| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2002 Roman Zippel <zippel@linux-m68k.org> |
| */ |
| |
| #include <ctype.h> |
| #include <errno.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <hash.h> |
| #include <xalloc.h> |
| #include "internal.h" |
| #include "lkc.h" |
| |
| #define DEBUG_EXPR 0 |
| |
| HASHTABLE_DEFINE(expr_hashtable, EXPR_HASHSIZE); |
| |
| static struct expr *expr_eliminate_yn(struct expr *e); |
| |
| /** |
| * expr_lookup - return the expression with the given type and sub-nodes |
| * This looks up an expression with the specified type and sub-nodes. If such |
| * an expression is found in the hash table, it is returned. Otherwise, a new |
| * expression node is allocated and added to the hash table. |
| * @type: expression type |
| * @l: left node |
| * @r: right node |
| * return: expression |
| */ |
| static struct expr *expr_lookup(enum expr_type type, void *l, void *r) |
| { |
| struct expr *e; |
| int hash; |
| |
| hash = hash_32((unsigned int)type ^ hash_ptr(l) ^ hash_ptr(r)); |
| |
| hash_for_each_possible(expr_hashtable, e, node, hash) { |
| if (e->type == type && e->left._initdata == l && |
| e->right._initdata == r) |
| return e; |
| } |
| |
| e = xmalloc(sizeof(*e)); |
| e->type = type; |
| e->left._initdata = l; |
| e->right._initdata = r; |
| |
| hash_add(expr_hashtable, &e->node, hash); |
| |
| return e; |
| } |
| |
| struct expr *expr_alloc_symbol(struct symbol *sym) |
| { |
| return expr_lookup(E_SYMBOL, sym, NULL); |
| } |
| |
| struct expr *expr_alloc_one(enum expr_type type, struct expr *ce) |
| { |
| return expr_lookup(type, ce, NULL); |
| } |
| |
| struct expr *expr_alloc_two(enum expr_type type, struct expr *e1, struct expr *e2) |
| { |
| return expr_lookup(type, e1, e2); |
| } |
| |
| struct expr *expr_alloc_comp(enum expr_type type, struct symbol *s1, struct symbol *s2) |
| { |
| return expr_lookup(type, s1, s2); |
| } |
| |
| struct expr *expr_alloc_and(struct expr *e1, struct expr *e2) |
| { |
| if (!e1) |
| return e2; |
| return e2 ? expr_alloc_two(E_AND, e1, e2) : e1; |
| } |
| |
| struct expr *expr_alloc_or(struct expr *e1, struct expr *e2) |
| { |
| if (!e1) |
| return e2; |
| return e2 ? expr_alloc_two(E_OR, e1, e2) : e1; |
| } |
| |
| static int trans_count; |
| |
| /* |
| * expr_eliminate_eq() helper. |
| * |
| * Walks the two expression trees given in 'ep1' and 'ep2'. Any node that does |
| * not have type 'type' (E_OR/E_AND) is considered a leaf, and is compared |
| * against all other leaves. Two equal leaves are both replaced with either 'y' |
| * or 'n' as appropriate for 'type', to be eliminated later. |
| */ |
| static void __expr_eliminate_eq(enum expr_type type, struct expr **ep1, struct expr **ep2) |
| { |
| struct expr *l, *r; |
| |
| /* Recurse down to leaves */ |
| |
| if ((*ep1)->type == type) { |
| l = (*ep1)->left.expr; |
| r = (*ep1)->right.expr; |
| __expr_eliminate_eq(type, &l, ep2); |
| __expr_eliminate_eq(type, &r, ep2); |
| *ep1 = expr_alloc_two(type, l, r); |
| return; |
| } |
| if ((*ep2)->type == type) { |
| l = (*ep2)->left.expr; |
| r = (*ep2)->right.expr; |
| __expr_eliminate_eq(type, ep1, &l); |
| __expr_eliminate_eq(type, ep1, &r); |
| *ep2 = expr_alloc_two(type, l, r); |
| return; |
| } |
| |
| /* *ep1 and *ep2 are leaves. Compare them. */ |
| |
| if ((*ep1)->type == E_SYMBOL && (*ep2)->type == E_SYMBOL && |
| (*ep1)->left.sym == (*ep2)->left.sym && |
| ((*ep1)->left.sym == &symbol_yes || (*ep1)->left.sym == &symbol_no)) |
| return; |
| if (!expr_eq(*ep1, *ep2)) |
| return; |
| |
| /* *ep1 and *ep2 are equal leaves. Prepare them for elimination. */ |
| |
| trans_count++; |
| switch (type) { |
| case E_OR: |
| *ep1 = expr_alloc_symbol(&symbol_no); |
| *ep2 = expr_alloc_symbol(&symbol_no); |
| break; |
| case E_AND: |
| *ep1 = expr_alloc_symbol(&symbol_yes); |
| *ep2 = expr_alloc_symbol(&symbol_yes); |
| break; |
| default: |
| ; |
| } |
| } |
| |
| /* |
