| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2021 Google LLC |
| * Author: Fuad Tabba <tabba@google.com> |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include <linux/mm.h> |
| |
| #include <kvm/arm_hypercalls.h> |
| #include <kvm/arm_psci.h> |
| |
| #include <asm/kvm_emulate.h> |
| |
| #include <nvhe/alloc.h> |
| #include <nvhe/mem_protect.h> |
| #include <nvhe/memory.h> |
| #include <nvhe/mm.h> |
| #include <nvhe/pkvm.h> |
| #include <nvhe/trap_handler.h> |
| |
| /* Used by icache_is_vpipt(). */ |
| unsigned long __icache_flags; |
| |
| /* Used by kvm_get_vttbr(). */ |
| unsigned int kvm_arm_vmid_bits; |
| |
| unsigned int kvm_sve_max_vl; |
| |
| unsigned int kvm_host_sve_max_vl; |
| |
| /* |
| * The currently loaded hyp vCPU for each physical CPU. Used only when |
| * protected KVM is enabled, but for both protected and non-protected VMs. |
| */ |
| static DEFINE_PER_CPU(struct pkvm_hyp_vcpu *, loaded_hyp_vcpu); |
| |
| /* |
| * Host fp state for all cpus. This could include the host simd state, as well |
| * as the sve and sme states if supported. Written to when the guest accesses |
| * its own FPSIMD state, and read when the guest state is live and we need to |
| * switch back to the host. |
| * |
| * Only valid when (fp_state == FP_STATE_GUEST_OWNED) in the hyp vCPU structure. |
| */ |
| void *host_fp_state; |
| |
| static void *__get_host_fpsimd_bytes(void) |
| { |
| void *state = host_fp_state + |
| size_mul(pkvm_host_fp_state_size(), hyp_smp_processor_id()); |
| |
| if (state < host_fp_state) |
| return NULL; |
| |
| return state; |
| } |
| |
| struct user_fpsimd_state *get_host_fpsimd_state(struct kvm_vcpu *vcpu) |
| { |
| if (likely(!is_protected_kvm_enabled())) |
| return vcpu->arch.host_fpsimd_state; |
| |
| WARN_ON(system_supports_sve()); |
| return __get_host_fpsimd_bytes(); |
| } |
| |
| struct kvm_host_sve_state *get_host_sve_state(struct kvm_vcpu *vcpu) |
| { |
| WARN_ON(!system_supports_sve()); |
| WARN_ON(!is_protected_kvm_enabled()); |
| return __get_host_fpsimd_bytes(); |
| } |
| |
| /* |
| * Set trap register values based on features in ID_AA64PFR0. |
| */ |
| static void pvm_init_traps_aa64pfr0(struct kvm_vcpu *vcpu) |
| { |
| const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64PFR0_EL1); |
| u64 hcr_set = HCR_RW; |
| u64 hcr_clear = 0; |
| u64 cptr_set = 0; |
| |
| /* Protected KVM does not support AArch32 guests. */ |
| BUILD_BUG_ON(FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL0), |
| PVM_ID_AA64PFR0_RESTRICT_UNSIGNED) != ID_AA64PFR0_EL1_ELx_64BIT_ONLY); |
| BUILD_BUG_ON(FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL1), |
| PVM_ID_AA64PFR0_RESTRICT_UNSIGNED) != ID_AA64PFR0_EL1_ELx_64BIT_ONLY); |
| |
| /* |
| * Linux guests assume support for floating-point and Advanced SIMD. Do |
| * not change the trapping behavior for these from the KVM default. |
| */ |
| BUILD_BUG_ON(!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_FP), |
| PVM_ID_AA64PFR0_ALLOW)); |
| BUILD_BUG_ON(!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AdvSIMD), |
| PVM_ID_AA64PFR0_ALLOW)); |
| |
| /* Trap RAS unless all current versions are supported */ |
| if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_RAS), feature_ids) < |
| ID_AA64PFR0_EL1_RAS_V1P1) { |
| hcr_set |= HCR_TERR | HCR_TEA; |
| hcr_clear |= HCR_FIEN; |
| } |
| |
| /* Trap AMU */ |
| if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AMU), feature_ids)) { |
| hcr_clear |= HCR_AMVOFFEN; |
| cptr_set |= CPTR_EL2_TAM; |
| } |
| |
| /* Trap SVE */ |
| if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_SVE), feature_ids)) |
| cptr_set |= CPTR_EL2_TZ; |
| |
| vcpu->arch.hcr_el2 |= hcr_set; |
| vcpu->arch.hcr_el2 &= ~hcr_clear; |
| vcpu->arch.cptr_el2 |= cptr_set; |
| } |
| |
| /* |
| * Set trap register values based on features in ID_AA64PFR1. |
| */ |
| static void pvm_init_traps_aa64pfr1(struct kvm_vcpu *vcpu) |
| { |
| const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64PFR1_EL1); |
| u64 hcr_set = 0; |
| u64 hcr_clear = 0; |
| u64 cptr_set = 0; |
| u64 hfgxtr_mask = 0; |
| |
| /* Memory Tagging: Trap and Treat as Untagged if not supported. */ |
| if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE), feature_ids)) { |
| hcr_set |= HCR_TID5; |
| hcr_clear |= HCR_DCT | HCR_ATA; |
| } |
| |
| /* Trap SME */ |
| if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME), feature_ids)) { |
| cptr_set |= CPTR_EL2_TSM; |
| |
| if (cpus_have_final_cap(ARM64_SME)) { |
| hfgxtr_mask |= HFGxTR_EL2_nSMPRI_EL1_MASK | |
| HFGxTR_EL2_nTPIDR2_EL0_MASK; |
| } |
| } |
| |
| vcpu->arch.hcr_el2 |= hcr_set; |
| vcpu->arch.hcr_el2 &= ~hcr_clear; |
| vcpu->arch.cptr_el2 |= cptr_set; |
| vcpu->arch.hfgxtr_el2_mask |= hfgxtr_mask; |
| } |
| |
| /* |
| * Set trap register values based on features in ID_AA64DFR0. |
| */ |
| static void pvm_init_traps_aa64dfr0(struct kvm_vcpu *vcpu) |
| { |
| const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64DFR0_EL1); |
| u64 mdcr_set = 0; |
| u64 mdcr_clear = 0; |
| u64 cptr_set = 0; |
| |
| /* Trap/constrain PMU */ |
| if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), feature_ids)) { |
| mdcr_set |= MDCR_EL2_TPM | MDCR_EL2_TPMCR; |
| mdcr_clear |= MDCR_EL2_HPME | MDCR_EL2_MTPME | |
| MDCR_EL2_HPMN_MASK; |
| } |
| |
| /* Trap Debug */ |
| if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer), feature_ids)) |
| mdcr_set |= MDCR_EL2_TDRA | MDCR_EL2_TDA; |
| |
| /* Trap OS Double Lock */ |
| if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DoubleLock), feature_ids)) |
| mdcr_set |= MDCR_EL2_TDOSA; |
| |
| /* Trap SPE */ |
| if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMSVer), feature_ids)) { |
| mdcr_set |= MDCR_EL2_TPMS; |
| mdcr_clear |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT; |
| } |
| |
| /* Trap Trace Filter */ |
| if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_TraceFilt), feature_ids)) |
| mdcr_set |= MDCR_EL2_TTRF; |
