer |
| * |
| * Detaches the provided device from a previously attached map. |
| * This overwrites the dma_ops pointer with appropriate non-IOMMU ops. |
| */ |
| void arm_iommu_detach_device(struct device *dev) |
| { |
| struct dma_iommu_mapping *mapping; |
| |
| mapping = to_dma_iommu_mapping(dev); |
| if (!mapping) { |
| dev_warn(dev, "Not attached\n"); |
| return; |
| } |
| |
| iommu_detach_device(mapping->domain, dev); |
| kref_put(&mapping->kref, release_iommu_mapping); |
| to_dma_iommu_mapping(dev) = NULL; |
| set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent)); |
| |
| pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); |
| } |
| EXPORT_SYMBOL_GPL(arm_iommu_detach_device); |
| |
| static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent) |
| { |
| return coherent ? &iommu_coherent_ops : &iommu_ops; |
| } |
| |
| static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, |
| const struct iommu_ops *iommu) |
| { |
| struct dma_iommu_mapping *mapping; |
| |
| if (!iommu) |
| return false; |
| |
| mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); |
| if (IS_ERR(mapping)) { |
| pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", |
| size, dev_name(dev)); |
| return false; |
| } |
| |
| if (__arm_iommu_attach_device(dev, mapping)) { |
| pr_warn("Failed to attached device %s to IOMMU_mapping\n", |
| dev_name(dev)); |
| arm_iommu_release_mapping(mapping); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void arm_teardown_iommu_dma_ops(struct device *dev) |
| { |
| struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); |
| |
| if (!mapping) |
| return; |
| |
| arm_iommu_detach_device(dev); |
| arm_iommu_release_mapping(mapping); |
| } |
| |
| #else |
| |
| static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size, |
| const struct iommu_ops *iommu) |
| { |
| return false; |
| } |
| |
| static void arm_teardown_iommu_dma_ops(struct device *dev) { } |
| |
| #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops |
| |
| #endif /* CONFIG_ARM_DMA_USE_IOMMU */ |
| |
| void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, |
| const struct iommu_ops *iommu, bool coherent) |
| { |
| const struct dma_map_ops *dma_ops; |
| |
| dev->archdata.dma_coherent = coherent; |
| |
| /* |
| * Don't override the dma_ops if they have already been set. Ideally |
| * this should be the only location where dma_ops are set, remove this |
| * check when all other callers of set_dma_ops will have disappeared. |
| */ |
| if (dev->dma_ops) |
| return; |
| |
| if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu)) |
| dma_ops = arm_get_iommu_dma_map_ops(coherent); |
| else |
| dma_ops = arm_get_dma_map_ops(coherent); |
| |
| set_dma_ops(dev, dma_ops); |
| |
| #ifdef CONFIG_XEN |
| if (xen_initial_domain()) { |
| dev->archdata.dev_dma_ops = dev->dma_ops; |
| dev->dma_ops = xen_dma_ops; |
| } |
| #endif |
| dev->archdata.dma_ops_setup = true; |
| } |
| |
| void arch_teardown_dma_ops(struct device *dev) |
| { |
| if (!dev->archdata.dma_ops_setup) |
| return; |
| |
| arm_teardown_iommu_dma_ops(dev); |
| /* Let arch_setup_dma_ops() start again from scratch upon re-probe */ |
| set_dma_ops(dev, NULL); |
| } |