| * Rewrites the expressions 'ep1' and 'ep2' to remove operands common to both. |
| * Example reductions: |
| * |
| * ep1: A && B -> ep1: y |
| * ep2: A && B && C -> ep2: C |
| * |
| * ep1: A || B -> ep1: n |
| * ep2: A || B || C -> ep2: C |
| * |
| * ep1: A && (B && FOO) -> ep1: FOO |
| * ep2: (BAR && B) && A -> ep2: BAR |
| * |
| * ep1: A && (B || C) -> ep1: y |
| * ep2: (C || B) && A -> ep2: y |
| * |
| * Comparisons are done between all operands at the same "level" of && or ||. |
| * For example, in the expression 'e1 && (e2 || e3) && (e4 || e5)', the |
| * following operands will be compared: |
| * |
| * - 'e1', 'e2 || e3', and 'e4 || e5', against each other |
| * - e2 against e3 |
| * - e4 against e5 |
| * |
| * Parentheses are irrelevant within a single level. 'e1 && (e2 && e3)' and |
| * '(e1 && e2) && e3' are both a single level. |
| * |
| * See __expr_eliminate_eq() as well. |
| */ |
| void expr_eliminate_eq(struct expr **ep1, struct expr **ep2) |
| { |
| if (!*ep1 || !*ep2) |
| return; |
| switch ((*ep1)->type) { |
| case E_OR: |
| case E_AND: |
| __expr_eliminate_eq((*ep1)->type, ep1, ep2); |
| default: |
| ; |
| } |
| if ((*ep1)->type != (*ep2)->type) switch ((*ep2)->type) { |
| case E_OR: |
| case E_AND: |
| __expr_eliminate_eq((*ep2)->type, ep1, ep2); |
| default: |
| ; |
| } |
| *ep1 = expr_eliminate_yn(*ep1); |
| *ep2 = expr_eliminate_yn(*ep2); |
| } |
| |
| /* |
| * Returns true if 'e1' and 'e2' are equal, after minor simplification. Two |
| * &&/|| expressions are considered equal if every operand in one expression |
| * equals some operand in the other (operands do not need to appear in the same |
| * order), recursively. |
| */ |
| bool expr_eq(struct expr *e1, struct expr *e2) |
| { |
| int old_count; |
| bool res; |
| |
| /* |
| * A NULL expr is taken to be yes, but there's also a different way to |
| * represent yes. expr_is_yes() checks for either representation. |
| */ |
| if (!e1 || !e2) |
| return expr_is_yes(e1) && expr_is_yes(e2); |
| |
| if (e1->type != e2->type) |
| return false; |
| switch (e1->type) { |
| case E_EQUAL: |
| case E_GEQ: |
| case E_GTH: |
| case E_LEQ: |
| case E_LTH: |
| case E_UNEQUAL: |
| return e1->left.sym == e2->left.sym && e1->right.sym == e2->right.sym; |
| case E_SYMBOL: |
| return e1->left.sym == e2->left.sym; |
| case E_NOT: |
| return expr_eq(e1->left.expr, e2->left.expr); |
| case E_AND: |
| case E_OR: |
| old_count = trans_count; |
| expr_eliminate_eq(&e1, &e2); |
| res = (e1->type == E_SYMBOL && e2->type == E_SYMBOL && |
| e1->left.sym == e2->left.sym); |
| trans_count = old_count; |
| return res; |
| case E_RANGE: |
| case E_NONE: |
| /* panic */; |
| } |
| |
| if (DEBUG_EXPR) { |
| expr_fprint(e1, stdout); |
| printf(" = "); |
| expr_fprint(e2, stdout); |
| printf(" ?\n"); |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Recursively performs the following simplifications (as well as the |
| * corresponding simplifications with swapped operands): |
| * |
| * expr && n -> n |
| * expr && y -> expr |
| * expr || n -> expr |
| * expr || y -> y |
| * |
| * Returns the optimized expression. |
| */ |
| static struct expr *expr_eliminate_yn(struct expr *e) |
| { |
| struct expr *l, *r; |
| |
| if (e) switch (e->type) { |
| case E_AND: |
| l = expr_eliminate_yn(e->left.expr); |
| r = expr_eliminate_yn(e->right.expr); |
| if (l->type == E_SYMBOL) { |
| if (l->left.sym == &symbol_no) |
| return l; |
| else if (l->left.sym == &symbol_yes) |
| return r; |
| } |
| if (r->type == E_SYMBOL) { |
| if (r->left.sym == &symbol_no) |
| return r; |
| else if (r->left.sym == &symbol_yes) |
| return l; |
| } |
| break; |
| case E_OR: |
| l = expr_eliminate_yn(e->left.expr); |
| r = expr_eliminate_yn(e->right.expr); |
| if (l->type == E_SYMBOL) { |
| if (l->left.sym == &symbol_no) |
| return r; |
| else if (l->left.sym == &symbol_yes) |
| return l; |
| } |
| if (r->type == E_SYMBOL) { |
| if (r->left.sym == &symbol_no) |