| |
| /* Trap Trace */ |
| if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_TraceVer), feature_ids)) |
| cptr_set |= CPTR_EL2_TTA; |
| |
| vcpu->arch.mdcr_el2 |= mdcr_set; |
| vcpu->arch.mdcr_el2 &= ~mdcr_clear; |
| vcpu->arch.cptr_el2 |= cptr_set; |
| } |
| |
| /* |
| * Set trap register values based on features in ID_AA64MMFR0. |
| */ |
| static void pvm_init_traps_aa64mmfr0(struct kvm_vcpu *vcpu) |
| { |
| const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64MMFR0_EL1); |
| u64 mdcr_set = 0; |
| |
| /* Trap Debug Communications Channel registers */ |
| if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_EL1_FGT), feature_ids)) |
| mdcr_set |= MDCR_EL2_TDCC; |
| |
| vcpu->arch.mdcr_el2 |= mdcr_set; |
| } |
| |
| /* |
| * Set trap register values based on features in ID_AA64MMFR1. |
| */ |
| static void pvm_init_traps_aa64mmfr1(struct kvm_vcpu *vcpu) |
| { |
| const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64MMFR1_EL1); |
| u64 hcr_set = 0; |
| |
| /* Trap LOR */ |
| if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_LO), feature_ids)) |
| hcr_set |= HCR_TLOR; |
| |
| vcpu->arch.hcr_el2 |= hcr_set; |
| } |
| |
| /* |
| * Set baseline trap register values. |
| */ |
| static void pvm_init_trap_regs(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * Always trap: |
| * - Feature id registers: to control features exposed to guests |
| * - Implementation-defined features |
| */ |
| vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS | |
| HCR_TID3 | HCR_TACR | HCR_TIDCP | HCR_TID1; |
| |
| if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN)) { |
| /* route synchronous external abort exceptions to EL2 */ |
| vcpu->arch.hcr_el2 |= HCR_TEA; |
| /* trap error record accesses */ |
| vcpu->arch.hcr_el2 |= HCR_TERR; |
| } |
| |
| if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) |
| vcpu->arch.hcr_el2 |= HCR_FWB; |
| |
| if (cpus_have_const_cap(ARM64_MISMATCHED_CACHE_TYPE)) |
| vcpu->arch.hcr_el2 |= HCR_TID2; |
| } |
| |
| /* |
| * Initialize trap register values for protected VMs. |
| */ |
| static void pkvm_vcpu_init_traps(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| hyp_vcpu->vcpu.arch.cptr_el2 = CPTR_EL2_DEFAULT; |
| hyp_vcpu->vcpu.arch.mdcr_el2 = 0; |
| hyp_vcpu->vcpu.arch.hfgxtr_el2_mask = 0; |
| |
| if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu)) { |
| u64 hcr = READ_ONCE(hyp_vcpu->host_vcpu->arch.hcr_el2); |
| u64 hfgxtr_mask = |
| READ_ONCE(hyp_vcpu->host_vcpu->arch.hfgxtr_el2_mask); |
| |
| hyp_vcpu->vcpu.arch.hcr_el2 = HCR_GUEST_FLAGS | hcr; |
| hyp_vcpu->vcpu.arch.hfgxtr_el2_mask = hfgxtr_mask; |
| return; |
| } |
| |
| pvm_init_trap_regs(&hyp_vcpu->vcpu); |
| pvm_init_traps_aa64pfr0(&hyp_vcpu->vcpu); |
| pvm_init_traps_aa64pfr1(&hyp_vcpu->vcpu); |
| pvm_init_traps_aa64dfr0(&hyp_vcpu->vcpu); |
| pvm_init_traps_aa64mmfr0(&hyp_vcpu->vcpu); |
| pvm_init_traps_aa64mmfr1(&hyp_vcpu->vcpu); |
| } |
| |
| /* |
| * Start the VM table handle at the offset defined instead of at 0. |
| * Mainly for sanity checking and debugging. |
| */ |
| #define HANDLE_OFFSET 0x1000 |
| |
| static unsigned int vm_handle_to_idx(pkvm_handle_t handle) |
| { |
| return handle - HANDLE_OFFSET; |
| } |
| |
| static pkvm_handle_t idx_to_vm_handle(unsigned int idx) |
| { |
| return idx + HANDLE_OFFSET; |
| } |
| |
| /* |
| * Spinlock for protecting state related to the VM table. Protects writes |
| * to 'vm_table' and 'nr_table_entries' as well as reads and writes to |
| * 'last_hyp_vcpu_lookup'. |
| */ |
| static DEFINE_HYP_SPINLOCK(vm_table_lock); |
| |
| /* |
| * The table of VM entries for protected VMs in hyp. |
| * Allocated at hyp initialization and setup. |
| */ |
| static struct pkvm_hyp_vm **vm_table; |
| |
| void pkvm_hyp_vm_table_init(void *tbl) |
| { |
| WARN_ON(vm_table); |
| vm_table = tbl; |
| } |
| |
| static void *map_donated_memory_noclear(unsigned long host_va, size_t size) |
| { |
| void *va = (void *)kern_hyp_va(host_va); |
| |
| if (!PAGE_ALIGNED(va)) |
| return NULL; |
| |
| if (__pkvm_host_donate_hyp(hyp_virt_to_pfn(va), |
| PAGE_ALIGN(size) >> PAGE_SHIFT)) |
| return NULL; |
| |
| return va; |
| } |
| |
| static void *map_donated_memory(unsigned long host_va, size_t size) |
| { |
| void *va = map_donated_memory_noclear(host_va, size); |
| |
| if (va) |
| memset(va, 0, size); |
| |
| return va; |
| } |
| |
| static void __unmap_donated_memory(void *va, size_t size) |
| { |
| WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(va), |
| PAGE_ALIGN(size) >> PAGE_SHIFT)); |
| } |
| |
| static void unmap_donated_memory(void *va, size_t size) |
| { |
| if (!va) |
| return; |
| |
| memset(va, 0, size); |
| __unmap_donated_memory(va, size); |
| } |
| |
| static void unmap_donated_memory_noclear(void *va, size_t size) |
| { |
| if (!va) |
| return; |
| |
| __unmap_donated_memory(va, size); |
| } |
| |
| static void |
| teardown_donated_memory(struct kvm_hyp_memcache *mc, void *addr, size_t size) |
| { |
| void *start; |
| |
| size = PAGE_ALIGN(size); |
| memset(addr, 0, size); |
| |
| for (start = addr; start < addr + size; start += PAGE_SIZE) |
| push_hyp_memcache(mc, start, hyp_virt_to_phys); |
| |
| unmap_donated_memory_noclear(addr, size); |
| } |
| |
| void pkvm_hyp_host_fp_init(void *host_fp) |
| { |
| WARN_ON(host_fp_state); |
| host_fp_state = host_fp; |
| } |
| |
| /* |
| * Return the hyp vm structure corresponding to the handle. |
| */ |
| static struct pkvm_hyp_vm *get_vm_by_handle(pkvm_handle_t handle) |
| { |
| unsigned int idx = vm_handle_to_idx(handle); |
| |
| if (unlikely(idx >= KVM_MAX_PVMS)) |
| return NULL; |
| |
| return vm_table[idx]; |
| } |
| |
| int __pkvm_reclaim_dying_guest_page(pkvm_handle_t handle, u64 pfn, u64 ipa) |
| { |
| struct pkvm_hyp_vm *hyp_vm; |
| int ret = -EINVAL; |
| |
| hyp_spin_lock(&vm_table_lock); |
| hyp_vm = get_vm_by_handle(handle); |
| if (!hyp_vm || !hyp_vm->is_dying) |
| goto unlock; |
| |
