| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2016-2019 Intel Corporation |
| */ |
| |
| #include <linux/types.h> |
| |
| #include "gt/intel_gt.h" |
| #include "intel_guc_reg.h" |
| #include "intel_huc.h" |
| #include "intel_huc_print.h" |
| #include "i915_drv.h" |
| #include "i915_reg.h" |
| |
| #include <linux/device/bus.h> |
| #include <linux/mei_aux.h> |
| |
| /** |
| * DOC: HuC |
| * |
| * The HuC is a dedicated microcontroller for usage in media HEVC (High |
| * Efficiency Video Coding) operations. Userspace can directly use the firmware |
| * capabilities by adding HuC specific commands to batch buffers. |
| * |
| * The kernel driver is only responsible for loading the HuC firmware and |
| * triggering its security authentication. This is done differently depending |
| * on the platform: |
| * - older platforms (from Gen9 to most Gen12s): the load is performed via DMA |
| * and the authentication via GuC |
| * - DG2: load and authentication are both performed via GSC. |
| * - MTL and newer platforms: the load is performed via DMA (same as with |
| * not-DG2 older platforms), while the authentication is done in 2-steps, |
| * a first auth for clear-media workloads via GuC and a second one for all |
| * workloads via GSC. |
| * On platforms where the GuC does the authentication, to correctly do so the |
| * HuC binary must be loaded before the GuC one. |
| * Loading the HuC is optional; however, not using the HuC might negatively |
| * impact power usage and/or performance of media workloads, depending on the |
| * use-cases. |
| * HuC must be reloaded on events that cause the WOPCM to lose its contents |
| * (S3/S4, FLR); on older platforms the HuC must also be reloaded on GuC/GT |
| * reset, while on newer ones it will survive that. |
| * |
| * See https://github.com/intel/media-driver for the latest details on HuC |
| * functionality. |
| */ |
| |
| /** |
| * DOC: HuC Memory Management |
| * |
| * Similarly to the GuC, the HuC can't do any memory allocations on its own, |
| * with the difference being that the allocations for HuC usage are handled by |
| * the userspace driver instead of the kernel one. The HuC accesses the memory |
| * via the PPGTT belonging to the context loaded on the VCS executing the |
| * HuC-specific commands. |
| */ |
| |
| /* |
| * MEI-GSC load is an async process. The probing of the exposed aux device |
| * (see intel_gsc.c) usually happens a few seconds after i915 probe, depending |
| * on when the kernel schedules it. Unless something goes terribly wrong, we're |
| * guaranteed for this to happen during boot, so the big timeout is a safety net |
| * that we never expect to need. |
| * MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed |
| * and/or reset, this can take longer. Note that the kernel might schedule |
| * other work between the i915 init/resume and the MEI one, which can add to |
| * the delay. |
| */ |
| #define GSC_INIT_TIMEOUT_MS 10000 |
| #define PXP_INIT_TIMEOUT_MS 5000 |
| |
| static int sw_fence_dummy_notify(struct i915_sw_fence *sf, |
| enum i915_sw_fence_notify state) |
| { |
| return NOTIFY_DONE; |
| } |
| |
| static void __delayed_huc_load_complete(struct intel_huc *huc) |
| { |
| if (!i915_sw_fence_done(&huc->delayed_load.fence)) |
| i915_sw_fence_complete(&huc->delayed_load.fence); |
| } |
| |
| static void delayed_huc_load_complete(struct intel_huc *huc) |
| { |
| hrtimer_cancel(&huc->delayed_load.timer); |
| __delayed_huc_load_complete(huc); |
| } |
| |
| static void __gsc_init_error(struct intel_huc *huc) |
| { |
| huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR; |
| __delayed_huc_load_complete(huc); |
| } |
| |
| static void gsc_init_error(struct intel_huc *huc) |
| { |
| hrtimer_cancel(&huc->delayed_load.timer); |
| __gsc_init_error(huc); |
| } |
| |
| static void gsc_init_done(struct intel_huc *huc) |
| { |
| hrtimer_cancel(&huc->delayed_load.timer); |
| |