| return l; |
| else if (r->left.sym == &symbol_yes) |
| return r; |
| } |
| break; |
| default: |
| ; |
| } |
| return e; |
| } |
| |
| /* |
| * e1 || e2 -> ? |
| */ |
| static struct expr *expr_join_or(struct expr *e1, struct expr *e2) |
| { |
| struct expr *tmp; |
| struct symbol *sym1, *sym2; |
| |
| if (expr_eq(e1, e2)) |
| return e1; |
| if (e1->type != E_EQUAL && e1->type != E_UNEQUAL && e1->type != E_SYMBOL && e1->type != E_NOT) |
| return NULL; |
| if (e2->type != E_EQUAL && e2->type != E_UNEQUAL && e2->type != E_SYMBOL && e2->type != E_NOT) |
| return NULL; |
| if (e1->type == E_NOT) { |
| tmp = e1->left.expr; |
| if (tmp->type != E_EQUAL && tmp->type != E_UNEQUAL && tmp->type != E_SYMBOL) |
| return NULL; |
| sym1 = tmp->left.sym; |
| } else |
| sym1 = e1->left.sym; |
| if (e2->type == E_NOT) { |
| if (e2->left.expr->type != E_SYMBOL) |
| return NULL; |
| sym2 = e2->left.expr->left.sym; |
| } else |
| sym2 = e2->left.sym; |
| if (sym1 != sym2) |
| return NULL; |
| if (sym1->type != S_BOOLEAN && sym1->type != S_TRISTATE) |
| return NULL; |
| if (sym1->type == S_TRISTATE) { |
| if (e1->type == E_EQUAL && e2->type == E_EQUAL && |
| ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_mod) || |
| (e1->right.sym == &symbol_mod && e2->right.sym == &symbol_yes))) { |
| // (a='y') || (a='m') -> (a!='n') |
| return expr_alloc_comp(E_UNEQUAL, sym1, &symbol_no); |
| } |
| if (e1->type == E_EQUAL && e2->type == E_EQUAL && |
| ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_no) || |
| (e1->right.sym == &symbol_no && e2->right.sym == &symbol_yes))) { |
| // (a='y') || (a='n') -> (a!='m') |
| return expr_alloc_comp(E_UNEQUAL, sym1, &symbol_mod); |
| } |
| if (e1->type == E_EQUAL && e2->type == E_EQUAL && |
| ((e1->right.sym == &symbol_mod && e2->right.sym == &symbol_no) || |
| (e1->right.sym == &symbol_no && e2->right.sym == &symbol_mod))) { |
| // (a='m') || (a='n') -> (a!='y') |
| return expr_alloc_comp(E_UNEQUAL, sym1, &symbol_yes); |
| } |
| } |
| if (sym1->type == S_BOOLEAN) { |
| // a || !a -> y |
| if ((e1->type == E_NOT && e1->left.expr->type == E_SYMBOL && e2->type == E_SYMBOL) || |
| (e2->type == E_NOT && e2->left.expr->type == E_SYMBOL && e1->type == E_SYMBOL)) |
| return expr_alloc_symbol(&symbol_yes); |
| } |
| |
| if (DEBUG_EXPR) { |
| printf("optimize ("); |
| expr_fprint(e1, stdout); |
| printf(") || ("); |
| expr_fprint(e2, stdout); |
| printf(")?\n"); |
| } |
| return NULL; |
| } |
| |
| static struct expr *expr_join_and(struct expr *e1, struct expr *e2) |
| { |
| struct expr *tmp; |
| struct symbol *sym1, *sym2; |
| |
| if (expr_eq(e1, e2)) |
| return e1; |
| if (e1->type != E_EQUAL && e1->type != E_UNEQUAL && e1->type != E_SYMBOL && e1->type != E_NOT) |
| return NULL; |
| if (e2->type != E_EQUAL && e2->type != E_UNEQUAL && e2->type != E_SYMBOL && e2->type != E_NOT) |
| return NULL; |
| if (e1->type == E_NOT) { |
| tmp = e1->left.expr; |
| if (tmp->type != E_EQUAL && tmp->type != E_UNEQUAL && tmp->type != E_SYMBOL) |
| return NULL; |
| sym1 = tmp->left.sym; |
| } else |
| sym1 = e1->left.sym; |
| if (e2->type == E_NOT) { |
| if (e2->left.expr->type != E_SYMBOL) |
| return NULL; |
| sym2 = e2->left.expr->left.sym; |
| } else |
| sym2 = e2->left.sym; |
| if (sym1 != sym2) |
| return NULL; |
| if (sym1->type != S_BOOLEAN && sym1->type != S_TRISTATE) |
| return NULL; |
| |
| if ((e1->type == E_SYMBOL && e2->type == E_EQUAL && e2->right.sym == &symbol_yes) || |
| (e2->type == E_SYMBOL && e1->type == E_EQUAL && e1->right.sym == &symbol_yes)) |
| // (a) && (a='y') -> (a='y') |
| return expr_alloc_comp(E_EQUAL, sym1, &symbol_yes); |
| |
| if ((e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_no) || |
| (e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_no)) |
| // (a) && (a!='n') -> (a) |
| return expr_alloc_symbol(sym1); |
| |
| if ((e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_mod) || |
| (e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_mod)) |
