| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2022-2023 Intel Corporation |
| */ |
| |
| #include "i915_drv.h" |
| #include "i915_reg.h" |
| #include "intel_color.h" |
| #include "intel_crtc.h" |
| #include "intel_de.h" |
| #include "intel_display_types.h" |
| #include "intel_vblank.h" |
| #include "intel_vrr.h" |
| |
| /* |
| * This timing diagram depicts the video signal in and |
| * around the vertical blanking period. |
| * |
| * Assumptions about the fictitious mode used in this example: |
| * vblank_start >= 3 |
| * vsync_start = vblank_start + 1 |
| * vsync_end = vblank_start + 2 |
| * vtotal = vblank_start + 3 |
| * |
| * start of vblank: |
| * latch double buffered registers |
| * increment frame counter (ctg+) |
| * generate start of vblank interrupt (gen4+) |
| * | |
| * | frame start: |
| * | generate frame start interrupt (aka. vblank interrupt) (gmch) |
| * | may be shifted forward 1-3 extra lines via TRANSCONF |
| * | | |
| * | | start of vsync: |
| * | | generate vsync interrupt |
| * | | | |
| * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx |
| * . \hs/ . \hs/ \hs/ \hs/ . \hs/ |
| * ----va---> <-----------------vb--------------------> <--------va------------- |
| * | | <----vs-----> | |
| * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2) |
| * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+) |
| * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi) |
| * | | | |
| * last visible pixel first visible pixel |
| * | increment frame counter (gen3/4) |
| * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4) |
| * |
| * x = horizontal active |
| * _ = horizontal blanking |
| * hs = horizontal sync |
| * va = vertical active |
| * vb = vertical blanking |
| * vs = vertical sync |
| * vbs = vblank_start (number) |
| * |
| * Summary: |
| * - most events happen at the start of horizontal sync |
| * - frame start happens at the start of horizontal blank, 1-4 lines |
| * (depending on TRANSCONF settings) after the start of vblank |
| * - gen3/4 pixel and frame counter are synchronized with the start |
| * of horizontal active on the first line of vertical active |
| */ |
| |
| /* |
| * Called from drm generic code, passed a 'crtc', which we use as a pipe index. |
| */ |
| u32 i915_get_vblank_counter(struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->dev); |
| struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)]; |
| const struct drm_display_mode *mode = &vblank->hwmode; |
| enum pipe pipe = to_intel_crtc(crtc)->pipe; |
| u32 pixel, vbl_start, hsync_start, htotal; |
| u64 frame; |
| |
| /* |
| * On i965gm TV output the frame counter only works up to |
| * the point when we enable the TV encoder. After that the |
| * frame counter ceases to work and reads zero. We need a |
| * vblank wait before enabling the TV encoder and so we |
| * have to enable vblank interrupts while the frame counter |
| * is still in a working state. However the core vblank code |
| * does not like us returning non-zero frame counter values |
| * when we've told it that we don't have a working frame |
| * counter. Thus we must stop non-zero values leaking out. |
| */ |
| if (!vblank->max_vblank_count) |
| return 0; |
| |
| htotal = mode->crtc_htotal; |
| hsync_start = mode->crtc_hsync_start; |
| vbl_start = intel_mode_vblank_start(mode); |
| |
| /* Convert to pixel count */ |
| vbl_start *= htotal; |
| |
| /* Start of vblank event occurs at start of hsync */ |
| vbl_start -= htotal - hsync_start; |
| |
| /* |
| * High & low register fields aren't synchronized, so make sure |
| * we get a low value that's stable across two reads of the high |
| * register. |
| */ |
| frame = intel_de_read64_2x32(dev_priv, PIPEFRAMEPIXEL(dev_priv, pipe), |
| PIPEFRAME(dev_priv, pipe)); |
| |
| pixel = frame & PIPE_PIXEL_MASK; |
| frame = (frame >> PIPE_FRAME_LOW_SHIFT) & 0xffffff; |
| |
| /* |
| * The frame counter increments at beginning of active. |
| * Cook up a vblank counter by also checking the pixel |