| /* MEI-GSC init is done, now we wait for MEI-PXP to bind */ |
| huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP; |
| if (!i915_sw_fence_done(&huc->delayed_load.fence)) |
| hrtimer_start(&huc->delayed_load.timer, |
| ms_to_ktime(PXP_INIT_TIMEOUT_MS), |
| HRTIMER_MODE_REL); |
| } |
| |
| static enum hrtimer_restart huc_delayed_load_timer_callback(struct hrtimer *hrtimer) |
| { |
| struct intel_huc *huc = container_of(hrtimer, struct intel_huc, delayed_load.timer); |
| |
| if (!intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)) { |
| if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC) |
| huc_notice(huc, "timed out waiting for MEI GSC\n"); |
| else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP) |
| huc_notice(huc, "timed out waiting for MEI PXP\n"); |
| else |
| MISSING_CASE(huc->delayed_load.status); |
| |
| __gsc_init_error(huc); |
| } |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| static void huc_delayed_load_start(struct intel_huc *huc) |
| { |
| ktime_t delay; |
| |
| GEM_BUG_ON(intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)); |
| |
| /* |
| * On resume we don't have to wait for MEI-GSC to be re-probed, but we |
| * do need to wait for MEI-PXP to reset & re-bind |
| */ |
| switch (huc->delayed_load.status) { |
| case INTEL_HUC_WAITING_ON_GSC: |
| delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS); |
| break; |
| case INTEL_HUC_WAITING_ON_PXP: |
| delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS); |
| break; |
| default: |
| gsc_init_error(huc); |
| return; |
| } |
| |
| /* |
| * This fence is always complete unless we're waiting for the |
| * GSC device to come up to load the HuC. We arm the fence here |
| * and complete it when we confirm that the HuC is loaded from |
| * the PXP bind callback. |
| */ |
| GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence)); |
| i915_sw_fence_fini(&huc->delayed_load.fence); |
| i915_sw_fence_reinit(&huc->delayed_load.fence); |
| i915_sw_fence_await(&huc->delayed_load.fence); |
| i915_sw_fence_commit(&huc->delayed_load.fence); |
| |
| hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL); |
| } |
| |
| static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data) |
| { |
| struct device *dev = data; |
| struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb); |
| struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0]; |
| |
| if (!intf->adev || &intf->adev->aux_dev.dev != dev) |
| return 0; |
| |
| switch (action) { |
| case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */ |
| gsc_init_done(huc); |
| break; |
| |
| case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */ |
| case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */ |
| huc_info(huc, "MEI driver not bound, disabling load\n"); |
| gsc_init_error(huc); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| void intel_huc_register_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus) |
| { |
| int ret; |
| |
| if (!intel_huc_is_loaded_by_gsc(huc)) |
| return; |
| |
| huc->delayed_load.nb.notifier_call = gsc_notifier; |
| ret = bus_register_notifier(bus, &huc->delayed_load.nb); |
| if (ret) { |
| huc_err(huc, "failed to register GSC notifier %pe\n", ERR_PTR(ret)); |
| huc->delayed_load.nb.notifier_call = NULL; |
| gsc_init_error(huc); |
| } |
| } |
| |
| void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus) |
| { |
| if (!huc->delayed_load.nb.notifier_call) |
| return; |
| |
| delayed_huc_load_complete(huc); |
| |
| bus_unregister_notifier(bus, &huc->delayed_load.nb); |
| huc->delayed_load.nb.notifier_call = NULL; |
| } |
| |
| static void delayed_huc_load_init(struct intel_huc *huc) |
| { |
| /* |
| * Initialize fence to be complete as this is expected to be complete |
| * unless there is a delayed HuC load in progress. |
| */ |
| i915_sw_fence_init(&huc->delayed_load.fence, |
| sw_fence_dummy_notify); |
| i915_sw_fence_commit(&huc->delayed_load.fence); |
| |