| // (a) && (a!='m') -> (a='y') |
| return expr_alloc_comp(E_EQUAL, sym1, &symbol_yes); |
| |
| if (sym1->type == S_TRISTATE) { |
| if (e1->type == E_EQUAL && e2->type == E_UNEQUAL) { |
| // (a='b') && (a!='c') -> 'b'='c' ? 'n' : a='b' |
| sym2 = e1->right.sym; |
| if ((e2->right.sym->flags & SYMBOL_CONST) && (sym2->flags & SYMBOL_CONST)) |
| return sym2 != e2->right.sym ? expr_alloc_comp(E_EQUAL, sym1, sym2) |
| : expr_alloc_symbol(&symbol_no); |
| } |
| if (e1->type == E_UNEQUAL && e2->type == E_EQUAL) { |
| // (a='b') && (a!='c') -> 'b'='c' ? 'n' : a='b' |
| sym2 = e2->right.sym; |
| if ((e1->right.sym->flags & SYMBOL_CONST) && (sym2->flags & SYMBOL_CONST)) |
| return sym2 != e1->right.sym ? expr_alloc_comp(E_EQUAL, sym1, sym2) |
| : expr_alloc_symbol(&symbol_no); |
| } |
| if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL && |
| ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_no) || |
| (e1->right.sym == &symbol_no && e2->right.sym == &symbol_yes))) |
| // (a!='y') && (a!='n') -> (a='m') |
| return expr_alloc_comp(E_EQUAL, sym1, &symbol_mod); |
| |
| if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL && |
| ((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_mod) || |
| (e1->right.sym == &symbol_mod && e2->right.sym == &symbol_yes))) |
| // (a!='y') && (a!='m') -> (a='n') |
| return expr_alloc_comp(E_EQUAL, sym1, &symbol_no); |
| |
| if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL && |
| ((e1->right.sym == &symbol_mod && e2->right.sym == &symbol_no) || |
| (e1->right.sym == &symbol_no && e2->right.sym == &symbol_mod))) |
| // (a!='m') && (a!='n') -> (a='m') |
| return expr_alloc_comp(E_EQUAL, sym1, &symbol_yes); |
| |
| if ((e1->type == E_SYMBOL && e2->type == E_EQUAL && e2->right.sym == &symbol_mod) || |
| (e2->type == E_SYMBOL && e1->type == E_EQUAL && e1->right.sym == &symbol_mod) || |
| (e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_yes) || |
| (e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_yes)) |
| return NULL; |
| } |
| |
| if (DEBUG_EXPR) { |
| printf("optimize ("); |
| expr_fprint(e1, stdout); |
| printf(") && ("); |
| expr_fprint(e2, stdout); |
| printf(")?\n"); |
| } |
| return NULL; |
| } |
| |
| /* |
| * expr_eliminate_dups() helper. |
| * |
| * Walks the two expression trees given in 'ep1' and 'ep2'. Any node that does |
| * not have type 'type' (E_OR/E_AND) is considered a leaf, and is compared |
| * against all other leaves to look for simplifications. |
| */ |
| static void expr_eliminate_dups1(enum expr_type type, struct expr **ep1, struct expr **ep2) |
| { |
| struct expr *tmp, *l, *r; |
| |
| /* Recurse down to leaves */ |
| |
| if ((*ep1)->type == type) { |
| l = (*ep1)->left.expr; |
| r = (*ep1)->right.expr; |
| expr_eliminate_dups1(type, &l, ep2); |
| expr_eliminate_dups1(type, &r, ep2); |
| *ep1 = expr_alloc_two(type, l, r); |
| return; |
| } |
| if ((*ep2)->type == type) { |
| l = (*ep2)->left.expr; |
| r = (*ep2)->right.expr; |
| expr_eliminate_dups1(type, ep1, &l); |
| expr_eliminate_dups1(type, ep1, &r); |
| *ep2 = expr_alloc_two(type, l, r); |
| return; |
| } |
| |
| /* *ep1 and *ep2 are leaves. Compare and process them. */ |
| |
| switch (type) { |
| case E_OR: |
| tmp = expr_join_or(*ep1, *ep2); |
| if (tmp) { |
| *ep1 = expr_alloc_symbol(&symbol_no); |
| *ep2 = tmp; |
| trans_count++; |
| } |
| break; |
| case E_AND: |
| tmp = expr_join_and(*ep1, *ep2); |
| if (tmp) { |
| *ep1 = expr_alloc_symbol(&symbol_yes); |
| *ep2 = tmp; |
| trans_count++; |
| } |
| break; |
| default: |
| ; |
| } |
| } |
| |
| /* |
| * Rewrites 'e' in-place to remove ("join") duplicate and other redundant |
| * operands. |
| * |
| * Example simplifications: |
| * |
| * A || B || A -> A || B |
| * A && B && A=y -> A=y && B |
| * |
| * Returns the deduplicated expression. |
| */ |
| struct expr *expr_eliminate_dups(struct expr *e) |
| { |
| int oldcount; |
| if (!e) |
| return e; |
