blob: 6865c7f1fc1a2343611ed56fd561461bf5d7ec23 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Cryptographic API.
*
* Support for VIA PadLock hardware crypto engine.
*
* Copyright (c) 2006 Michal Ludvig <michal@logix.cz>
*/
#include <crypto/internal/hash.h>
#include <crypto/padlock.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/scatterlist.h>
#include <asm/cpu_device_id.h>
#include <asm/fpu/api.h>
struct padlock_sha_desc {
struct shash_desc fallback;
};
struct padlock_sha_ctx {
struct crypto_shash *fallback;
};
static int padlock_sha_init(struct shash_desc *desc)
{
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
dctx->fallback.tfm = ctx->fallback;
return crypto_shash_init(&dctx->fallback);
}
static int padlock_sha_update(struct shash_desc *desc,
const u8 *data, unsigned int length)
{
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
return crypto_shash_update(&dctx->fallback, data, length);
}
static int padlock_sha_export(struct shash_desc *desc, void *out)
{
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
return crypto_shash_export(&dctx->fallback, out);
}
static int padlock_sha_import(struct shash_desc *desc, const void *in)
{
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
dctx->fallback.tfm = ctx->fallback;
return crypto_shash_import(&dctx->fallback, in);
}
static inline void padlock_output_block(uint32_t *src,
uint32_t *dst, size_t count)
{
while (count--)
*dst++ = swab32(*src++);
}
static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in,
unsigned int count, u8 *out)
{
/* We can't store directly to *out as it may be unaligned. */
/* BTW Don't reduce the buffer size below 128 Bytes!
* PadLock microcode needs it that big. */
char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
((aligned(STACK_ALIGN)));
char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
struct sha1_state state;
unsigned int space;
unsigned int leftover;
int err;
err = crypto_shash_export(&dctx->fallback, &state);
if (err)
goto out;
if (state.count + count > ULONG_MAX)
return crypto_shash_finup(&dctx->fallback, in, count, out);
leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1;
space = SHA1_BLOCK_SIZE - leftover;
if (space) {
if (count > space) {
err = crypto_shash_update(&dctx->fallback, in, space) ?:
crypto_shash_export(&dctx->fallback, &state);
if (err)
goto out;
count -= space;
in += space;
} else {
memcpy(state.buffer + leftover, in, count);
in = state.buffer;
count += leftover;
state.count &= ~(SHA1_BLOCK_SIZE - 1);
}
}
memcpy(result, &state.state, SHA1_DIGEST_SIZE);
asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */
: \
: "c"((unsigned long)state.count + count), \
"a"((unsigned long)state.count), \
"S"(in), "D"(result));
padlock_output_block((uint32_t *)result, (uint32_t *)out, 5);
out:
return err;
}
static int padlock_sha1_final(struct shash_desc *desc, u8 *out)
{
u8 buf[4];
return padlock_sha1_finup(desc, buf, 0, out);
}
static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in,
unsigned int count, u8 *out)
{
/* We can't store directly to *out as it may be unaligned. */
/* BTW Don't reduce the buffer size below 128 Bytes!
* PadLock microcode needs it that big. */
char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
((aligned(STACK_ALIGN)));
char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
struct sha256_state state;
unsigned int space;
unsigned int leftover;
int err;
err = crypto_shash_export(&dctx->fallback, &state);
if (err)
goto out;
if (state.count + count > ULONG_MAX)
return crypto_shash_finup(&dctx->fallback, in, count, out);
leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1;
space = SHA256_BLOCK_SIZE - leftover;
if (space) {
if (count > space) {
err = crypto_shash_update(&dctx->fallback, in, space) ?:
crypto_shash_export(&dctx->fallback, &state);
if (err)
goto out;
count -= space;
in += space;
} else {
memcpy(state.buf + leftover, in, count);
in = state.buf;
count += leftover;
state.count &= ~(SHA1_BLOCK_SIZE - 1);
}
}
memcpy(result, &state.state, SHA256_DIGEST_SIZE);
asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */
: \
: "c"((unsigned long)state.count + count), \
"a"((unsigned long)state.count), \
"S"(in), "D"(result));
padlock_output_block((uint32_t *)result, (uint32_t *)out, 8);
out:
return err;
}
static int padlock_sha256_final(struct shash_desc *desc, u8 *out)
{
u8 buf[4];
return padlock_sha256_finup(desc, buf, 0, out);
}
static int padlock_init_tfm(struct crypto_shash *hash)