| hrtimer_init(&huc->delayed_load.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| huc->delayed_load.timer.function = huc_delayed_load_timer_callback; |
| } |
| |
| static void delayed_huc_load_fini(struct intel_huc *huc) |
| { |
| /* |
| * the fence is initialized in init_early, so we need to clean it up |
| * even if HuC loading is off. |
| */ |
| delayed_huc_load_complete(huc); |
| i915_sw_fence_fini(&huc->delayed_load.fence); |
| } |
| |
| int intel_huc_sanitize(struct intel_huc *huc) |
| { |
| delayed_huc_load_complete(huc); |
| intel_uc_fw_sanitize(&huc->fw); |
| return 0; |
| } |
| |
| static bool vcs_supported(struct intel_gt *gt) |
| { |
| intel_engine_mask_t mask = gt->info.engine_mask; |
| |
| /* |
| * We reach here from i915_driver_early_probe for the primary GT before |
| * its engine mask is set, so we use the device info engine mask for it; |
| * this means we're not taking VCS fusing into account, but if the |
| * primary GT supports VCS engines we expect at least one of them to |
| * remain unfused so we're fine. |
| * For other GTs we expect the GT-specific mask to be set before we |
| * call this function. |
| */ |
| GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask); |
| |
| if (gt_is_root(gt)) |
| mask = RUNTIME_INFO(gt->i915)->platform_engine_mask; |
| else |
| mask = gt->info.engine_mask; |
| |
| return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS); |
| } |
| |
| void intel_huc_init_early(struct intel_huc *huc) |
| { |
| struct drm_i915_private *i915 = huc_to_gt(huc)->i915; |
| struct intel_gt *gt = huc_to_gt(huc); |
| |
| intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC, true); |
| |
| /* |
| * we always init the fence as already completed, even if HuC is not |
| * supported. This way we don't have to distinguish between HuC not |
| * supported/disabled or already loaded, and can focus on if the load |
| * is currently in progress (fence not complete) or not, which is what |
| * we care about for stalling userspace submissions. |
| */ |
| delayed_huc_load_init(huc); |
| |
| if (!vcs_supported(gt)) { |
| intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED); |
| return; |
| } |
| |
| if (GRAPHICS_VER(i915) >= 11) { |
| huc->status[INTEL_HUC_AUTH_BY_GUC].reg = GEN11_HUC_KERNEL_LOAD_INFO; |
| huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_LOAD_SUCCESSFUL; |
| huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_LOAD_SUCCESSFUL; |
| } else { |
| huc->status[INTEL_HUC_AUTH_BY_GUC].reg = HUC_STATUS2; |
| huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_FW_VERIFIED; |
| huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_FW_VERIFIED; |
| } |
| |
| if (IS_DG2(i915)) { |
| huc->status[INTEL_HUC_AUTH_BY_GSC].reg = GEN11_HUC_KERNEL_LOAD_INFO; |
| huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HUC_LOAD_SUCCESSFUL; |
| huc->status[INTEL_HUC_AUTH_BY_GSC].value = HUC_LOAD_SUCCESSFUL; |
| } else { |
| huc->status[INTEL_HUC_AUTH_BY_GSC].reg = HECI_FWSTS5(MTL_GSC_HECI1_BASE); |
| huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HECI_FWSTS5_HUC_AUTH_DONE; |
| huc->status[INTEL_HUC_AUTH_BY_GSC].value = HECI_FWSTS5_HUC_AUTH_DONE; |
| } |
| } |
| |
| #define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy") |
| static int check_huc_loading_mode(struct intel_huc *huc) |
| { |
| struct intel_gt *gt = huc_to_gt(huc); |
| bool gsc_enabled = huc->fw.has_gsc_headers; |
| |
| /* |
| * The fuse for HuC load via GSC is only valid on platforms that have |
| * GuC deprivilege. |
| */ |
| if (HAS_GUC_DEPRIVILEGE(gt->i915)) |
| huc->loaded_via_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) & |
| GSC_LOADS_HUC; |
| |
| if (huc->loaded_via_gsc && !gsc_enabled) { |
| huc_err(huc, "HW requires a GSC-enabled blob, but we found a legacy one\n"); |
| return -ENOEXEC; |
| } |
| |
| /* |
| * On newer platforms we have GSC-enabled binaries but we load the HuC |
| * via DMA. To do so we need to find the location of the legacy-style |