| |
| oldcount = trans_count; |
| do { |
| struct expr *l, *r; |
| |
| trans_count = 0; |
| switch (e->type) { |
| case E_OR: case E_AND: |
| l = expr_eliminate_dups(e->left.expr); |
| r = expr_eliminate_dups(e->right.expr); |
| expr_eliminate_dups1(e->type, &l, &r); |
| e = expr_alloc_two(e->type, l, r); |
| default: |
| ; |
| } |
| e = expr_eliminate_yn(e); |
| } while (trans_count); /* repeat until we get no more simplifications */ |
| trans_count = oldcount; |
| return e; |
| } |
| |
| /* |
| * Performs various simplifications involving logical operators and |
| * comparisons. |
| * |
| * For bool type: |
| * A=n -> !A |
| * A=m -> n |
| * A=y -> A |
| * A!=n -> A |
| * A!=m -> y |
| * A!=y -> !A |
| * |
| * For any type: |
| * !!A -> A |
| * !(A=B) -> A!=B |
| * !(A!=B) -> A=B |
| * !(A<=B) -> A>B |
| * !(A>=B) -> A<B |
| * !(A<B) -> A>=B |
| * !(A>B) -> A<=B |
| * !(A || B) -> !A && !B |
| * !(A && B) -> !A || !B |
| * |
| * For constant: |
| * !y -> n |
| * !m -> m |
| * !n -> y |
| * |
| * Allocates and returns a new expression. |
| */ |
| struct expr *expr_transform(struct expr *e) |
| { |
| if (!e) |
| return NULL; |
| switch (e->type) { |
| case E_EQUAL: |
| case E_GEQ: |
| case E_GTH: |
| case E_LEQ: |
| case E_LTH: |
| case E_UNEQUAL: |
| case E_SYMBOL: |
| break; |
| default: |
| e = expr_alloc_two(e->type, |
| expr_transform(e->left.expr), |
| expr_transform(e->right.expr)); |
| } |
| |
| switch (e->type) { |
| case E_EQUAL: |
| if (e->left.sym->type != S_BOOLEAN) |
| break; |
| if (e->right.sym == &symbol_no) { |
| // A=n -> !A |
| e = expr_alloc_one(E_NOT, expr_alloc_symbol(e->left.sym)); |
| break; |
| } |
| if (e->right.sym == &symbol_mod) { |
| // A=m -> n |
| printf("boolean symbol %s tested for 'm'? test forced to 'n'\n", e->left.sym->name); |
| e = expr_alloc_symbol(&symbol_no); |
| break; |
| } |
| if (e->right.sym == &symbol_yes) { |
| // A=y -> A |
| e = expr_alloc_symbol(e->left.sym); |
| break; |
| } |
| break; |
| case E_UNEQUAL: |
| if (e->left.sym->type != S_BOOLEAN) |
| break; |
| if (e->right.sym == &symbol_no) { |
| // A!=n -> A |
| e = expr_alloc_symbol(e->left.sym); |
| break; |
| } |
| if (e->right.sym == &symbol_mod) { |
| // A!=m -> y |
| printf("boolean symbol %s tested for 'm'? test forced to 'y'\n", e->left.sym->name); |
| e = expr_alloc_symbol(&symbol_yes); |
| break; |
| } |
| if (e->right.sym == &symbol_yes) { |
| // A!=y -> !A |
| e = expr_alloc_one(E_NOT, e->left.expr); |
| break; |
| } |
| break; |
| case E_NOT: |
| switch (e->left.expr->type) { |
| case E_NOT: |
| // !!A -> A |
| e = e->left.expr->left.expr; |
| break; |
| case E_EQUAL: |
| case E_UNEQUAL: |
| // !(A=B) -> A!=B |
| e = expr_alloc_comp(e->left.expr->type == E_EQUAL ? E_UNEQUAL : E_EQUAL, |
| e->left.expr->left.sym, |
| e->left.expr->right.sym); |
| break; |
| case E_LEQ: |
| case E_GEQ: |
| // !(A<=B) -> A>B |
| e = expr_alloc_comp(e->left.expr->type == E_LEQ ? E_GTH : E_LTH, |
| e->left.expr->left.sym, |
| e->left.expr->right.sym); |
| break; |
| case E_LTH: |
| case E_GTH: |
| // !(A<B) -> A>=B |
| e = expr_alloc_comp(e->left.expr->type == E_LTH ? E_GEQ : E_LEQ, |
| e->left.expr->left.sym, |
| e->left.expr->right.sym); |
| break; |
| case E_OR: |
| // !(A || B) -> !A && !B |
| e = expr_alloc_and(expr_alloc_one(E_NOT, e->left.expr->left.expr), |
| expr_alloc_one(E_NOT, e->left.expr->right.expr)); |
| e = expr_transform(e); |
| break; |
| case E_AND: |
| // !(A && B) -> !A || !B |
| e = expr_alloc_or(expr_alloc_one(E_NOT, e->left.expr->left.expr), |
| expr_alloc_one(E_NOT, e->left.expr->right.expr)); |
| e = expr_transform(e); |
| break; |
| case E_SYMBOL: |
| if (e->left.expr->left.sym == &symbol_yes) |
| // !'y' -> 'n' |
| e = expr_alloc_symbol(&symbol_no); |
| else if (e->left.expr->left.sym == &symbol_mod) |
| // !'m' -> 'm' |
| e = expr_alloc_symbol(&symbol_mod); |
| else if (e->left.expr->left.sym == &symbol_no) |
| // !'n' -> 'y' |