| ret = __pkvm_host_reclaim_page(hyp_vm, pfn, ipa); |
| if (ret) |
| goto unlock; |
| |
| drain_hyp_pool(hyp_vm, &hyp_vm->host_kvm->arch.pkvm.teardown_mc); |
| unlock: |
| hyp_spin_unlock(&vm_table_lock); |
| |
| return ret; |
| } |
| |
| struct pkvm_hyp_vcpu *pkvm_load_hyp_vcpu(pkvm_handle_t handle, |
| unsigned int vcpu_idx) |
| { |
| struct pkvm_hyp_vcpu *hyp_vcpu = NULL; |
| struct pkvm_hyp_vm *hyp_vm; |
| |
| /* Cannot load a new vcpu without putting the old one first. */ |
| if (__this_cpu_read(loaded_hyp_vcpu)) |
| return NULL; |
| |
| hyp_spin_lock(&vm_table_lock); |
| hyp_vm = get_vm_by_handle(handle); |
| if (!hyp_vm || hyp_vm->is_dying || hyp_vm->nr_vcpus <= vcpu_idx) |
| goto unlock; |
| |
| hyp_vcpu = hyp_vm->vcpus[vcpu_idx]; |
| |
| /* Ensure vcpu isn't loaded on more than one cpu simultaneously. */ |
| if (unlikely(hyp_vcpu->loaded_hyp_vcpu)) { |
| hyp_vcpu = NULL; |
| goto unlock; |
| } |
| |
| hyp_vcpu->loaded_hyp_vcpu = this_cpu_ptr(&loaded_hyp_vcpu); |
| BUG_ON(hyp_vm->refcount == USHRT_MAX); |
| hyp_vm->refcount++; |
| unlock: |
| hyp_spin_unlock(&vm_table_lock); |
| |
| if (hyp_vcpu) |
| __this_cpu_write(loaded_hyp_vcpu, hyp_vcpu); |
| return hyp_vcpu; |
| } |
| |
| void pkvm_put_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct pkvm_hyp_vm *hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu); |
| |
| hyp_spin_lock(&vm_table_lock); |
| hyp_vcpu->loaded_hyp_vcpu = NULL; |
| __this_cpu_write(loaded_hyp_vcpu, NULL); |
| hyp_vm->refcount--; |
| hyp_spin_unlock(&vm_table_lock); |
| } |
| |
| struct pkvm_hyp_vcpu *pkvm_get_loaded_hyp_vcpu(void) |
| { |
| return __this_cpu_read(loaded_hyp_vcpu); |
| } |
| |
| static void pkvm_vcpu_init_features_from_host(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; |
| DECLARE_BITMAP(allowed_features, KVM_VCPU_MAX_FEATURES); |
| |
| /* No restrictions for non-protected VMs. */ |
| if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu)) { |
| bitmap_copy(hyp_vcpu->vcpu.arch.features, |
| host_vcpu->arch.features, |
| KVM_VCPU_MAX_FEATURES); |
| return; |
| } |
| |
| bitmap_zero(allowed_features, KVM_VCPU_MAX_FEATURES); |
| |
| /* |
| * For protected vms, always allow: |
| * - CPU starting in poweroff state |
| * - PSCI v0.2 |
| */ |
| set_bit(KVM_ARM_VCPU_POWER_OFF, allowed_features); |
| set_bit(KVM_ARM_VCPU_PSCI_0_2, allowed_features); |
| |
| /* |
| * Check if remaining features are allowed: |
| * - Performance Monitoring |
| * - Scalable Vectors |
| * - Pointer Authentication |
| */ |
| if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), PVM_ID_AA64DFR0_ALLOW)) |
| set_bit(KVM_ARM_VCPU_PMU_V3, allowed_features); |
| |
| if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_SVE), PVM_ID_AA64PFR0_RESTRICT_UNSIGNED)) |
| set_bit(KVM_ARM_VCPU_SVE, allowed_features); |
| |
| if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API), PVM_ID_AA64ISAR1_ALLOW) && |
| FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA), PVM_ID_AA64ISAR1_ALLOW)) |
| set_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, allowed_features); |
| |
| if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI), PVM_ID_AA64ISAR1_ALLOW) && |
| FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA), PVM_ID_AA64ISAR1_ALLOW)) |
| set_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, allowed_features); |
| |
| bitmap_and(hyp_vcpu->vcpu.arch.features, host_vcpu->arch.features, |
| allowed_features, KVM_VCPU_MAX_FEATURES); |
| |
| /* |
| * Now sanitise the configuration flags that we have inherited |
| * from the host, as they may refer to features that protected |
| * mode doesn't support. |
| */ |
| if (!vcpu_has_feature(&hyp_vcpu->vcpu,(KVM_ARM_VCPU_SVE))) { |
| vcpu_clear_flag(&hyp_vcpu->vcpu, GUEST_HAS_SVE); |
| vcpu_clear_flag(&hyp_vcpu->vcpu, VCPU_SVE_FINALIZED); |
| } |
| |
| if (!vcpu_has_feature(&hyp_vcpu->vcpu, KVM_ARM_VCPU_PTRAUTH_ADDRESS) || |
| !vcpu_has_feature(&hyp_vcpu->vcpu, KVM_ARM_VCPU_PTRAUTH_GENERIC)) |
| vcpu_clear_flag(&hyp_vcpu->vcpu, GUEST_HAS_PTRAUTH); |
| } |
| |
| static int pkvm_vcpu_init_ptrauth(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu; |
| int ret = 0; |
| |
| if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) || |
| test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) |
| ret = kvm_vcpu_enable_ptrauth(vcpu); |
| |
| return ret; |
| } |
| |
| static int pkvm_vcpu_init_psci(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct vcpu_reset_state *reset_state = &hyp_vcpu->vcpu.arch.reset_state; |
| struct pkvm_hyp_vm *hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu); |
| |
| if (test_bit(KVM_ARM_VCPU_POWER_OFF, hyp_vcpu->vcpu.arch.features)) { |
| reset_state->reset = false; |
| hyp_vcpu->power_state = PSCI_0_2_AFFINITY_LEVEL_OFF; |
| } else if (pkvm_hyp_vm_has_pvmfw(hyp_vm)) { |
| if (hyp_vm->pvmfw_entry_vcpu) |
| return -EINVAL; |
| |
| hyp_vm->pvmfw_entry_vcpu = hyp_vcpu; |
| reset_state->reset = true; |
| hyp_vcpu->power_state = PSCI_0_2_AFFINITY_LEVEL_ON_PENDING; |
| } else { |
| struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; |
| |
| reset_state->pc = READ_ONCE(host_vcpu->arch.ctxt.regs.pc); |
| reset_state->r0 = READ_ONCE(host_vcpu->arch.ctxt.regs.regs[0]); |
| reset_state->reset = true; |
| hyp_vcpu->power_state = PSCI_0_2_AFFINITY_LEVEL_ON_PENDING; |
| } |
| |
| return 0; |
| } |
| |
| static void unpin_host_vcpu(struct kvm_vcpu *host_vcpu) |
| { |
| if (host_vcpu) |
| hyp_unpin_shared_mem(host_vcpu, host_vcpu + 1); |
| } |
| |
| static void unpin_host_sve_state(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| void *sve_state; |
| |
| if (!test_bit(KVM_ARM_VCPU_SVE, hyp_vcpu->vcpu.arch.features)) |
| return; |
| |
| sve_state = kern_hyp_va(hyp_vcpu->vcpu.arch.sve_state); |
| hyp_unpin_shared_mem(sve_state, |
| sve_state + vcpu_sve_state_size(&hyp_vcpu->vcpu)); |
| } |
| |
| static void teardown_sve_state(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| void *sve_state = hyp_vcpu->vcpu.arch.sve_state; |