| * counter against vblank start. |
| */ |
| return (frame + (pixel >= vbl_start)) & 0xffffff; |
| } |
| |
| u32 g4x_get_vblank_counter(struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->dev); |
| struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)]; |
| enum pipe pipe = to_intel_crtc(crtc)->pipe; |
| |
| if (!vblank->max_vblank_count) |
| return 0; |
| |
| return intel_de_read(dev_priv, PIPE_FRMCOUNT_G4X(dev_priv, pipe)); |
| } |
| |
| static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); |
| const struct drm_display_mode *mode = &vblank->hwmode; |
| u32 htotal = mode->crtc_htotal; |
| u32 clock = mode->crtc_clock; |
| u32 scan_prev_time, scan_curr_time, scan_post_time; |
| |
| /* |
| * To avoid the race condition where we might cross into the |
| * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR |
| * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR |
| * during the same frame. |
| */ |
| do { |
| /* |
| * This field provides read back of the display |
| * pipe frame time stamp. The time stamp value |
| * is sampled at every start of vertical blank. |
| */ |
| scan_prev_time = intel_de_read_fw(dev_priv, |
| PIPE_FRMTMSTMP(crtc->pipe)); |
| |
| /* |
| * The TIMESTAMP_CTR register has the current |
| * time stamp value. |
| */ |
| scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR); |
| |
| scan_post_time = intel_de_read_fw(dev_priv, |
| PIPE_FRMTMSTMP(crtc->pipe)); |
| } while (scan_post_time != scan_prev_time); |
| |
| return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time, |
| clock), 1000 * htotal); |
| } |
| |
| /* |
| * On certain encoders on certain platforms, pipe |
| * scanline register will not work to get the scanline, |
| * since the timings are driven from the PORT or issues |
| * with scanline register updates. |
| * This function will use Framestamp and current |
| * timestamp registers to calculate the scanline. |
| */ |
| static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc) |
| { |
| struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); |
| const struct drm_display_mode *mode = &vblank->hwmode; |
| u32 vblank_start = mode->crtc_vblank_start; |
| u32 vtotal = mode->crtc_vtotal; |
| u32 scanline; |
| |
| scanline = intel_crtc_scanlines_since_frame_timestamp(crtc); |
| scanline = min(scanline, vtotal - 1); |
| scanline = (scanline + vblank_start) % vtotal; |
| |
| return scanline; |
| } |
| |
| static int intel_crtc_scanline_offset(const struct intel_crtc_state *crtc_state) |
| { |
| struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); |
| |
| /* |
| * The scanline counter increments at the leading edge of hsync. |
| * |
| * On most platforms it starts counting from vtotal-1 on the |
| * first active line. That means the scanline counter value is |
| * always one less than what we would expect. Ie. just after |
| * start of vblank, which also occurs at start of hsync (on the |
| * last active line), the scanline counter will read vblank_start-1. |
| * |
| * On gen2 the scanline counter starts counting from 1 instead |
| * of vtotal-1, so we have to subtract one. |
| * |
| * On HSW+ the behaviour of the scanline counter depends on the output |
| * type. For DP ports it behaves like most other platforms, but on HDMI |
| * there's an extra 1 line difference. So we need to add two instead of |
| * one to the value. |
| * |
| * On VLV/CHV DSI the scanline counter would appear to increment |
| * approx. 1/3 of a scanline before start of vblank. Unfortunately |
| * that means we can't tell whether we're in vblank or not while |
| * we're on that particular line. We must still set scanline_offset |
| * to 1 so that the vblank timestamps come out correct when we query |
| * the scanline counter from within the vblank interrupt handler. |
| * However if queried just before the start of vblank we'll get an |
| * answer that's slightly in the future. |
| */ |
| if (DISPLAY_VER(i915) == 2) |
| return -1; |