| e = expr_alloc_symbol(&symbol_yes); |
| break; |
| default: |
| ; |
| } |
| break; |
| default: |
| ; |
| } |
| return e; |
| } |
| |
| bool expr_contains_symbol(struct expr *dep, struct symbol *sym) |
| { |
| if (!dep) |
| return false; |
| |
| switch (dep->type) { |
| case E_AND: |
| case E_OR: |
| return expr_contains_symbol(dep->left.expr, sym) || |
| expr_contains_symbol(dep->right.expr, sym); |
| case E_SYMBOL: |
| return dep->left.sym == sym; |
| case E_EQUAL: |
| case E_GEQ: |
| case E_GTH: |
| case E_LEQ: |
| case E_LTH: |
| case E_UNEQUAL: |
| return dep->left.sym == sym || |
| dep->right.sym == sym; |
| case E_NOT: |
| return expr_contains_symbol(dep->left.expr, sym); |
| default: |
| ; |
| } |
| return false; |
| } |
| |
| bool expr_depends_symbol(struct expr *dep, struct symbol *sym) |
| { |
| if (!dep) |
| return false; |
| |
| switch (dep->type) { |
| case E_AND: |
| return expr_depends_symbol(dep->left.expr, sym) || |
| expr_depends_symbol(dep->right.expr, sym); |
| case E_SYMBOL: |
| return dep->left.sym == sym; |
| case E_EQUAL: |
| if (dep->left.sym == sym) { |
| if (dep->right.sym == &symbol_yes || dep->right.sym == &symbol_mod) |
| return true; |
| } |
| break; |
| case E_UNEQUAL: |
| if (dep->left.sym == sym) { |
| if (dep->right.sym == &symbol_no) |
| return true; |
| } |
| break; |
| default: |
| ; |
| } |
| return false; |
| } |
| |
| /* |
| * Inserts explicit comparisons of type 'type' to symbol 'sym' into the |
| * expression 'e'. |
| * |
| * Examples transformations for type == E_UNEQUAL, sym == &symbol_no: |
| * |
| * A -> A!=n |
| * !A -> A=n |
| * A && B -> !(A=n || B=n) |
| * A || B -> !(A=n && B=n) |
| * A && (B || C) -> !(A=n || (B=n && C=n)) |
| * |
| * Allocates and returns a new expression. |
| */ |
| struct expr *expr_trans_compare(struct expr *e, enum expr_type type, struct symbol *sym) |
| { |
| struct expr *e1, *e2; |
| |
| if (!e) { |
| e = expr_alloc_symbol(sym); |
| if (type == E_UNEQUAL) |
| e = expr_alloc_one(E_NOT, e); |
| return e; |
| } |
| switch (e->type) { |
| case E_AND: |
| e1 = expr_trans_compare(e->left.expr, E_EQUAL, sym); |
| e2 = expr_trans_compare(e->right.expr, E_EQUAL, sym); |
| if (sym == &symbol_yes) |
| e = expr_alloc_two(E_AND, e1, e2); |
| if (sym == &symbol_no) |
| e = expr_alloc_two(E_OR, e1, e2); |
| if (type == E_UNEQUAL) |
| e = expr_alloc_one(E_NOT, e); |
| return e; |
| case E_OR: |
| e1 = expr_trans_compare(e->left.expr, E_EQUAL, sym); |
| e2 = expr_trans_compare(e->right.expr, E_EQUAL, sym); |
| if (sym == &symbol_yes) |
| e = expr_alloc_two(E_OR, e1, e2); |
| if (sym == &symbol_no) |
| e = expr_alloc_two(E_AND, e1, e2); |
| if (type == E_UNEQUAL) |
| e = expr_alloc_one(E_NOT, e); |
| return e; |
| case E_NOT: |
| return expr_trans_compare(e->left.expr, type == E_EQUAL ? E_UNEQUAL : E_EQUAL, sym); |
| case E_UNEQUAL: |
| case E_LTH: |
| case E_LEQ: |
| case E_GTH: |
| case E_GEQ: |
| case E_EQUAL: |
| if (type == E_EQUAL) { |
| if (sym == &symbol_yes) |
| return e; |
| if (sym == &symbol_mod) |
| return expr_alloc_symbol(&symbol_no); |
| if (sym == &symbol_no) |
| return expr_alloc_one(E_NOT, e); |
| } else { |
| if (sym == &symbol_yes) |
| return expr_alloc_one(E_NOT, e); |
| if (sym == &symbol_mod) |
| return expr_alloc_symbol(&symbol_yes); |
| if (sym == &symbol_no) |
| return e; |
| } |
| break; |
| case E_SYMBOL: |
| return expr_alloc_comp(type, e->left.sym, sym); |
| case E_RANGE: |
| case E_NONE: |
| /* panic */; |
| } |
| return NULL; |
| } |
| |
| enum string_value_kind { |
| k_string, |
| k_signed, |
| k_unsigned, |
| }; |
| |
| union string_value { |
| unsigned long long u; |
| signed long long s; |
| }; |
| |
| static enum string_value_kind expr_parse_string(const char *str, |
| enum symbol_type type, |
| union string_value *val) |
| { |
| char *tail; |
| enum string_value_kind kind; |
| |
| errno = 0; |
| switch (type) { |
| case S_BOOLEAN: |
| case S_TRISTATE: |