| |
| if (sve_state) { |
| struct kvm_hyp_memcache *vcpu_mc; |
| |
| vcpu_mc = &hyp_vcpu->vcpu.arch.pkvm_memcache; |
| teardown_donated_memory(vcpu_mc, sve_state, |
| vcpu_sve_state_size(&hyp_vcpu->vcpu)); |
| } |
| } |
| |
| static void unpin_host_vcpus(struct pkvm_hyp_vcpu *hyp_vcpus[], |
| unsigned int nr_vcpus) |
| { |
| int i; |
| |
| for (i = 0; i < nr_vcpus; i++) { |
| struct pkvm_hyp_vcpu *hyp_vcpu = hyp_vcpus[i]; |
| |
| unpin_host_vcpu(hyp_vcpu->host_vcpu); |
| |
| if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu)) |
| unpin_host_sve_state(hyp_vcpu); |
| } |
| } |
| |
| static size_t pkvm_get_last_ran_size(void) |
| { |
| return array_size(hyp_nr_cpus, sizeof(int)); |
| } |
| |
| static void init_pkvm_hyp_vm(struct kvm *host_kvm, struct pkvm_hyp_vm *hyp_vm, |
| int *last_ran, unsigned int nr_vcpus) |
| { |
| u64 pvmfw_load_addr = PVMFW_INVALID_LOAD_ADDR; |
| |
| hyp_vm->host_kvm = host_kvm; |
| hyp_vm->kvm.created_vcpus = nr_vcpus; |
| hyp_vm->kvm.arch.vtcr = host_mmu.arch.vtcr; |
| hyp_vm->kvm.arch.pkvm.enabled = READ_ONCE(host_kvm->arch.pkvm.enabled); |
| |
| if (hyp_vm->kvm.arch.pkvm.enabled) |
| pvmfw_load_addr = READ_ONCE(host_kvm->arch.pkvm.pvmfw_load_addr); |
| hyp_vm->kvm.arch.pkvm.pvmfw_load_addr = pvmfw_load_addr; |
| |
| hyp_vm->kvm.arch.mmu.last_vcpu_ran = (int __percpu *)last_ran; |
| hyp_vm->refcount = 0; |
| memset(last_ran, -1, pkvm_get_last_ran_size()); |
| } |
| |
| static int init_pkvm_hyp_vcpu_sve(struct pkvm_hyp_vcpu *hyp_vcpu, struct kvm_vcpu *host_vcpu) |
| { |
| void *sve_state = READ_ONCE(host_vcpu->arch.sve_state); |
| unsigned int sve_max_vl = READ_ONCE(host_vcpu->arch.sve_max_vl); |
| size_t sve_state_size = _vcpu_sve_state_size(sve_max_vl); |
| |
| if (!sve_state || !sve_state_size) |
| goto err; |
| |
| if (sve_max_vl > kvm_sve_max_vl) |
| goto err; |
| |
| if (pkvm_hyp_vcpu_is_protected(hyp_vcpu)) { |
| sve_state = map_donated_memory((unsigned long) sve_state, |
| sve_state_size); |
| if (!sve_state) |
| goto err; |
| } else { |
| if (!hyp_pin_shared_mem(sve_state, sve_state + sve_state_size)) |
| goto err; |
| } |
| |
| hyp_vcpu->vcpu.arch.sve_state = kern_hyp_va(sve_state); |
| hyp_vcpu->vcpu.arch.sve_max_vl = sve_max_vl; |
| |
| return 0; |
| |
| err: |
| clear_bit(KVM_ARM_VCPU_SVE, hyp_vcpu->vcpu.arch.features); |
| return -EINVAL; |
| } |
| |
| static int init_pkvm_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu, |
| struct pkvm_hyp_vm *hyp_vm, |
| struct kvm_vcpu *host_vcpu, |
| unsigned int vcpu_idx) |
| { |
| int ret = 0; |
| |
| if (hyp_pin_shared_mem(host_vcpu, host_vcpu + 1)) |
| return -EBUSY; |
| |
| if (host_vcpu->vcpu_idx != vcpu_idx) { |
| ret = -EINVAL; |
| goto done; |
| } |
| |
| hyp_vcpu->host_vcpu = host_vcpu; |
| |
| hyp_vcpu->vcpu.kvm = &hyp_vm->kvm; |
| hyp_vcpu->vcpu.vcpu_id = READ_ONCE(host_vcpu->vcpu_id); |
| hyp_vcpu->vcpu.vcpu_idx = vcpu_idx; |
| |
| hyp_vcpu->vcpu.arch.hw_mmu = &hyp_vm->kvm.arch.mmu; |
| hyp_vcpu->vcpu.arch.cflags = READ_ONCE(host_vcpu->arch.cflags); |
| hyp_vcpu->vcpu.arch.mp_state.mp_state = KVM_MP_STATE_STOPPED; |
| hyp_vcpu->vcpu.arch.debug_ptr = &host_vcpu->arch.vcpu_debug_state; |
| |
| pkvm_vcpu_init_features_from_host(hyp_vcpu); |
| |
| ret = pkvm_vcpu_init_ptrauth(hyp_vcpu); |
| if (ret) |
| goto done; |
| |
| ret = pkvm_vcpu_init_psci(hyp_vcpu); |
| if (ret) |
| goto done; |
| |
| if (test_bit(KVM_ARM_VCPU_SVE, hyp_vcpu->vcpu.arch.features)) { |
| ret = init_pkvm_hyp_vcpu_sve(hyp_vcpu, host_vcpu); |
| if (ret) |
| goto done; |
| } |
| |
| pkvm_vcpu_init_traps(hyp_vcpu); |
| kvm_reset_pvm_sys_regs(&hyp_vcpu->vcpu); |
| done: |
| if (ret) |
| unpin_host_vcpu(host_vcpu); |
| return ret; |
| } |
| |
| static int find_free_vm_table_entry(struct kvm *host_kvm) |
| { |
| int i; |
| |
| for (i = 0; i < KVM_MAX_PVMS; ++i) { |
| if (!vm_table[i]) |
| return i; |
| } |
| |
| return -ENOMEM; |
| } |
| |
| /* |
| * Allocate a VM table entry and insert a pointer to the new vm. |
| * |
| * Return a unique handle to the protected VM on success, |
| * negative error code on failure. |
| */ |
| static pkvm_handle_t insert_vm_table_entry(struct kvm *host_kvm, |
| struct pkvm_hyp_vm *hyp_vm) |
| { |
| struct kvm_s2_mmu *mmu = &hyp_vm->kvm.arch.mmu; |
| int idx; |
| |
| hyp_assert_lock_held(&vm_table_lock); |
| |
| /* |
| * Initializing protected state might have failed, yet a malicious |
| * host could trigger this function. Thus, ensure that 'vm_table' |
| * exists. |
| */ |
| if (unlikely(!vm_table)) |
| return -EINVAL; |
| |
| idx = find_free_vm_table_entry(host_kvm); |
| if (idx < 0) |
| return idx; |
| |
| hyp_vm->kvm.arch.pkvm.handle = idx_to_vm_handle(idx); |
| |
| /* VMID 0 is reserved for the host */ |
| atomic64_set(&mmu->vmid.id, idx + 1); |
| |
| mmu->arch = &hyp_vm->kvm.arch; |
| mmu->pgt = &hyp_vm->pgt; |
| |
| vm_table[idx] = hyp_vm; |
| return hyp_vm->kvm.arch.pkvm.handle; |
| } |
| |
| /* |
| * Deallocate and remove the VM table entry corresponding to the handle. |
| */ |
| static void remove_vm_table_entry(pkvm_handle_t handle) |
| { |
| hyp_assert_lock_held(&vm_table_lock); |
| vm_table[vm_handle_to_idx(handle)] = NULL; |
| } |
| |
| static size_t pkvm_get_hyp_vm_size(unsigned int nr_vcpus) |
| { |
| return size_add(sizeof(struct pkvm_hyp_vm), |
| size_mul(sizeof(struct pkvm_hyp_vcpu *), nr_vcpus)); |
| } |
| |
| /* |
| * Initialize the hypervisor copy of the protected VM state using the |
| * memory donated by the host. |
| * |
| * Unmaps the donated memory from the host at stage 2. |
| * |
| * host_kvm: A pointer to the host's struct kvm. |
| * pgd_hva: The host va of the area being donated for the stage-2 PGD for |
| * the VM. Must be page aligned. Its size is implied by the VM's |
| * VTCR. |
| * Return a unique handle to the protected VM on success, |
| * negative error code on failure. |
| */ |
| int __pkvm_init_vm(struct kvm *host_kvm, unsigned long pgd_hva) |
| { |