| else if (HAS_DDI(i915) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) |
| return 2; |
| else |
| return 1; |
| } |
| |
| /* |
| * intel_de_read_fw(), only for fast reads of display block, no need for |
| * forcewake etc. |
| */ |
| static int __intel_get_crtc_scanline(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); |
| const struct drm_display_mode *mode = &vblank->hwmode; |
| enum pipe pipe = crtc->pipe; |
| int position, vtotal; |
| |
| if (!crtc->active) |
| return 0; |
| |
| if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP) |
| return __intel_get_crtc_scanline_from_timestamp(crtc); |
| |
| vtotal = intel_mode_vtotal(mode); |
| |
| position = intel_de_read_fw(dev_priv, PIPEDSL(dev_priv, pipe)) & PIPEDSL_LINE_MASK; |
| |
| /* |
| * On HSW, the DSL reg (0x70000) appears to return 0 if we |
| * read it just before the start of vblank. So try it again |
| * so we don't accidentally end up spanning a vblank frame |
| * increment, causing the pipe_update_end() code to squak at us. |
| * |
| * The nature of this problem means we can't simply check the ISR |
| * bit and return the vblank start value; nor can we use the scanline |
| * debug register in the transcoder as it appears to have the same |
| * problem. We may need to extend this to include other platforms, |
| * but so far testing only shows the problem on HSW. |
| */ |
| if (HAS_DDI(dev_priv) && !position) { |
| int i, temp; |
| |
| for (i = 0; i < 100; i++) { |
| udelay(1); |
| temp = intel_de_read_fw(dev_priv, |
| PIPEDSL(dev_priv, pipe)) & PIPEDSL_LINE_MASK; |
| if (temp != position) { |
| position = temp; |
| break; |
| } |
| } |
| } |
| |
| /* |
| * See update_scanline_offset() for the details on the |
| * scanline_offset adjustment. |
| */ |
| return (position + vtotal + crtc->scanline_offset) % vtotal; |
| } |
| |
| int intel_crtc_scanline_to_hw(struct intel_crtc *crtc, int scanline) |
| { |
| const struct drm_vblank_crtc *vblank = drm_crtc_vblank_crtc(&crtc->base); |
| const struct drm_display_mode *mode = &vblank->hwmode; |
| int vtotal = intel_mode_vtotal(mode); |
| |
| return (scanline + vtotal - crtc->scanline_offset) % vtotal; |
| } |
| |
| /* |
| * The uncore version of the spin lock functions is used to decide |
| * whether we need to lock the uncore lock or not. This is only |
| * needed in i915, not in Xe. |
| * |
| * This lock in i915 is needed because some old platforms (at least |
| * IVB and possibly HSW as well), which are not supported in Xe, need |
| * all register accesses to the same cacheline to be serialized, |
| * otherwise they may hang. |
| */ |
| static void intel_vblank_section_enter(struct drm_i915_private *i915) |
| __acquires(i915->uncore.lock) |
| { |
| #ifdef I915 |
| spin_lock(&i915->uncore.lock); |
| #endif |
| } |
| |
| static void intel_vblank_section_exit(struct drm_i915_private *i915) |
| __releases(i915->uncore.lock) |
| { |
| #ifdef I915 |
| spin_unlock(&i915->uncore.lock); |
| #endif |
| } |
| |
| static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc, |
| bool in_vblank_irq, |
| int *vpos, int *hpos, |
| ktime_t *stime, ktime_t *etime, |
| const struct drm_display_mode *mode) |
| { |
| struct drm_device *dev = _crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *crtc = to_intel_crtc(_crtc); |
| enum pipe pipe = crtc->pipe; |
| int position; |
| int vbl_start, vbl_end, hsync_start, htotal, vtotal; |
| unsigned long irqflags; |
| bool use_scanline_counter = DISPLAY_VER(dev_priv) >= 5 || |
| IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) == 2 || |
| crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER; |
| |
| if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) { |
| drm_dbg(&dev_priv->drm, |
| "trying to get scanoutpos for disabled pipe %c\n", |
| pipe_name(pipe)); |
| return false; |
| } |
| |
| htotal = mode->crtc_htotal; |
| hsync_start = mode->crtc_hsync_start; |
| vtotal = intel_mode_vtotal(mode); |
| vbl_start = intel_mode_vblank_start(mode); |