| val->s = !strcmp(str, "n") ? 0 : |
| !strcmp(str, "m") ? 1 : |
| !strcmp(str, "y") ? 2 : -1; |
| return k_signed; |
| case S_INT: |
| val->s = strtoll(str, &tail, 10); |
| kind = k_signed; |
| break; |
| case S_HEX: |
| val->u = strtoull(str, &tail, 16); |
| kind = k_unsigned; |
| break; |
| default: |
| val->s = strtoll(str, &tail, 0); |
| kind = k_signed; |
| break; |
| } |
| return !errno && !*tail && tail > str && isxdigit(tail[-1]) |
| ? kind : k_string; |
| } |
| |
| static tristate __expr_calc_value(struct expr *e) |
| { |
| tristate val1, val2; |
| const char *str1, *str2; |
| enum string_value_kind k1 = k_string, k2 = k_string; |
| union string_value lval = {}, rval = {}; |
| int res; |
| |
| switch (e->type) { |
| case E_SYMBOL: |
| sym_calc_value(e->left.sym); |
| return e->left.sym->curr.tri; |
| case E_AND: |
| val1 = expr_calc_value(e->left.expr); |
| val2 = expr_calc_value(e->right.expr); |
| return EXPR_AND(val1, val2); |
| case E_OR: |
| val1 = expr_calc_value(e->left.expr); |
| val2 = expr_calc_value(e->right.expr); |
| return EXPR_OR(val1, val2); |
| case E_NOT: |
| val1 = expr_calc_value(e->left.expr); |
| return EXPR_NOT(val1); |
| case E_EQUAL: |
| case E_GEQ: |
| case E_GTH: |
| case E_LEQ: |
| case E_LTH: |
| case E_UNEQUAL: |
| break; |
| default: |
| printf("expr_calc_value: %d?\n", e->type); |
| return no; |
| } |
| |
| sym_calc_value(e->left.sym); |
| sym_calc_value(e->right.sym); |
| str1 = sym_get_string_value(e->left.sym); |
| str2 = sym_get_string_value(e->right.sym); |
| |
| if (e->left.sym->type != S_STRING || e->right.sym->type != S_STRING) { |
| k1 = expr_parse_string(str1, e->left.sym->type, &lval); |
| k2 = expr_parse_string(str2, e->right.sym->type, &rval); |
| } |
| |
| if (k1 == k_string || k2 == k_string) |
| res = strcmp(str1, str2); |
| else if (k1 == k_unsigned || k2 == k_unsigned) |
| res = (lval.u > rval.u) - (lval.u < rval.u); |
| else /* if (k1 == k_signed && k2 == k_signed) */ |
| res = (lval.s > rval.s) - (lval.s < rval.s); |
| |
| switch(e->type) { |
| case E_EQUAL: |
| return res ? no : yes; |
| case E_GEQ: |
| return res >= 0 ? yes : no; |
| case E_GTH: |
| return res > 0 ? yes : no; |
| case E_LEQ: |
| return res <= 0 ? yes : no; |
| case E_LTH: |
| return res < 0 ? yes : no; |
| case E_UNEQUAL: |
| return res ? yes : no; |
| default: |
| printf("expr_calc_value: relation %d?\n", e->type); |
| return no; |
| } |
| } |
| |
| /** |
| * expr_calc_value - return the tristate value of the given expression |
| * @e: expression |
| * return: tristate value of the expression |
| */ |
| tristate expr_calc_value(struct expr *e) |
| { |
| if (!e) |
| return yes; |
| |
| if (!e->val_is_valid) { |
| e->val = __expr_calc_value(e); |
| e->val_is_valid = true; |
| } |
| |
| return e->val; |
| } |
| |
| /** |
| * expr_invalidate_all - invalidate all cached expression values |
| */ |
| void expr_invalidate_all(void) |
| { |
| struct expr *e; |
| |
| hash_for_each(expr_hashtable, e, node) |
| e->val_is_valid = false; |
| } |
| |
| static int expr_compare_type(enum expr_type t1, enum expr_type t2) |
| { |
| if (t1 == t2) |
| return 0; |
| switch (t1) { |
| case E_LEQ: |
| case E_LTH: |
| case E_GEQ: |
| case E_GTH: |
| if (t2 == E_EQUAL || t2 == E_UNEQUAL) |
| return 1; |
| /* fallthrough */ |
| case E_EQUAL: |
| case E_UNEQUAL: |
| if (t2 == E_NOT) |
| return 1; |
| /* fallthrough */ |
| case E_NOT: |
| if (t2 == E_AND) |
| return 1; |
| /* fallthrough */ |
| case E_AND: |
| if (t2 == E_OR) |
| return 1; |
| /* fallthrough */ |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| void expr_print(const struct expr *e, |
| void (*fn)(void *, struct symbol *, const char *), |
| void *data, int prevtoken) |
| { |
| if (!e) { |
| fn(data, NULL, "y"); |
| return; |
| } |
| |
| if (expr_compare_type(prevtoken, e->type) > 0) |
| fn(data, NULL, "("); |
| switch (e->type) { |
| case E_SYMBOL: |
| if (e->left.sym->name) |
| fn(data, e->left.sym, e->left.sym->name); |