| struct pkvm_hyp_vm *hyp_vm = NULL; |
| int *last_ran = NULL; |
| unsigned int nr_vcpus; |
| void *pgd = NULL; |
| size_t pgd_size; |
| int ret; |
| |
| ret = hyp_pin_shared_mem(host_kvm, host_kvm + 1); |
| if (ret) |
| return ret; |
| |
| nr_vcpus = READ_ONCE(host_kvm->created_vcpus); |
| if (nr_vcpus < 1) { |
| ret = -EINVAL; |
| goto err_unpin_kvm; |
| } |
| |
| hyp_vm = hyp_zalloc(pkvm_get_hyp_vm_size(nr_vcpus)); |
| if (!hyp_vm) { |
| ret = hyp_alloc_errno(); |
| goto err_unpin_kvm; |
| } |
| |
| last_ran = hyp_alloc(pkvm_get_last_ran_size()); |
| if (!last_ran) { |
| ret = hyp_alloc_errno(); |
| goto err_free_vm; |
| } |
| |
| ret = -ENOMEM; |
| pgd_size = kvm_pgtable_stage2_pgd_size(host_mmu.arch.vtcr); |
| pgd = map_donated_memory_noclear(pgd_hva, pgd_size); |
| if (!pgd) |
| goto err_free_last_ran; |
| |
| init_pkvm_hyp_vm(host_kvm, hyp_vm, last_ran, nr_vcpus); |
| |
| hyp_spin_lock(&vm_table_lock); |
| ret = insert_vm_table_entry(host_kvm, hyp_vm); |
| if (ret < 0) |
| goto err_unlock; |
| |
| ret = kvm_guest_prepare_stage2(hyp_vm, pgd); |
| if (ret) |
| goto err_remove_vm_table_entry; |
| hyp_spin_unlock(&vm_table_lock); |
| |
| return hyp_vm->kvm.arch.pkvm.handle; |
| |
| err_remove_vm_table_entry: |
| remove_vm_table_entry(hyp_vm->kvm.arch.pkvm.handle); |
| err_unlock: |
| hyp_spin_unlock(&vm_table_lock); |
| unmap_donated_memory(pgd, pgd_size); |
| err_free_last_ran: |
| hyp_free(last_ran); |
| err_free_vm: |
| hyp_free(hyp_vm); |
| err_unpin_kvm: |
| hyp_unpin_shared_mem(host_kvm, host_kvm + 1); |
| return ret; |
| } |
| |
| /* |
| * Initialize the hypervisor copy of the protected vCPU state using the |
| * memory donated by the host. |
| * |
| * handle: The handle for the protected vm. |
| * host_vcpu: A pointer to the corresponding host vcpu. |
| * |
| * Return 0 on success, negative error code on failure. |
| */ |
| int __pkvm_init_vcpu(pkvm_handle_t handle, struct kvm_vcpu *host_vcpu) |
| { |
| struct pkvm_hyp_vcpu *hyp_vcpu; |
| struct pkvm_hyp_vm *hyp_vm; |
| unsigned int idx; |
| int ret; |
| |
| hyp_vcpu = hyp_zalloc(sizeof(*hyp_vcpu)); |
| if (!hyp_vcpu) |
| return hyp_alloc_errno(); |
| |
| hyp_spin_lock(&vm_table_lock); |
| |
| hyp_vm = get_vm_by_handle(handle); |
| if (!hyp_vm) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| idx = hyp_vm->nr_vcpus; |
| if (idx >= hyp_vm->kvm.created_vcpus) { |
| ret = -EINVAL; |
| goto unlock; |
| } |
| |
| ret = init_pkvm_hyp_vcpu(hyp_vcpu, hyp_vm, host_vcpu, idx); |
| if (ret) |
| goto unlock; |
| |
| hyp_vm->vcpus[idx] = hyp_vcpu; |
| hyp_vm->nr_vcpus++; |
| unlock: |
| hyp_spin_unlock(&vm_table_lock); |
| |
| if (ret) |
| hyp_free(hyp_vcpu); |
| |
| return ret; |
| } |
| |
| int __pkvm_start_teardown_vm(pkvm_handle_t handle) |
| { |
| struct pkvm_hyp_vm *hyp_vm; |
| int ret = 0; |
| |
| hyp_spin_lock(&vm_table_lock); |
| hyp_vm = get_vm_by_handle(handle); |
| if (!hyp_vm) { |
| ret = -ENOENT; |
| goto unlock; |
| } else if (WARN_ON(hyp_vm->refcount)) { |
| ret = -EBUSY; |
| goto unlock; |
| } else if (hyp_vm->is_dying) { |
| ret = -EINVAL; |
| goto unlock; |
| } |
| |
| hyp_vm->is_dying = true; |
| |
| unlock: |
| hyp_spin_unlock(&vm_table_lock); |
| |
| return ret; |
| } |
| |
| int __pkvm_finalize_teardown_vm(pkvm_handle_t handle) |
| { |
| struct kvm_hyp_memcache *mc; |
| struct pkvm_hyp_vm *hyp_vm; |
| struct kvm *host_kvm; |
| unsigned int idx; |
| size_t vm_size; |
| int err; |
| |
| hyp_spin_lock(&vm_table_lock); |
| |
| hyp_vm = get_vm_by_handle(handle); |
| if (!hyp_vm) { |
| err = -ENOENT; |
| goto err_unlock; |
| } else if (!hyp_vm->is_dying) { |
| err = -EBUSY; |
| goto err_unlock; |
| } |
| |
| host_kvm = hyp_vm->host_kvm; |
| |
| /* Ensure the VMID is clean before it can be reallocated */ |
| __kvm_tlb_flush_vmid(&hyp_vm->kvm.arch.mmu); |
| remove_vm_table_entry(handle); |
| hyp_spin_unlock(&vm_table_lock); |
| |
| mc = &host_kvm->arch.pkvm.teardown_mc; |
| destroy_hyp_vm_pgt(hyp_vm); |
| drain_hyp_pool(hyp_vm, mc); |
| unpin_host_vcpus(hyp_vm->vcpus, hyp_vm->nr_vcpus); |
| |
| /* Push the metadata pages to the teardown memcache */ |
| for (idx = 0; idx < hyp_vm->nr_vcpus; ++idx) { |
| struct pkvm_hyp_vcpu *hyp_vcpu = hyp_vm->vcpus[idx]; |
| struct kvm_hyp_memcache *vcpu_mc; |
| void *addr; |
| |
| vcpu_mc = &hyp_vcpu->vcpu.arch.pkvm_memcache; |
| while (vcpu_mc->nr_pages) { |
| addr = pop_hyp_memcache(vcpu_mc, hyp_phys_to_virt); |
| push_hyp_memcache(mc, addr, hyp_virt_to_phys); |
| unmap_donated_memory_noclear(addr, PAGE_SIZE); |
| } |
| |
| if (pkvm_hyp_vcpu_is_protected(hyp_vcpu)) |
| teardown_sve_state(hyp_vcpu); |
| |
| hyp_free(hyp_vcpu); |
| } |
| |
| hyp_free(hyp_vm->kvm.arch.mmu.last_vcpu_ran); |
| vm_size = pkvm_get_hyp_vm_size(hyp_vm->kvm.created_vcpus); |
| hyp_free(hyp_vm); |
| hyp_unpin_shared_mem(host_kvm, host_kvm + 1); |
| return 0; |
| |
| err_unlock: |
| hyp_spin_unlock(&vm_table_lock); |
| return err; |
| } |
| |
| int pkvm_load_pvmfw_pages(struct pkvm_hyp_vm *vm, u64 ipa, phys_addr_t phys, |
| u64 size) |
| { |
| struct kvm_protected_vm *pkvm = &vm->kvm.arch.pkvm; |
| u64 npages, offset = ipa - pkvm->pvmfw_load_addr; |
| void *src = hyp_phys_to_virt(pvmfw_base) + offset; |
| |
| if (offset >= pvmfw_size) |
| return -EINVAL; |
| |
| size = min(size, pvmfw_size - offset); |
| if (!PAGE_ALIGNED(size) || !PAGE_ALIGNED(src)) |
| return -EINVAL; |
| |
| npages = size >> PAGE_SHIFT; |
| while (npages--) { |
| /* |
| * No need for cache maintenance here, as the pgtable code will |
| * take care of this when installing the pte in the guest's |
| * stage-2 page table. |
| */ |
| memcpy(hyp_fixmap_map(phys), src, PAGE_SIZE); |
| hyp_fixmap_unmap(); |
| |
| src += PAGE_SIZE; |
| phys += PAGE_SIZE; |
| } |
| |
| return 0; |
| } |
| |
| void pkvm_poison_pvmfw_pages(void) |
| { |
| u64 npages = pvmfw_size >> PAGE_SHIFT; |
| phys_addr_t addr = pvmfw_base; |
| |
| while (npages--) { |
| hyp_poison_page(addr); |
| addr += PAGE_SIZE; |
| } |
| } |
| |