{
const char *fallback_driver_name = crypto_shash_alg_name(hash);
struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
struct crypto_shash *fallback_tfm;
/* Allocate a fallback and abort if it failed. */
fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(fallback_tfm)) {
printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n",
fallback_driver_name);
return PTR_ERR(fallback_tfm);
}
ctx->fallback = fallback_tfm;
hash->descsize += crypto_shash_descsize(fallback_tfm);
return 0;
}
static void padlock_exit_tfm(struct crypto_shash *hash)
{
struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
crypto_free_shash(ctx->fallback);
}
static struct shash_alg sha1_alg = {
.digestsize = SHA1_DIGEST_SIZE,
.init = padlock_sha_init,
.update = padlock_sha_update,
.finup = padlock_sha1_finup,
.final = padlock_sha1_final,
.export = padlock_sha_export,
.import = padlock_sha_import,
.init_tfm = padlock_init_tfm,
.exit_tfm = padlock_exit_tfm,
.descsize = sizeof(struct padlock_sha_desc),
.statesize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-padlock",
.cra_priority = PADLOCK_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct padlock_sha_ctx),
.cra_module = THIS_MODULE,
}
};
static struct shash_alg sha256_alg = {
.digestsize = SHA256_DIGEST_SIZE,
.init = padlock_sha_init,
.update = padlock_sha_update,
.finup = padlock_sha256_finup,
.final = padlock_sha256_final,
.export = padlock_sha_export,
.import = padlock_sha_import,
.init_tfm = padlock_init_tfm,
.exit_tfm = padlock_exit_tfm,
.descsize = sizeof(struct padlock_sha_desc),
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-padlock",
.cra_priority = PADLOCK_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct padlock_sha_ctx),
.cra_module = THIS_MODULE,
}
};
/* Add two shash_alg instance for hardware-implemented *
* multiple-parts hash supported by VIA Nano Processor.*/
static int padlock_sha1_init_nano(struct shash_desc *desc)
{
struct sha1_state *sctx = shash_desc_ctx(desc);
*sctx = (struct sha1_state){
.state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
};
return 0;
}
static int padlock_sha1_update_nano(struct shash_desc *desc,
const u8 *data, unsigned int len)
{
struct sha1_state *sctx = shash_desc_ctx(desc);
unsigned int partial, done;
const u8 *src;
/*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
((aligned(STACK_ALIGN)));
u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
partial = sctx->count & 0x3f;
sctx->count += len;
done = 0;
src = data;
memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE);
if ((partial + len) >= SHA1_BLOCK_SIZE) {
/* Append the bytes in state's buffer to a block to handle */
if (partial) {
done = -partial;
memcpy(sctx->buffer + partial, data,
done + SHA1_BLOCK_SIZE);
src = sctx->buffer;
asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
: "+S"(src), "+D"(dst) \
: "a"((long)-1), "c"((unsigned long)1));
done += SHA1_BLOCK_SIZE;
src = data + done;
}
/* Process the left bytes from the input data */
if (len - done >= SHA1_BLOCK_SIZE) {
asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
: "+S"(src), "+D"(dst)
: "a"((long)-1),
"c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE)));
done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE);
src = data + done;
}
partial = 0;
}
memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE);
memcpy(sctx->buffer + partial, src, len - done);
return 0;
}
static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out)
{
struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc);
unsigned int partial, padlen;
__be64 bits;
static const u8 padding[64] = { 0x80, };
bits = cpu_to_be64(state->count << 3);
/* Pad out to 56 mod 64 */
partial = state->count & 0x3f;
padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
padlock_sha1_update_nano(desc, padding, padlen);
/* Append length field bytes */
padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits));
/* Swap to output */
padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5);
return 0;
}
static int padlock_sha256_init_nano(struct shash_desc *desc)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
*sctx = (struct sha256_state){
.state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \
SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7},
};
return 0;
}
static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
unsigned int partial, done;
const u8 *src;
/*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
((aligned(STACK_ALIGN)));