| vbl_end = intel_mode_vblank_end(mode); |
| |
| /* |
| * Enter vblank critical section, as we will do multiple |
| * timing critical raw register reads, potentially with |
| * preemption disabled, so the following code must not block. |
| */ |
| local_irq_save(irqflags); |
| intel_vblank_section_enter(dev_priv); |
| |
| /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ |
| |
| /* Get optional system timestamp before query. */ |
| if (stime) |
| *stime = ktime_get(); |
| |
| if (crtc->mode_flags & I915_MODE_FLAG_VRR) { |
| int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc); |
| |
| position = __intel_get_crtc_scanline(crtc); |
| |
| /* |
| * Already exiting vblank? If so, shift our position |
| * so it looks like we're already apporaching the full |
| * vblank end. This should make the generated timestamp |
| * more or less match when the active portion will start. |
| */ |
| if (position >= vbl_start && scanlines < position) |
| position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1); |
| } else if (use_scanline_counter) { |
| /* No obvious pixelcount register. Only query vertical |
| * scanout position from Display scan line register. |
| */ |
| position = __intel_get_crtc_scanline(crtc); |
| } else { |
| /* |
| * Have access to pixelcount since start of frame. |
| * We can split this into vertical and horizontal |
| * scanout position. |
| */ |
| position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(dev_priv, pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT; |
| |
| /* convert to pixel counts */ |
| vbl_start *= htotal; |
| vbl_end *= htotal; |
| vtotal *= htotal; |
| |
| /* |
| * In interlaced modes, the pixel counter counts all pixels, |
| * so one field will have htotal more pixels. In order to avoid |
| * the reported position from jumping backwards when the pixel |
| * counter is beyond the length of the shorter field, just |
| * clamp the position the length of the shorter field. This |
| * matches how the scanline counter based position works since |
| * the scanline counter doesn't count the two half lines. |
| */ |
| position = min(position, vtotal - 1); |
| |
| /* |
| * Start of vblank interrupt is triggered at start of hsync, |
| * just prior to the first active line of vblank. However we |
| * consider lines to start at the leading edge of horizontal |
| * active. So, should we get here before we've crossed into |
| * the horizontal active of the first line in vblank, we would |
| * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that, |
| * always add htotal-hsync_start to the current pixel position. |
| */ |
| position = (position + htotal - hsync_start) % vtotal; |
| } |
| |
| /* Get optional system timestamp after query. */ |
| if (etime) |
| *etime = ktime_get(); |
| |
| /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ |
| |
| intel_vblank_section_exit(dev_priv); |
| local_irq_restore(irqflags); |
| |
| /* |
| * While in vblank, position will be negative |
| * counting up towards 0 at vbl_end. And outside |
| * vblank, position will be positive counting |
| * up since vbl_end. |
| */ |
| if (position >= vbl_start) |
| position -= vbl_end; |
| else |
| position += vtotal - vbl_end; |
| |
| if (use_scanline_counter) { |
| *vpos = position; |
| *hpos = 0; |
| } else { |
| *vpos = position / htotal; |
| *hpos = position - (*vpos * htotal); |
| } |
| |
| return true; |
| } |
| |
| bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error, |
| ktime_t *vblank_time, bool in_vblank_irq) |
| { |
| return drm_crtc_vblank_helper_get_vblank_timestamp_internal( |
| crtc, max_error, vblank_time, in_vblank_irq, |
| i915_get_crtc_scanoutpos); |
| } |
| |
| int intel_get_crtc_scanline(struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| unsigned long irqflags; |
| int position; |
| |
| local_irq_save(irqflags); |
| intel_vblank_section_enter(dev_priv); |
| |
| position = __intel_get_crtc_scanline(crtc); |
| |
| intel_vblank_section_exit(dev_priv); |
