blob: 384f722093e0b13737a671b1c6a3d5f9c2ece844 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
/*
* Copyright(c) 2023 - Cornelis Networks, Inc.
*/
#include <linux/types.h>
#include "hfi.h"
#include "common.h"
#include "device.h"
#include "pinning.h"
#include "mmu_rb.h"
#include "user_sdma.h"
#include "trace.h"
struct sdma_mmu_node {
struct mmu_rb_node rb;
struct hfi1_user_sdma_pkt_q *pq;
struct page **pages;
unsigned int npages;
};
static bool sdma_rb_filter(struct mmu_rb_node *node, unsigned long addr,
unsigned long len);
static int sdma_rb_evict(void *arg, struct mmu_rb_node *mnode, void *arg2,
bool *stop);
static void sdma_rb_remove(void *arg, struct mmu_rb_node *mnode);
static struct mmu_rb_ops sdma_rb_ops = {
.filter = sdma_rb_filter,
.evict = sdma_rb_evict,
.remove = sdma_rb_remove,
};
int hfi1_init_system_pinning(struct hfi1_user_sdma_pkt_q *pq)
{
struct hfi1_devdata *dd = pq->dd;
int ret;
ret = hfi1_mmu_rb_register(pq, &sdma_rb_ops, dd->pport->hfi1_wq,
&pq->handler);
if (ret)
dd_dev_err(dd,
"[%u:%u] Failed to register system memory DMA support with MMU: %d\n",
pq->ctxt, pq->subctxt, ret);
return ret;
}
void hfi1_free_system_pinning(struct hfi1_user_sdma_pkt_q *pq)
{
if (pq->handler)
hfi1_mmu_rb_unregister(pq->handler);
}
static u32 sdma_cache_evict(struct hfi1_user_sdma_pkt_q *pq, u32 npages)
{
struct evict_data evict_data;
evict_data.cleared = 0;
evict_data.target = npages;
hfi1_mmu_rb_evict(pq->handler, &evict_data);
return evict_data.cleared;
}
static void unpin_vector_pages(struct mm_struct *mm, struct page **pages,
unsigned int start, unsigned int npages)
{
hfi1_release_user_pages(mm, pages + start, npages, false);
kfree(pages);
}
static inline struct mm_struct *mm_from_sdma_node(struct sdma_mmu_node *node)
{
return node->rb.handler->mn.mm;
}
static void free_system_node(struct sdma_mmu_node *node)
{
if (node->npages) {
unpin_vector_pages(mm_from_sdma_node(node), node->pages, 0,
node->npages);
atomic_sub(node->npages, &node->pq->n_locked);
}
kfree(node);
}
/*
* kref_get()'s an additional kref on the returned rb_node to prevent rb_node
* from being released until after rb_node is assigned to an SDMA descriptor
* (struct sdma_desc) under add_system_iovec_to_sdma_packet(), even if the
* virtual address range for rb_node is invalidated between now and then.
*/
static struct sdma_mmu_node *find_system_node(struct mmu_rb_handler *handler,
unsigned long start,
unsigned long end)
{
struct mmu_rb_node *rb_node;
unsigned long flags;
spin_lock_irqsave(&handler->lock, flags);
rb_node = hfi1_mmu_rb_get_first(handler, start, (end - start));
if (!rb_node) {
spin_unlock_irqrestore(&handler->lock, flags);
return NULL;
}
/* "safety" kref to prevent release before add_system_iovec_to_sdma_packet() */
kref_get(&rb_node->refcount);
spin_unlock_irqrestore(&handler->lock, flags);
return container_of(rb_node, struct sdma_mmu_node, rb);
}
static int pin_system_pages(struct user_sdma_request *req,
uintptr_t start_address, size_t length,
struct sdma_mmu_node *node, int npages)
{
struct hfi1_user_sdma_pkt_q *pq = req->pq;
int pinned, cleared;
struct page **pages;
pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
if (!pages)
return -ENOMEM;
retry:
if (!hfi1_can_pin_pages(pq->dd, current->mm, atomic_read(&pq->n_locked),
npages)) {
SDMA_DBG(req, "Evicting: nlocked %u npages %u",
atomic_read(&pq->n_locked), npages);
cleared = sdma_cache_evict(pq, npages);
if (cleared >= npages)
goto retry;
}
SDMA_DBG(req, "Acquire user pages start_address %lx node->npages %u npages %u",
start_address, node->npages, npages);
pinned = hfi1_acquire_user_pages(current->mm, start_address, npages, 0,
pages);
if (pinned < 0) {
kfree(pages);
SDMA_DBG(req, "pinned %d", pinned);
return pinned;
}
if (pinned != npages) {
unpin_vector_pages(current->mm, pages, node->npages, pinned);
SDMA_DBG(req, "npages %u pinned %d", npages, pinned);
return -EFAULT;
}
node->rb.addr = start_address;
node->rb.len = length;
node->pages = pages;
node->npages = npages;
atomic_add(pinned, &pq->n_locked);
SDMA_DBG(req, "done. pinned %d", pinned);
return 0;
}
/*
* kref refcount on *node_p will be 2 on successful addition: one kref from
* kref_init() for mmu_rb_handler and one kref to prevent *node_p from being
* released until after *node_p is assigned to an SDMA descriptor (struct
* sdma_desc) under add_system_iovec_to_sdma_packet(), even if the virtual
* address range for *node_p is invalidated between now and then.