| else |
| fn(data, NULL, "<choice>"); |
| break; |
| case E_NOT: |
| fn(data, NULL, "!"); |
| expr_print(e->left.expr, fn, data, E_NOT); |
| break; |
| case E_EQUAL: |
| if (e->left.sym->name) |
| fn(data, e->left.sym, e->left.sym->name); |
| else |
| fn(data, NULL, "<choice>"); |
| fn(data, NULL, "="); |
| fn(data, e->right.sym, e->right.sym->name); |
| break; |
| case E_LEQ: |
| case E_LTH: |
| if (e->left.sym->name) |
| fn(data, e->left.sym, e->left.sym->name); |
| else |
| fn(data, NULL, "<choice>"); |
| fn(data, NULL, e->type == E_LEQ ? "<=" : "<"); |
| fn(data, e->right.sym, e->right.sym->name); |
| break; |
| case E_GEQ: |
| case E_GTH: |
| if (e->left.sym->name) |
| fn(data, e->left.sym, e->left.sym->name); |
| else |
| fn(data, NULL, "<choice>"); |
| fn(data, NULL, e->type == E_GEQ ? ">=" : ">"); |
| fn(data, e->right.sym, e->right.sym->name); |
| break; |
| case E_UNEQUAL: |
| if (e->left.sym->name) |
| fn(data, e->left.sym, e->left.sym->name); |
| else |
| fn(data, NULL, "<choice>"); |
| fn(data, NULL, "!="); |
| fn(data, e->right.sym, e->right.sym->name); |
| break; |
| case E_OR: |
| expr_print(e->left.expr, fn, data, E_OR); |
| fn(data, NULL, " || "); |
| expr_print(e->right.expr, fn, data, E_OR); |
| break; |
| case E_AND: |
| expr_print(e->left.expr, fn, data, E_AND); |
| fn(data, NULL, " && "); |
| expr_print(e->right.expr, fn, data, E_AND); |
| break; |
| case E_RANGE: |
| fn(data, NULL, "["); |
| fn(data, e->left.sym, e->left.sym->name); |
| fn(data, NULL, " "); |
| fn(data, e->right.sym, e->right.sym->name); |
| fn(data, NULL, "]"); |
| break; |
| default: |
| { |
| char buf[32]; |
| sprintf(buf, "<unknown type %d>", e->type); |
| fn(data, NULL, buf); |
| break; |
| } |
| } |
| if (expr_compare_type(prevtoken, e->type) > 0) |
| fn(data, NULL, ")"); |
| } |
| |
| static void expr_print_file_helper(void *data, struct symbol *sym, const char *str) |
| { |
| xfwrite(str, strlen(str), 1, data); |
| } |
| |
| void expr_fprint(struct expr *e, FILE *out) |
| { |
| expr_print(e, expr_print_file_helper, out, E_NONE); |
| } |
| |
| static void expr_print_gstr_helper(void *data, struct symbol *sym, const char *str) |
| { |
| struct gstr *gs = (struct gstr*)data; |
| const char *sym_str = NULL; |
| |
| if (sym) |
| sym_str = sym_get_string_value(sym); |
| |
| if (gs->max_width) { |
| unsigned extra_length = strlen(str); |
| const char *last_cr = strrchr(gs->s, '\n'); |
| unsigned last_line_length; |
| |
| if (sym_str) |
| extra_length += 4 + strlen(sym_str); |
| |
| if (!last_cr) |
| last_cr = gs->s; |
| |
| last_line_length = strlen(gs->s) - (last_cr - gs->s); |
| |
| if ((last_line_length + extra_length) > gs->max_width) |
| str_append(gs, "\\\n"); |
| } |
| |
| str_append(gs, str); |
| if (sym && sym->type != S_UNKNOWN) |
| str_printf(gs, " [=%s]", sym_str); |
| } |
| |
| void expr_gstr_print(const struct expr *e, struct gstr *gs) |
| { |
| expr_print(e, expr_print_gstr_helper, gs, E_NONE); |
| } |
| |
| /* |
| * Transform the top level "||" tokens into newlines and prepend each |
| * line with a minus. This makes expressions much easier to read. |
| * Suitable for reverse dependency expressions. |
| */ |
| static void expr_print_revdep(struct expr *e, |
| void (*fn)(void *, struct symbol *, const char *), |
| void *data, tristate pr_type, const char **title) |
| { |
| if (e->type == E_OR) { |
| expr_print_revdep(e->left.expr, fn, data, pr_type, title); |
| expr_print_revdep(e->right.expr, fn, data, pr_type, title); |
| } else if (expr_calc_value(e) == pr_type) { |
| if (*title) { |
| fn(data, NULL, *title); |
| *title = NULL; |
| } |
| |
| fn(data, NULL, " - "); |
| expr_print(e, fn, data, E_NONE); |
| fn(data, NULL, "\n"); |
| } |
| } |
| |
| void expr_gstr_print_revdep(struct expr *e, struct gstr *gs, |
| tristate pr_type, const char *title) |
| { |
| expr_print_revdep(e, expr_print_gstr_helper, gs, pr_type, &title); |
| } |