| * binary inside the GSC-enabled one, which we do at fetch time. Make |
| * sure that we were able to do so if the fuse says we need to load via |
| * DMA and the binary is GSC-enabled. |
| */ |
| if (!huc->loaded_via_gsc && gsc_enabled && !huc->fw.dma_start_offset) { |
| huc_err(huc, "HW in DMA mode, but we have an incompatible GSC-enabled blob\n"); |
| return -ENOEXEC; |
| } |
| |
| /* |
| * If the HuC is loaded via GSC, we need to be able to access the GSC. |
| * On DG2 this is done via the mei components, while on newer platforms |
| * it is done via the GSCCS, |
| */ |
| if (huc->loaded_via_gsc) { |
| if (IS_DG2(gt->i915)) { |
| if (!IS_ENABLED(CONFIG_INTEL_MEI_PXP) || |
| !IS_ENABLED(CONFIG_INTEL_MEI_GSC)) { |
| huc_info(huc, "can't load due to missing mei modules\n"); |
| return -EIO; |
| } |
| } else { |
| if (!HAS_ENGINE(gt, GSC0)) { |
| huc_info(huc, "can't load due to missing GSCCS\n"); |
| return -EIO; |
| } |
| } |
| } |
| |
| huc_dbg(huc, "loaded by GSC = %s\n", str_yes_no(huc->loaded_via_gsc)); |
| |
| return 0; |
| } |
| |
| int intel_huc_init(struct intel_huc *huc) |
| { |
| int err; |
| |
| err = check_huc_loading_mode(huc); |
| if (err) |
| goto out; |
| |
| err = intel_uc_fw_init(&huc->fw); |
| if (err) |
| goto out; |
| |
| intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE); |
| |
| return 0; |
| |
| out: |
| intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); |
| huc_info(huc, "initialization failed %pe\n", ERR_PTR(err)); |
| return err; |
| } |
| |
| void intel_huc_fini(struct intel_huc *huc) |
| { |
| /* |
| * the fence is initialized in init_early, so we need to clean it up |
| * even if HuC loading is off. |
| */ |
| delayed_huc_load_fini(huc); |
| |
| if (intel_uc_fw_is_loadable(&huc->fw)) |
| intel_uc_fw_fini(&huc->fw); |
| } |
| |
| void intel_huc_suspend(struct intel_huc *huc) |
| { |
| if (!intel_uc_fw_is_loadable(&huc->fw)) |
| return; |
| |
| /* |
| * in the unlikely case that we're suspending before the GSC has |
| * completed its loading sequence, just stop waiting. We'll restart |
| * on resume. |
| */ |
| delayed_huc_load_complete(huc); |
| } |
| |
| static const char *auth_mode_string(struct intel_huc *huc, |
| enum intel_huc_authentication_type type) |
| { |
| bool partial = huc->fw.has_gsc_headers && type == INTEL_HUC_AUTH_BY_GUC; |
| |
| return partial ? "clear media" : "all workloads"; |
| } |
| |
| int intel_huc_wait_for_auth_complete(struct intel_huc *huc, |
| enum intel_huc_authentication_type type) |
| { |
| struct intel_gt *gt = huc_to_gt(huc); |
| int ret; |
| |
| ret = __intel_wait_for_register(gt->uncore, |
| huc->status[type].reg, |
| huc->status[type].mask, |
| huc->status[type].value, |
| 2, 50, NULL); |
| |
| /* mark the load process as complete even if the wait failed */ |
| delayed_huc_load_complete(huc); |
| |
| if (ret) { |
| huc_err(huc, "firmware not verified for %s: %pe\n", |
| auth_mode_string(huc, type), ERR_PTR(ret)); |
| intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL); |
| return ret; |
| } |
| |
| intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING); |
| huc_info(huc, "authenticated for %s\n", auth_mode_string(huc, type)); |
| return 0; |
| } |
| |
| /** |
| * intel_huc_auth() - Authenticate HuC uCode |
| * @huc: intel_huc structure |
| * |
| * Called after HuC and GuC firmware loading during intel_uc_init_hw(). |
| * |
| * This function invokes the GuC action to authenticate the HuC firmware, |
| * passing the offset of the RSA signature to intel_guc_auth_huc(). It then |
| * waits for up to 50ms for firmware verification ACK. |
| */ |
| int intel_huc_auth(struct intel_huc *huc) |
| { |
| struct intel_gt *gt = huc_to_gt(huc); |
| struct intel_guc *guc = >->uc.guc; |
| int ret; |
| |
| if (!intel_uc_fw_is_loaded(&huc->fw)) |
| return -ENOEXEC; |
| |
| /* GSC will do the auth */ |
| if (intel_huc_is_loaded_by_gsc(huc)) |
| return -ENODEV; |
| |
| ret = i915_inject_probe_error(gt->i915, -ENXIO); |