*/
static int add_system_pinning(struct user_sdma_request *req,
struct sdma_mmu_node **node_p,
unsigned long start, unsigned long len)
{
struct hfi1_user_sdma_pkt_q *pq = req->pq;
struct sdma_mmu_node *node;
int ret;
node = kzalloc(sizeof(*node), GFP_KERNEL);
if (!node)
return -ENOMEM;
/* First kref "moves" to mmu_rb_handler */
kref_init(&node->rb.refcount);
/* "safety" kref to prevent release before add_system_iovec_to_sdma_packet() */
kref_get(&node->rb.refcount);
node->pq = pq;
ret = pin_system_pages(req, start, len, node, PFN_DOWN(len));
if (ret == 0) {
ret = hfi1_mmu_rb_insert(pq->handler, &node->rb);
if (ret)
free_system_node(node);
else
*node_p = node;
return ret;
}
kfree(node);
return ret;
}
static int get_system_cache_entry(struct user_sdma_request *req,
struct sdma_mmu_node **node_p,
size_t req_start, size_t req_len)
{
struct hfi1_user_sdma_pkt_q *pq = req->pq;
u64 start = ALIGN_DOWN(req_start, PAGE_SIZE);
u64 end = PFN_ALIGN(req_start + req_len);
int ret;
if ((end - start) == 0) {
SDMA_DBG(req,
"Request for empty cache entry req_start %lx req_len %lx start %llx end %llx",
req_start, req_len, start, end);
return -EINVAL;
}
SDMA_DBG(req, "req_start %lx req_len %lu", req_start, req_len);
while (1) {
struct sdma_mmu_node *node =
find_system_node(pq->handler, start, end);
u64 prepend_len = 0;
SDMA_DBG(req, "node %p start %llx end %llu", node, start, end);
if (!node) {
ret = add_system_pinning(req, node_p, start,
end - start);
if (ret == -EEXIST) {
/*
* Another execution context has inserted a
* conficting entry first.
*/
continue;
}
return ret;
}
if (node->rb.addr <= start) {
/*
* This entry covers at least part of the region. If it doesn't extend
* to the end, then this will be called again for the next segment.
*/
*node_p = node;
return 0;
}
SDMA_DBG(req, "prepend: node->rb.addr %lx, node->rb.refcount %d",
node->rb.addr, kref_read(&node->rb.refcount));
prepend_len = node->rb.addr - start;
/*
* This node will not be returned, instead a new node
* will be. So release the reference.
*/
kref_put(&node->rb.refcount, hfi1_mmu_rb_release);
/* Prepend a node to cover the beginning of the allocation */
ret = add_system_pinning(req, node_p, start, prepend_len);
if (ret == -EEXIST) {
/* Another execution context has inserted a conficting entry first. */
continue;
}
return ret;
}
}
static void sdma_mmu_rb_node_get(void *ctx)
{
struct mmu_rb_node *node = ctx;
kref_get(&node->refcount);
}
static void sdma_mmu_rb_node_put(void *ctx)
{
struct sdma_mmu_node *node = ctx;
kref_put(&node->rb.refcount, hfi1_mmu_rb_release);
}
static int add_mapping_to_sdma_packet(struct user_sdma_request *req,
struct user_sdma_txreq *tx,
struct sdma_mmu_node *cache_entry,
size_t start,
size_t from_this_cache_entry)
{
struct hfi1_user_sdma_pkt_q *pq = req->pq;
unsigned int page_offset;
unsigned int from_this_page;
size_t page_index;
void *ctx;
int ret;
/*
* Because the cache may be more fragmented than the memory that is being accessed,
* it's not strictly necessary to have a descriptor per cache entry.
*/
while (from_this_cache_entry) {
page_index = PFN_DOWN(start - cache_entry->rb.addr);
if (page_index >= cache_entry->npages) {
SDMA_DBG(req,
"Request for page_index %zu >= cache_entry->npages %u",
page_index, cache_entry->npages);
return -EINVAL;
}
page_offset = start - ALIGN_DOWN(start, PAGE_SIZE);
from_this_page = PAGE_SIZE - page_offset;
if (from_this_page < from_this_cache_entry) {
ctx = NULL;
} else {
/*
* In the case they are equal the next line has no practical effect,
* but it's better to do a register to register copy than a conditional
* branch.