| /* |
| * This function sets the registers on the vcpu to their architecturally defined |
| * reset values. |
| * |
| * Note: Can only be called by the vcpu on itself, after it has been turned on. |
| */ |
| void pkvm_reset_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu; |
| struct vcpu_reset_state *reset_state = &vcpu->arch.reset_state; |
| struct pkvm_hyp_vm *hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu); |
| |
| WARN_ON(!reset_state->reset); |
| |
| pkvm_vcpu_init_ptrauth(hyp_vcpu); |
| kvm_reset_vcpu_core(vcpu); |
| kvm_reset_pvm_sys_regs(vcpu); |
| |
| /* Must be done after reseting sys registers. */ |
| kvm_reset_vcpu_psci(vcpu, reset_state); |
| if (hyp_vm->pvmfw_entry_vcpu == hyp_vcpu) { |
| struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; |
| u64 entry = hyp_vm->kvm.arch.pkvm.pvmfw_load_addr; |
| int i; |
| |
| /* X0 - X14 provided by the VMM (preserved) */ |
| for (i = 0; i <= 14; ++i) { |
| u64 val = vcpu_get_reg(host_vcpu, i); |
| |
| vcpu_set_reg(&hyp_vcpu->vcpu, i, val); |
| } |
| |
| /* X15: Boot protocol version */ |
| vcpu_set_reg(&hyp_vcpu->vcpu, 15, 0); |
| |
| /* PC: IPA of pvmfw base */ |
| *vcpu_pc(&hyp_vcpu->vcpu) = entry; |
| hyp_vm->pvmfw_entry_vcpu = NULL; |
| |
| /* Auto enroll MMIO guard */ |
| set_bit(KVM_ARCH_FLAG_MMIO_GUARD, &hyp_vm->kvm.arch.flags); |
| } |
| |
| if (pkvm_hyp_vcpu_is_protected(hyp_vcpu) && vcpu_has_sve(vcpu)) |
| memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu)); |
| |
| reset_state->reset = false; |
| |
| hyp_vcpu->exit_code = 0; |
| |
| WARN_ON(hyp_vcpu->power_state != PSCI_0_2_AFFINITY_LEVEL_ON_PENDING); |
| WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); |
| WRITE_ONCE(hyp_vcpu->power_state, PSCI_0_2_AFFINITY_LEVEL_ON); |
| } |
| |
| struct pkvm_hyp_vcpu *pkvm_mpidr_to_hyp_vcpu(struct pkvm_hyp_vm *hyp_vm, |
| u64 mpidr) |
| { |
| int i; |
| |
| mpidr &= MPIDR_HWID_BITMASK; |
| |
| for (i = 0; i < hyp_vm->nr_vcpus; i++) { |
| struct pkvm_hyp_vcpu *hyp_vcpu = hyp_vm->vcpus[i]; |
| |
| if (mpidr == kvm_vcpu_get_mpidr_aff(&hyp_vcpu->vcpu)) |
| return hyp_vcpu; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Returns true if the hypervisor has handled the PSCI call, and control should |
| * go back to the guest, or false if the host needs to do some additional work |
| * (i.e., wake up the vcpu). |
| */ |
| static bool pvm_psci_vcpu_on(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct pkvm_hyp_vm *hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu); |
| struct vcpu_reset_state *reset_state; |
| struct pkvm_hyp_vcpu *target; |
| unsigned long cpu_id, ret; |
| int power_state; |
| |
| cpu_id = smccc_get_arg1(&hyp_vcpu->vcpu); |
| if (!kvm_psci_valid_affinity(&hyp_vcpu->vcpu, cpu_id)) { |
| ret = PSCI_RET_INVALID_PARAMS; |
| goto error; |
| } |
| |
| target = pkvm_mpidr_to_hyp_vcpu(hyp_vm, cpu_id); |
| if (!target) { |
| ret = PSCI_RET_INVALID_PARAMS; |
| goto error; |
| } |
| |
| /* |
| * Make sure the requested vcpu is not on to begin with. |
| * Atomic to avoid race between vcpus trying to power on the same vcpu. |
| */ |
| power_state = cmpxchg(&target->power_state, |
| PSCI_0_2_AFFINITY_LEVEL_OFF, |
| PSCI_0_2_AFFINITY_LEVEL_ON_PENDING); |
| switch (power_state) { |
| case PSCI_0_2_AFFINITY_LEVEL_ON_PENDING: |
| ret = PSCI_RET_ON_PENDING; |
| goto error; |
| case PSCI_0_2_AFFINITY_LEVEL_ON: |
| ret = PSCI_RET_ALREADY_ON; |
| goto error; |
| case PSCI_0_2_AFFINITY_LEVEL_OFF: |
| break; |
| default: |
| ret = PSCI_RET_INTERNAL_FAILURE; |
| goto error; |
| } |
| |
| reset_state = &target->vcpu.arch.reset_state; |
| reset_state->pc = smccc_get_arg2(&hyp_vcpu->vcpu); |
| reset_state->r0 = smccc_get_arg3(&hyp_vcpu->vcpu); |
| /* Propagate caller endianness */ |
| reset_state->be = kvm_vcpu_is_be(&hyp_vcpu->vcpu); |
| reset_state->reset = true; |
| |
| /* |
| * Return to the host, which should make the KVM_REQ_VCPU_RESET request |
| * as well as kvm_vcpu_wake_up() to schedule the vcpu. |
| */ |
| return false; |
| |
| error: |
| /* If there's an error go back straight to the guest. */ |
| smccc_set_retval(&hyp_vcpu->vcpu, ret, 0, 0, 0); |
| return true; |
| } |
| |
| static bool pvm_psci_vcpu_affinity_info(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| unsigned long target_affinity_mask, target_affinity, lowest_affinity_level; |
| struct pkvm_hyp_vm *hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu); |
| struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu; |
| unsigned long mpidr, ret; |
| int i, matching_cpus = 0; |
| |
| target_affinity = smccc_get_arg1(vcpu); |
| lowest_affinity_level = smccc_get_arg2(vcpu); |
| if (!kvm_psci_valid_affinity(vcpu, target_affinity)) { |
| ret = PSCI_RET_INVALID_PARAMS; |
| goto done; |
| } |
| |
| /* Determine target affinity mask */ |
| target_affinity_mask = psci_affinity_mask(lowest_affinity_level); |
| if (!target_affinity_mask) { |
| ret = PSCI_RET_INVALID_PARAMS; |
| goto done; |
| } |
| |
| /* Ignore other bits of target affinity */ |
| target_affinity &= target_affinity_mask; |
| ret = PSCI_0_2_AFFINITY_LEVEL_OFF; |
| |
| /* |
| * If at least one vcpu matching target affinity is ON then return ON, |
| * then if at least one is PENDING_ON then return PENDING_ON. |
| * Otherwise, return OFF. |
| */ |
| for (i = 0; i < hyp_vm->nr_vcpus; i++) { |
| struct pkvm_hyp_vcpu *target = hyp_vm->vcpus[i]; |
| |
| mpidr = kvm_vcpu_get_mpidr_aff(&target->vcpu); |
| |
| if ((mpidr & target_affinity_mask) == target_affinity) { |
| int power_state; |
| |
| matching_cpus++; |
| power_state = READ_ONCE(target->power_state); |
| switch (power_state) { |
| case PSCI_0_2_AFFINITY_LEVEL_ON_PENDING: |
| ret = PSCI_0_2_AFFINITY_LEVEL_ON_PENDING; |
| break; |
| case PSCI_0_2_AFFINITY_LEVEL_ON: |
| ret = PSCI_0_2_AFFINITY_LEVEL_ON; |
| goto done; |
| case PSCI_0_2_AFFINITY_LEVEL_OFF: |
| break; |
| default: |
| ret = PSCI_RET_INTERNAL_FAILURE; |
| goto done; |
| } |
| } |
| } |