| local_irq_restore(irqflags); |
| |
| return position; |
| } |
| |
| static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| i915_reg_t reg = PIPEDSL(dev_priv, pipe); |
| u32 line1, line2; |
| |
| line1 = intel_de_read(dev_priv, reg) & PIPEDSL_LINE_MASK; |
| msleep(5); |
| line2 = intel_de_read(dev_priv, reg) & PIPEDSL_LINE_MASK; |
| |
| return line1 != line2; |
| } |
| |
| static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) |
| { |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| enum pipe pipe = crtc->pipe; |
| |
| /* Wait for the display line to settle/start moving */ |
| if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) |
| drm_err(&dev_priv->drm, |
| "pipe %c scanline %s wait timed out\n", |
| pipe_name(pipe), str_on_off(state)); |
| } |
| |
| void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) |
| { |
| wait_for_pipe_scanline_moving(crtc, false); |
| } |
| |
| void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) |
| { |
| wait_for_pipe_scanline_moving(crtc, true); |
| } |
| |
| void intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state, |
| bool vrr_enable) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); |
| struct drm_i915_private *i915 = to_i915(crtc->base.dev); |
| u8 mode_flags = crtc_state->mode_flags; |
| struct drm_display_mode adjusted_mode; |
| int vmax_vblank_start = 0; |
| unsigned long irqflags; |
| |
| drm_mode_init(&adjusted_mode, &crtc_state->hw.adjusted_mode); |
| |
| if (vrr_enable) { |
| drm_WARN_ON(&i915->drm, (mode_flags & I915_MODE_FLAG_VRR) == 0); |
| |
| adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax; |
| adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax; |
| adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state); |
| vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state); |
| } else { |
| mode_flags &= ~I915_MODE_FLAG_VRR; |
| } |
| |
| /* |
| * Belts and suspenders locking to guarantee everyone sees 100% |
| * consistent state during fastset seamless refresh rate changes. |
| * |
| * vblank_time_lock takes care of all drm_vblank.c stuff, and |
| * uncore.lock takes care of __intel_get_crtc_scanline() which |
| * may get called elsewhere as well. |
| * |
| * TODO maybe just protect everything (including |
| * __intel_get_crtc_scanline()) with vblank_time_lock? |
| * Need to audit everything to make sure it's safe. |
| */ |
| spin_lock_irqsave(&i915->drm.vblank_time_lock, irqflags); |
| intel_vblank_section_enter(i915); |
| |
| drm_calc_timestamping_constants(&crtc->base, &adjusted_mode); |
| |
| crtc->vmax_vblank_start = vmax_vblank_start; |
| |
| crtc->mode_flags = mode_flags; |
| |
| crtc->scanline_offset = intel_crtc_scanline_offset(crtc_state); |
| intel_vblank_section_exit(i915); |
| spin_unlock_irqrestore(&i915->drm.vblank_time_lock, irqflags); |
| } |
| |
| int intel_mode_vdisplay(const struct drm_display_mode *mode) |
| { |
| int vdisplay = mode->crtc_vdisplay; |
| |
| if (mode->flags & DRM_MODE_FLAG_INTERLACE) |
| vdisplay = DIV_ROUND_UP(vdisplay, 2); |
| |
| return vdisplay; |
| } |
| |
| int intel_mode_vblank_start(const struct drm_display_mode *mode) |
| { |
| int vblank_start = mode->crtc_vblank_start; |
| |
| if (mode->flags & DRM_MODE_FLAG_INTERLACE) |
| vblank_start = DIV_ROUND_UP(vblank_start, 2); |
| |
| return vblank_start; |
| } |
| |
| int intel_mode_vblank_end(const struct drm_display_mode *mode) |
| { |
| int vblank_end = mode->crtc_vblank_end; |
| |
| if (mode->flags & DRM_MODE_FLAG_INTERLACE) |
| vblank_end /= 2; |
| |
| return vblank_end; |
| } |
| |
| int intel_mode_vtotal(const struct drm_display_mode *mode) |
| { |
| int vtotal = mode->crtc_vtotal; |
| |
| if (mode->flags & DRM_MODE_FLAG_INTERLACE) |
| vtotal /= 2; |
| |
| return vtotal; |
| } |
| |
| void intel_vblank_evade_init(const struct intel_crtc_state *old_crtc_state, |
| const struct intel_crtc_state *new_crtc_state, |
| struct intel_vblank_evade_ctx *evade) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); |