*/
from_this_page = from_this_cache_entry;
ctx = cache_entry;
}
ret = sdma_txadd_page(pq->dd, &tx->txreq,
cache_entry->pages[page_index],
page_offset, from_this_page,
ctx,
sdma_mmu_rb_node_get,
sdma_mmu_rb_node_put);
if (ret) {
/*
* When there's a failure, the entire request is freed by
* user_sdma_send_pkts().
*/
SDMA_DBG(req,
"sdma_txadd_page failed %d page_index %lu page_offset %u from_this_page %u",
ret, page_index, page_offset, from_this_page);
return ret;
}
start += from_this_page;
from_this_cache_entry -= from_this_page;
}
return 0;
}
static int add_system_iovec_to_sdma_packet(struct user_sdma_request *req,
struct user_sdma_txreq *tx,
struct user_sdma_iovec *iovec,
size_t from_this_iovec)
{
while (from_this_iovec > 0) {
struct sdma_mmu_node *cache_entry;
size_t from_this_cache_entry;
size_t start;
int ret;
start = (uintptr_t)iovec->iov.iov_base + iovec->offset;
ret = get_system_cache_entry(req, &cache_entry, start,
from_this_iovec);
if (ret) {
SDMA_DBG(req, "pin system segment failed %d", ret);
return ret;
}
from_this_cache_entry = cache_entry->rb.len - (start - cache_entry->rb.addr);
if (from_this_cache_entry > from_this_iovec)
from_this_cache_entry = from_this_iovec;
ret = add_mapping_to_sdma_packet(req, tx, cache_entry, start,
from_this_cache_entry);
/*
* Done adding cache_entry to zero or more sdma_desc. Can
* kref_put() the "safety" kref taken under
* get_system_cache_entry().
*/
kref_put(&cache_entry->rb.refcount, hfi1_mmu_rb_release);
if (ret) {
SDMA_DBG(req, "add system segment failed %d", ret);
return ret;
}
iovec->offset += from_this_cache_entry;
from_this_iovec -= from_this_cache_entry;
}
return 0;
}
/*
* Add up to pkt_data_remaining bytes to the txreq, starting at the current
* offset in the given iovec entry and continuing until all data has been added
* to the iovec or the iovec entry type changes.
*
* On success, prior to returning, adjust pkt_data_remaining, req->iov_idx, and
* the offset value in req->iov[req->iov_idx] to reflect the data that has been
* consumed.
*/
int hfi1_add_pages_to_sdma_packet(struct user_sdma_request *req,
struct user_sdma_txreq *tx,
struct user_sdma_iovec *iovec,
u32 *pkt_data_remaining)
{
size_t remaining_to_add = *pkt_data_remaining;
/*
* Walk through iovec entries, ensure the associated pages
* are pinned and mapped, add data to the packet until no more
* data remains to be added or the iovec entry type changes.
*/
while (remaining_to_add > 0) {
struct user_sdma_iovec *cur_iovec;
size_t from_this_iovec;
int ret;
cur_iovec = iovec;
from_this_iovec = iovec->iov.iov_len - iovec->offset;
if (from_this_iovec > remaining_to_add) {
from_this_iovec = remaining_to_add;
} else {
/* The current iovec entry will be consumed by this pass. */
req->iov_idx++;
iovec++;
}
ret = add_system_iovec_to_sdma_packet(req, tx, cur_iovec,
from_this_iovec);
if (ret)
return ret;
remaining_to_add -= from_this_iovec;
}
*pkt_data_remaining = remaining_to_add;
return 0;
}
static bool sdma_rb_filter(struct mmu_rb_node *node, unsigned long addr,
unsigned long len)
{
return (bool)(node->addr == addr);
}
/*
* Return 1 to remove the node from the rb tree and call the remove op.
*
* Called with the rb tree lock held.
*/
static int sdma_rb_evict(void *arg, struct mmu_rb_node *mnode,
void *evict_arg, bool *stop)
{
struct sdma_mmu_node *node =
container_of(mnode, struct sdma_mmu_node, rb);
struct evict_data *evict_data = evict_arg;
/* this node will be evicted, add its pages to our count */
evict_data->cleared += node->npages;
/* have enough pages been cleared? */
if (evict_data->cleared >= evict_data->target)
*stop = true;
return 1; /* remove this node */
}
static void sdma_rb_remove(void *arg, struct mmu_rb_node *mnode)
{
struct sdma_mmu_node *node =
container_of(mnode, struct sdma_mmu_node, rb);
free_system_node(node);
}