| if (ret) |
| goto fail; |
| |
| GEM_BUG_ON(intel_uc_fw_is_running(&huc->fw)); |
| |
| ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data)); |
| if (ret) { |
| huc_err(huc, "authentication by GuC failed %pe\n", ERR_PTR(ret)); |
| goto fail; |
| } |
| |
| /* Check authentication status, it should be done by now */ |
| ret = intel_huc_wait_for_auth_complete(huc, INTEL_HUC_AUTH_BY_GUC); |
| if (ret) |
| goto fail; |
| |
| return 0; |
| |
| fail: |
| huc_probe_error(huc, "authentication failed %pe\n", ERR_PTR(ret)); |
| return ret; |
| } |
| |
| bool intel_huc_is_authenticated(struct intel_huc *huc, |
| enum intel_huc_authentication_type type) |
| { |
| struct intel_gt *gt = huc_to_gt(huc); |
| intel_wakeref_t wakeref; |
| u32 status = 0; |
| |
| with_intel_runtime_pm(gt->uncore->rpm, wakeref) |
| status = intel_uncore_read(gt->uncore, huc->status[type].reg); |
| |
| return (status & huc->status[type].mask) == huc->status[type].value; |
| } |
| |
| static bool huc_is_fully_authenticated(struct intel_huc *huc) |
| { |
| struct intel_uc_fw *huc_fw = &huc->fw; |
| |
| if (!huc_fw->has_gsc_headers) |
| return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC); |
| else if (intel_huc_is_loaded_by_gsc(huc) || HAS_ENGINE(huc_to_gt(huc), GSC0)) |
| return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC); |
| else |
| return false; |
| } |
| |
| /** |
| * intel_huc_check_status() - check HuC status |
| * @huc: intel_huc structure |
| * |
| * This function reads status register to verify if HuC |
| * firmware was successfully loaded. |
| * |
| * The return values match what is expected for the I915_PARAM_HUC_STATUS |
| * getparam. |
| */ |
| int intel_huc_check_status(struct intel_huc *huc) |
| { |
| struct intel_uc_fw *huc_fw = &huc->fw; |
| |
| switch (__intel_uc_fw_status(huc_fw)) { |
| case INTEL_UC_FIRMWARE_NOT_SUPPORTED: |
| return -ENODEV; |
| case INTEL_UC_FIRMWARE_DISABLED: |
| return -EOPNOTSUPP; |
| case INTEL_UC_FIRMWARE_MISSING: |
| return -ENOPKG; |
| case INTEL_UC_FIRMWARE_ERROR: |
| return -ENOEXEC; |
| case INTEL_UC_FIRMWARE_INIT_FAIL: |
| return -ENOMEM; |
| case INTEL_UC_FIRMWARE_LOAD_FAIL: |
| return -EIO; |
| default: |
| break; |
| } |
| |
| /* |
| * GSC-enabled binaries loaded via DMA are first partially |
| * authenticated by GuC and then fully authenticated by GSC |
| */ |
| if (huc_is_fully_authenticated(huc)) |
| return 1; /* full auth */ |
| else if (huc_fw->has_gsc_headers && !intel_huc_is_loaded_by_gsc(huc) && |
| intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC)) |
| return 2; /* clear media only */ |
| else |
| return 0; |
| } |
| |
| static bool huc_has_delayed_load(struct intel_huc *huc) |
| { |
| return intel_huc_is_loaded_by_gsc(huc) && |
| (huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR); |
| } |
| |
| void intel_huc_update_auth_status(struct intel_huc *huc) |
| { |
| if (!intel_uc_fw_is_loadable(&huc->fw)) |
| return; |
| |
| if (!huc->fw.has_gsc_headers) |
| return; |
| |
| if (huc_is_fully_authenticated(huc)) |
| intel_uc_fw_change_status(&huc->fw, |
| INTEL_UC_FIRMWARE_RUNNING); |
| else if (huc_has_delayed_load(huc)) |
| huc_delayed_load_start(huc); |
| } |
| |
| /** |
| * intel_huc_load_status - dump information about HuC load status |
| * @huc: the HuC |
| * @p: the &drm_printer |
| * |
| * Pretty printer for HuC load status. |
| */ |
| void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p) |
| { |
| struct intel_gt *gt = huc_to_gt(huc); |
| intel_wakeref_t wakeref; |
| |
| if (!intel_huc_is_supported(huc)) { |
| drm_printf(p, "HuC not supported\n"); |
| return; |
| } |
| |
| if (!intel_huc_is_wanted(huc)) { |
| drm_printf(p, "HuC disabled\n"); |
| return; |
| } |
| |
| intel_uc_fw_dump(&huc->fw, p); |
| |
| with_intel_runtime_pm(gt->uncore->rpm, wakeref) |
| drm_printf(p, "HuC status: 0x%08x\n", |
| intel_uncore_read(gt->uncore, huc->status[INTEL_HUC_AUTH_BY_GUC].reg)); |
| } |