| |
| if (!matching_cpus) |
| ret = PSCI_RET_INVALID_PARAMS; |
| |
| done: |
| /* Nothing to be handled by the host. Go back to the guest. */ |
| smccc_set_retval(vcpu, ret, 0, 0, 0); |
| return true; |
| } |
| |
| /* |
| * Returns true if the hypervisor has handled the PSCI call, and control should |
| * go back to the guest, or false if the host needs to do some additional work |
| * (e.g., turn off and update vcpu scheduling status). |
| */ |
| static bool pvm_psci_vcpu_off(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu; |
| |
| WARN_ON(vcpu->arch.mp_state.mp_state == KVM_MP_STATE_STOPPED); |
| WARN_ON(hyp_vcpu->power_state != PSCI_0_2_AFFINITY_LEVEL_ON); |
| |
| WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); |
| WRITE_ONCE(hyp_vcpu->power_state, PSCI_0_2_AFFINITY_LEVEL_OFF); |
| |
| /* Return to the host so that it can finish powering off the vcpu. */ |
| return false; |
| } |
| |
| static bool pvm_psci_version(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| /* Nothing to be handled by the host. Go back to the guest. */ |
| smccc_set_retval(&hyp_vcpu->vcpu, KVM_ARM_PSCI_1_1, 0, 0, 0); |
| return true; |
| } |
| |
| static bool pvm_psci_not_supported(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| /* Nothing to be handled by the host. Go back to the guest. */ |
| smccc_set_retval(&hyp_vcpu->vcpu, PSCI_RET_NOT_SUPPORTED, 0, 0, 0); |
| return true; |
| } |
| |
| static bool pvm_psci_features(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu; |
| u32 feature = smccc_get_arg1(vcpu); |
| unsigned long val; |
| |
| switch (feature) { |
| case PSCI_0_2_FN_PSCI_VERSION: |
| case PSCI_0_2_FN_CPU_SUSPEND: |
| case PSCI_0_2_FN64_CPU_SUSPEND: |
| case PSCI_0_2_FN_CPU_OFF: |
| case PSCI_0_2_FN_CPU_ON: |
| case PSCI_0_2_FN64_CPU_ON: |
| case PSCI_0_2_FN_AFFINITY_INFO: |
| case PSCI_0_2_FN64_AFFINITY_INFO: |
| case PSCI_0_2_FN_SYSTEM_OFF: |
| case PSCI_0_2_FN_SYSTEM_RESET: |
| case PSCI_1_0_FN_PSCI_FEATURES: |
| case PSCI_1_1_FN_SYSTEM_RESET2: |
| case PSCI_1_1_FN64_SYSTEM_RESET2: |
| case ARM_SMCCC_VERSION_FUNC_ID: |
| val = PSCI_RET_SUCCESS; |
| break; |
| default: |
| val = PSCI_RET_NOT_SUPPORTED; |
| break; |
| } |
| |
| /* Nothing to be handled by the host. Go back to the guest. */ |
| smccc_set_retval(vcpu, val, 0, 0, 0); |
| return true; |
| } |
| |
| static bool pkvm_handle_psci(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu; |
| u32 psci_fn = smccc_get_function(vcpu); |
| |
| switch (psci_fn) { |
| case PSCI_0_2_FN_CPU_ON: |
| kvm_psci_narrow_to_32bit(vcpu); |
| fallthrough; |
| case PSCI_0_2_FN64_CPU_ON: |
| return pvm_psci_vcpu_on(hyp_vcpu); |
| case PSCI_0_2_FN_CPU_OFF: |
| return pvm_psci_vcpu_off(hyp_vcpu); |
| case PSCI_0_2_FN_AFFINITY_INFO: |
| kvm_psci_narrow_to_32bit(vcpu); |
| fallthrough; |
| case PSCI_0_2_FN64_AFFINITY_INFO: |
| return pvm_psci_vcpu_affinity_info(hyp_vcpu); |
| case PSCI_0_2_FN_PSCI_VERSION: |
| return pvm_psci_version(hyp_vcpu); |
| case PSCI_1_0_FN_PSCI_FEATURES: |
| return pvm_psci_features(hyp_vcpu); |
| case PSCI_0_2_FN_SYSTEM_RESET: |
| case PSCI_0_2_FN_CPU_SUSPEND: |
| case PSCI_0_2_FN64_CPU_SUSPEND: |
| case PSCI_0_2_FN_SYSTEM_OFF: |
| case PSCI_1_1_FN_SYSTEM_RESET2: |
| case PSCI_1_1_FN64_SYSTEM_RESET2: |
| return false; /* Handled by the host. */ |
| default: |
| break; |
| } |
| |
| return pvm_psci_not_supported(hyp_vcpu); |
| } |
| |
| static u64 __pkvm_memshare_page_req(struct pkvm_hyp_vcpu *hyp_vcpu, u64 ipa) |
| { |
| struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu; |
| u64 elr; |
| |
| /* Fake up a data abort (Level 3 translation fault on write) */ |
| vcpu->arch.fault.esr_el2 = (u32)ESR_ELx_EC_DABT_LOW << ESR_ELx_EC_SHIFT | |
| ESR_ELx_WNR | ESR_ELx_FSC_FAULT | |
| FIELD_PREP(ESR_ELx_FSC_LEVEL, 3); |
| |
| /* Shuffle the IPA around into the HPFAR */ |
| vcpu->arch.fault.hpfar_el2 = (ipa >> 8) & HPFAR_MASK; |
| |
| /* This is a virtual address. 0's good. Let's go with 0. */ |
| vcpu->arch.fault.far_el2 = 0; |
| |
| /* Rewind the ELR so we return to the HVC once the IPA is mapped */ |
| elr = read_sysreg(elr_el2); |
| elr -= 4; |
| write_sysreg(elr, elr_el2); |
| |
| return ARM_EXCEPTION_TRAP; |
| } |
| |
| static bool pkvm_memshare_call(struct pkvm_hyp_vcpu *hyp_vcpu, u64 *exit_code) |
| { |
| struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu; |
| u64 ipa = smccc_get_arg1(vcpu); |
| u64 arg2 = smccc_get_arg2(vcpu); |
| u64 arg3 = smccc_get_arg3(vcpu); |
| int err; |
| |
| if (arg2 || arg3) |
| goto out_guest_err; |
| |
| err = __pkvm_guest_share_host(hyp_vcpu, ipa); |
| switch (err) { |
| case 0: |
| /* Success! Now tell the host. */ |
| goto out_host; |
| case -EFAULT: |
| /* |
| * Convert the exception into a data abort so that the page |
| * being shared is mapped into the guest next time. |
| */ |
| *exit_code = __pkvm_memshare_page_req(hyp_vcpu, ipa); |
| goto out_host; |
| } |
| |
| out_guest_err: |
| smccc_set_retval(vcpu, SMCCC_RET_INVALID_PARAMETER, 0, 0, 0); |
| return true; |
| |
| out_host: |
| return false; |
| } |
| |
| static bool pkvm_memunshare_call(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu; |
| u64 ipa = smccc_get_arg1(vcpu); |
| u64 arg2 = smccc_get_arg2(vcpu); |
| u64 arg3 = smccc_get_arg3(vcpu); |
| int err; |
| |
| if (arg2 || arg3) |
| goto out_guest_err; |
| |
| err = __pkvm_guest_unshare_host(hyp_vcpu, ipa); |
| if (err) |
| goto out_guest_err; |
| |
| return false; |
| |
| out_guest_err: |
| smccc_set_retval(vcpu, SMCCC_RET_INVALID_PARAMETER, 0, 0, 0); |
| return true; |
| } |
| |
| static bool pkvm_install_ioguard_page(struct pkvm_hyp_vcpu *hyp_vcpu, u64 *exit_code) |
| { |
| u64 retval = SMCCC_RET_SUCCESS; |
| u64 ipa = smccc_get_arg1(&hyp_vcpu->vcpu); |
| int ret; |
| |
| ret = __pkvm_install_ioguard_page(hyp_vcpu, ipa); |
| if (ret == -ENOMEM) { |
| /* |
| * We ran out of memcache, let's ask for more. Cancel |
| * the effects of the HVC that took us here, and |