| struct drm_i915_private *i915 = to_i915(crtc->base.dev); |
| const struct intel_crtc_state *crtc_state; |
| const struct drm_display_mode *adjusted_mode; |
| |
| evade->crtc = crtc; |
| |
| evade->need_vlv_dsi_wa = (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) && |
| intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI); |
| |
| /* |
| * During fastsets/etc. the transcoder is still |
| * running with the old timings at this point. |
| * |
| * TODO: maybe just use the active timings here? |
| */ |
| if (intel_crtc_needs_modeset(new_crtc_state)) |
| crtc_state = new_crtc_state; |
| else |
| crtc_state = old_crtc_state; |
| |
| adjusted_mode = &crtc_state->hw.adjusted_mode; |
| |
| if (crtc->mode_flags & I915_MODE_FLAG_VRR) { |
| /* timing changes should happen with VRR disabled */ |
| drm_WARN_ON(crtc->base.dev, intel_crtc_needs_modeset(new_crtc_state) || |
| new_crtc_state->update_m_n || new_crtc_state->update_lrr); |
| |
| if (intel_vrr_is_push_sent(crtc_state)) |
| evade->vblank_start = intel_vrr_vmin_vblank_start(crtc_state); |
| else |
| evade->vblank_start = intel_vrr_vmax_vblank_start(crtc_state); |
| } else { |
| evade->vblank_start = intel_mode_vblank_start(adjusted_mode); |
| } |
| |
| /* FIXME needs to be calibrated sensibly */ |
| evade->min = evade->vblank_start - intel_usecs_to_scanlines(adjusted_mode, |
| VBLANK_EVASION_TIME_US); |
| evade->max = evade->vblank_start - 1; |
| |
| /* |
| * M/N and TRANS_VTOTAL are double buffered on the transcoder's |
| * undelayed vblank, so with seamless M/N and LRR we must evade |
| * both vblanks. |
| * |
| * DSB execution waits for the transcoder's undelayed vblank, |
| * hence we must kick off the commit before that. |
| */ |
| if (intel_color_uses_dsb(new_crtc_state) || |
| new_crtc_state->update_m_n || new_crtc_state->update_lrr) |
| evade->min -= adjusted_mode->crtc_vblank_start - adjusted_mode->crtc_vdisplay; |
| } |
| |
| /* must be called with vblank interrupt already enabled! */ |
| int intel_vblank_evade(struct intel_vblank_evade_ctx *evade) |
| { |
| struct intel_crtc *crtc = evade->crtc; |
| struct drm_i915_private *i915 = to_i915(crtc->base.dev); |
| long timeout = msecs_to_jiffies_timeout(1); |
| wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base); |
| DEFINE_WAIT(wait); |
| int scanline; |
| |
| if (evade->min <= 0 || evade->max <= 0) |
| return 0; |
| |
| for (;;) { |
| /* |
| * prepare_to_wait() has a memory barrier, which guarantees |
| * other CPUs can see the task state update by the time we |
| * read the scanline. |
| */ |
| prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); |
| |
| scanline = intel_get_crtc_scanline(crtc); |
| if (scanline < evade->min || scanline > evade->max) |
| break; |
| |
| if (!timeout) { |
| drm_err(&i915->drm, |
| "Potential atomic update failure on pipe %c\n", |
| pipe_name(crtc->pipe)); |
| break; |
| } |
| |
| local_irq_enable(); |
| |
| timeout = schedule_timeout(timeout); |
| |
| local_irq_disable(); |
| } |
| |
| finish_wait(wq, &wait); |
| |
| /* |
| * On VLV/CHV DSI the scanline counter would appear to |
| * increment approx. 1/3 of a scanline before start of vblank. |
| * The registers still get latched at start of vblank however. |
| * This means we must not write any registers on the first |
| * line of vblank (since not the whole line is actually in |
| * vblank). And unfortunately we can't use the interrupt to |
| * wait here since it will fire too soon. We could use the |
| * frame start interrupt instead since it will fire after the |
| * critical scanline, but that would require more changes |
| * in the interrupt code. So for now we'll just do the nasty |
| * thing and poll for the bad scanline to pass us by. |
| * |
| * FIXME figure out if BXT+ DSI suffers from this as well |
| */ |
| while (evade->need_vlv_dsi_wa && scanline == evade->vblank_start) |
| scanline = intel_get_crtc_scanline(crtc); |
| |
| return scanline; |
| } |