u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
partial = sctx->count & 0x3f;
sctx->count += len;
done = 0;
src = data;
memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE);
if ((partial + len) >= SHA256_BLOCK_SIZE) {
/* Append the bytes in state's buffer to a block to handle */
if (partial) {
done = -partial;
memcpy(sctx->buf + partial, data,
done + SHA256_BLOCK_SIZE);
src = sctx->buf;
asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
: "+S"(src), "+D"(dst)
: "a"((long)-1), "c"((unsigned long)1));
done += SHA256_BLOCK_SIZE;
src = data + done;
}
/* Process the left bytes from input data*/
if (len - done >= SHA256_BLOCK_SIZE) {
asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
: "+S"(src), "+D"(dst)
: "a"((long)-1),
"c"((unsigned long)((len - done) / 64)));
done += ((len - done) - (len - done) % 64);
src = data + done;
}
partial = 0;
}
memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE);
memcpy(sctx->buf + partial, src, len - done);
return 0;
}
static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out)
{
struct sha256_state *state =
(struct sha256_state *)shash_desc_ctx(desc);
unsigned int partial, padlen;
__be64 bits;
static const u8 padding[64] = { 0x80, };
bits = cpu_to_be64(state->count << 3);
/* Pad out to 56 mod 64 */
partial = state->count & 0x3f;
padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
padlock_sha256_update_nano(desc, padding, padlen);
/* Append length field bytes */
padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits));
/* Swap to output */
padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8);
return 0;
}
static int padlock_sha_export_nano(struct shash_desc *desc,
void *out)
{
int statesize = crypto_shash_statesize(desc->tfm);
void *sctx = shash_desc_ctx(desc);
memcpy(out, sctx, statesize);
return 0;
}
static int padlock_sha_import_nano(struct shash_desc *desc,
const void *in)
{
int statesize = crypto_shash_statesize(desc->tfm);
void *sctx = shash_desc_ctx(desc);
memcpy(sctx, in, statesize);
return 0;
}
static struct shash_alg sha1_alg_nano = {
.digestsize = SHA1_DIGEST_SIZE,
.init = padlock_sha1_init_nano,
.update = padlock_sha1_update_nano,
.final = padlock_sha1_final_nano,
.export = padlock_sha_export_nano,
.import = padlock_sha_import_nano,
.descsize = sizeof(struct sha1_state),
.statesize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-padlock-nano",
.cra_priority = PADLOCK_CRA_PRIORITY,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static struct shash_alg sha256_alg_nano = {
.digestsize = SHA256_DIGEST_SIZE,
.init = padlock_sha256_init_nano,
.update = padlock_sha256_update_nano,
.final = padlock_sha256_final_nano,
.export = padlock_sha_export_nano,
.import = padlock_sha_import_nano,
.descsize = sizeof(struct sha256_state),
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-padlock-nano",
.cra_priority = PADLOCK_CRA_PRIORITY,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static const struct x86_cpu_id padlock_sha_ids[] = {
X86_MATCH_FEATURE(X86_FEATURE_PHE, NULL),
{}
};
MODULE_DEVICE_TABLE(x86cpu, padlock_sha_ids);
static int __init padlock_init(void)
{
int rc = -ENODEV;
struct cpuinfo_x86 *c = &cpu_data(0);
struct shash_alg *sha1;
struct shash_alg *sha256;
if (!x86_match_cpu(padlock_sha_ids) || !boot_cpu_has(X86_FEATURE_PHE_EN))
return -ENODEV;
/* Register the newly added algorithm module if on *
* VIA Nano processor, or else just do as before */
if (c->x86_model < 0x0f) {
sha1 = &sha1_alg;
sha256 = &sha256_alg;
} else {
sha1 = &sha1_alg_nano;
sha256 = &sha256_alg_nano;
}
rc = crypto_register_shash(sha1);
if (rc)
goto out;
rc = crypto_register_shash(sha256);
if (rc)
goto out_unreg1;
printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n");
return 0;
out_unreg1:
crypto_unregister_shash(sha1);
out:
printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
return rc;
}
static void __exit padlock_fini(void)
{
struct cpuinfo_x86 *c = &cpu_data(0);
if (c->x86_model >= 0x0f) {
crypto_unregister_shash(&sha1_alg_nano);
crypto_unregister_shash(&sha256_alg_nano);
} else {
crypto_unregister_shash(&sha1_alg);
crypto_unregister_shash(&sha256_alg);
}
}
module_init(padlock_init);
module_exit(padlock_fini);
MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support.");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Ludvig");
MODULE_ALIAS_CRYPTO("sha1-all");
MODULE_ALIAS_CRYPTO("sha256-all");
MODULE_ALIAS_CRYPTO("sha1-padlock");
MODULE_ALIAS_CRYPTO("sha256-padlock");