| * forward the hypercall to the host for page donation |
| * purposes. |
| */ |
| write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR); |
| return false; |
| } |
| |
| if (ret) |
| retval = SMCCC_RET_INVALID_PARAMETER; |
| |
| smccc_set_retval(&hyp_vcpu->vcpu, retval, 0, 0, 0); |
| return true; |
| } |
| |
| static bool pkvm_meminfo_call(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu; |
| u64 arg1 = smccc_get_arg1(vcpu); |
| u64 arg2 = smccc_get_arg2(vcpu); |
| u64 arg3 = smccc_get_arg3(vcpu); |
| |
| if (arg1 || arg2 || arg3) |
| goto out_guest_err; |
| |
| smccc_set_retval(vcpu, PAGE_SIZE, 0, 0, 0); |
| return true; |
| |
| out_guest_err: |
| smccc_set_retval(vcpu, SMCCC_RET_INVALID_PARAMETER, 0, 0, 0); |
| return true; |
| } |
| |
| static bool pkvm_memrelinquish_call(struct pkvm_hyp_vcpu *hyp_vcpu) |
| { |
| struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu; |
| u64 ipa = smccc_get_arg1(vcpu); |
| u64 arg2 = smccc_get_arg2(vcpu); |
| u64 arg3 = smccc_get_arg3(vcpu); |
| u64 pa = 0; |
| int ret; |
| |
| if (arg2 || arg3) |
| goto out_guest_err; |
| |
| ret = __pkvm_guest_relinquish_to_host(hyp_vcpu, ipa, &pa); |
| if (ret) |
| goto out_guest_err; |
| |
| if (pa != 0) { |
| /* Now pass to host. */ |
| return false; |
| } |
| |
| /* This was a NOP as no page was actually mapped at the IPA. */ |
| smccc_set_retval(vcpu, 0, 0, 0, 0); |
| return true; |
| |
| out_guest_err: |
| smccc_set_retval(vcpu, SMCCC_RET_INVALID_PARAMETER, 0, 0, 0); |
| return true; |
| } |
| |
| bool smccc_trng_available; |
| |
| static bool pkvm_forward_trng(struct kvm_vcpu *vcpu) |
| { |
| u32 fn = smccc_get_function(vcpu); |
| struct arm_smccc_res res; |
| unsigned long arg1 = 0; |
| |
| /* |
| * Forward TRNG calls to EL3, as we can't trust the host to handle |
| * these for us. |
| */ |
| switch (fn) { |
| case ARM_SMCCC_TRNG_FEATURES: |
| case ARM_SMCCC_TRNG_RND32: |
| case ARM_SMCCC_TRNG_RND64: |
| arg1 = smccc_get_arg1(vcpu); |
| fallthrough; |
| case ARM_SMCCC_TRNG_VERSION: |
| case ARM_SMCCC_TRNG_GET_UUID: |
| arm_smccc_1_1_smc(fn, arg1, &res); |
| smccc_set_retval(vcpu, res.a0, res.a1, res.a2, res.a3); |
| memzero_explicit(&res, sizeof(res)); |
| break; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Handler for protected VM HVC calls. |
| * |
| * Returns true if the hypervisor has handled the exit, and control should go |
| * back to the guest, or false if it hasn't. |
| */ |
| bool kvm_handle_pvm_hvc64(struct kvm_vcpu *vcpu, u64 *exit_code) |
| { |
| u64 val[4] = { SMCCC_RET_NOT_SUPPORTED }; |
| u32 fn = smccc_get_function(vcpu); |
| struct pkvm_hyp_vcpu *hyp_vcpu; |
| |
| hyp_vcpu = container_of(vcpu, struct pkvm_hyp_vcpu, vcpu); |
| |
| switch (fn) { |
| case ARM_SMCCC_VERSION_FUNC_ID: |
| /* Nothing to be handled by the host. Go back to the guest. */ |
| val[0] = ARM_SMCCC_VERSION_1_1; |
| break; |
| case ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID: |
| val[0] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_0; |
| val[1] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_1; |
| val[2] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_2; |
| val[3] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_3; |
| break; |
| case ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID: |
| val[0] = BIT(ARM_SMCCC_KVM_FUNC_FEATURES); |
| val[0] |= BIT(ARM_SMCCC_KVM_FUNC_HYP_MEMINFO); |
| val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MEM_SHARE); |
| val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MEM_UNSHARE); |
| val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MMIO_GUARD_INFO); |
| val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MMIO_GUARD_ENROLL); |
| val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MMIO_GUARD_MAP); |
| val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MMIO_GUARD_UNMAP); |
| val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MEM_RELINQUISH); |
| break; |
| case ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_ENROLL_FUNC_ID: |
| set_bit(KVM_ARCH_FLAG_MMIO_GUARD, &vcpu->kvm->arch.flags); |
| val[0] = SMCCC_RET_SUCCESS; |
| break; |
| case ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_MAP_FUNC_ID: |
| return pkvm_install_ioguard_page(hyp_vcpu, exit_code); |
| case ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_UNMAP_FUNC_ID: |
| if (__pkvm_remove_ioguard_page(hyp_vcpu, vcpu_get_reg(vcpu, 1))) |
| val[0] = SMCCC_RET_INVALID_PARAMETER; |
| else |
| val[0] = SMCCC_RET_SUCCESS; |
| break; |
| case ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_INFO_FUNC_ID: |
| case ARM_SMCCC_VENDOR_HYP_KVM_HYP_MEMINFO_FUNC_ID: |
| return pkvm_meminfo_call(hyp_vcpu); |
| case ARM_SMCCC_VENDOR_HYP_KVM_MEM_SHARE_FUNC_ID: |
| return pkvm_memshare_call(hyp_vcpu, exit_code); |
| case ARM_SMCCC_VENDOR_HYP_KVM_MEM_UNSHARE_FUNC_ID: |
| return pkvm_memunshare_call(hyp_vcpu); |
| case ARM_SMCCC_VENDOR_HYP_KVM_MEM_RELINQUISH_FUNC_ID: |
| return pkvm_memrelinquish_call(hyp_vcpu); |
| case ARM_SMCCC_TRNG_VERSION ... ARM_SMCCC_TRNG_RND32: |
| case ARM_SMCCC_TRNG_RND64: |
| if (smccc_trng_available) |
| return pkvm_forward_trng(vcpu); |
| break; |
| default: |
| return pkvm_handle_psci(hyp_vcpu); |
| } |
| |
| smccc_set_retval(vcpu, val[0], val[1], val[2], val[3]); |
| return true; |
| } |
| |
| /* |
| * Handler for non-protected VM HVC calls. |
| * |
| * Returns true if the hypervisor has handled the exit, and control should go |
| * back to the guest, or false if it hasn't. |
| */ |
| bool kvm_hyp_handle_hvc64(struct kvm_vcpu *vcpu, u64 *exit_code) |
| { |
| u32 fn = smccc_get_function(vcpu); |
| struct pkvm_hyp_vcpu *hyp_vcpu; |
| |
| hyp_vcpu = container_of(vcpu, struct pkvm_hyp_vcpu, vcpu); |
| |
| switch (fn) { |
| case ARM_SMCCC_VENDOR_HYP_KVM_HYP_MEMINFO_FUNC_ID: |
| return pkvm_meminfo_call(hyp_vcpu); |
| case ARM_SMCCC_VENDOR_HYP_KVM_MEM_RELINQUISH_FUNC_ID: |
| return pkvm_memrelinquish_call(hyp_vcpu); |
| } |
| |
| return false; |
| } |