| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_inode.h" |
| #include "xfs_trans.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_trace.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_log.h" |
| #include "xfs_error.h" |
| |
| #include <linux/iversion.h> |
| |
| kmem_zone_t *xfs_ili_zone; /* inode log item zone */ |
| |
| static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) |
| { |
| return container_of(lip, struct xfs_inode_log_item, ili_item); |
| } |
| |
| STATIC void |
| xfs_inode_item_data_fork_size( |
| struct xfs_inode_log_item *iip, |
| int *nvecs, |
| int *nbytes) |
| { |
| struct xfs_inode *ip = iip->ili_inode; |
| |
| switch (ip->i_d.di_format) { |
| case XFS_DINODE_FMT_EXTENTS: |
| if ((iip->ili_fields & XFS_ILOG_DEXT) && |
| ip->i_d.di_nextents > 0 && |
| ip->i_df.if_bytes > 0) { |
| /* worst case, doesn't subtract delalloc extents */ |
| *nbytes += XFS_IFORK_DSIZE(ip); |
| *nvecs += 1; |
| } |
| break; |
| case XFS_DINODE_FMT_BTREE: |
| if ((iip->ili_fields & XFS_ILOG_DBROOT) && |
| ip->i_df.if_broot_bytes > 0) { |
| *nbytes += ip->i_df.if_broot_bytes; |
| *nvecs += 1; |
| } |
| break; |
| case XFS_DINODE_FMT_LOCAL: |
| if ((iip->ili_fields & XFS_ILOG_DDATA) && |
| ip->i_df.if_bytes > 0) { |
| *nbytes += roundup(ip->i_df.if_bytes, 4); |
| *nvecs += 1; |
| } |
| break; |
| |
| case XFS_DINODE_FMT_DEV: |
| break; |
| default: |
| ASSERT(0); |
| break; |
| } |
| } |
| |
| STATIC void |
| xfs_inode_item_attr_fork_size( |
| struct xfs_inode_log_item *iip, |
| int *nvecs, |
| int *nbytes) |
| { |
| struct xfs_inode *ip = iip->ili_inode; |
| |
| switch (ip->i_d.di_aformat) { |
| case XFS_DINODE_FMT_EXTENTS: |
| if ((iip->ili_fields & XFS_ILOG_AEXT) && |
| ip->i_d.di_anextents > 0 && |
| ip->i_afp->if_bytes > 0) { |
| /* worst case, doesn't subtract unused space */ |
| *nbytes += XFS_IFORK_ASIZE(ip); |
| *nvecs += 1; |
| } |
| break; |
| case XFS_DINODE_FMT_BTREE: |
| if ((iip->ili_fields & XFS_ILOG_ABROOT) && |
| ip->i_afp->if_broot_bytes > 0) { |
| *nbytes += ip->i_afp->if_broot_bytes; |
| *nvecs += 1; |
| } |
| break; |
| case XFS_DINODE_FMT_LOCAL: |
| if ((iip->ili_fields & XFS_ILOG_ADATA) && |
| ip->i_afp->if_bytes > 0) { |
| *nbytes += roundup(ip->i_afp->if_bytes, 4); |
| *nvecs += 1; |
| } |
| break; |
| default: |
| ASSERT(0); |
| break; |
| } |
| } |
| |
| /* |
| * This returns the number of iovecs needed to log the given inode item. |
| * |
| * We need one iovec for the inode log format structure, one for the |
| * inode core, and possibly one for the inode data/extents/b-tree root |
| * and one for the inode attribute data/extents/b-tree root. |
| */ |
| STATIC void |
| xfs_inode_item_size( |
| struct xfs_log_item *lip, |
| int *nvecs, |
| int *nbytes) |
| { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| struct xfs_inode *ip = iip->ili_inode; |
| |
| *nvecs += 2; |
| *nbytes += sizeof(struct xfs_inode_log_format) + |
| xfs_log_dinode_size(ip->i_d.di_version); |
| |
| xfs_inode_item_data_fork_size(iip, nvecs, nbytes); |
| if (XFS_IFORK_Q(ip)) |
| xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); |
| } |
| |
| STATIC void |
| xfs_inode_item_format_data_fork( |
| struct xfs_inode_log_item *iip, |
| struct xfs_inode_log_format *ilf, |
| struct xfs_log_vec *lv, |
| struct xfs_log_iovec **vecp) |
| { |
| struct xfs_inode *ip = iip->ili_inode; |
| size_t data_bytes; |
| |
| switch (ip->i_d.di_format) { |
| case XFS_DINODE_FMT_EXTENTS: |
| iip->ili_fields &= |
| ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); |
| |
| if ((iip->ili_fields & XFS_ILOG_DEXT) && |
| ip->i_d.di_nextents > 0 && |
| ip->i_df.if_bytes > 0) { |
| struct xfs_bmbt_rec *p; |
| |
| ASSERT(xfs_iext_count(&ip->i_df) > 0); |
| |
| p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); |
| data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); |
| xlog_finish_iovec(lv, *vecp, data_bytes); |
| |
| ASSERT(data_bytes <= ip->i_df.if_bytes); |
| |
| ilf->ilf_dsize = data_bytes; |
| ilf->ilf_size++; |
| } else { |
| iip->ili_fields &= ~XFS_ILOG_DEXT; |
| } |
| break; |
| case XFS_DINODE_FMT_BTREE: |
| iip->ili_fields &= |
| ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); |
| |
| if ((iip->ili_fields & XFS_ILOG_DBROOT) && |
| ip->i_df.if_broot_bytes > 0) { |
| ASSERT(ip->i_df.if_broot != NULL); |
| xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, |
| ip->i_df.if_broot, |
| ip->i_df.if_broot_bytes); |
| ilf->ilf_dsize = ip->i_df.if_broot_bytes; |
| ilf->ilf_size++; |
| } else { |
| ASSERT(!(iip->ili_fields & |
| XFS_ILOG_DBROOT)); |
| iip->ili_fields &= ~XFS_ILOG_DBROOT; |
| } |
| break; |
| case XFS_DINODE_FMT_LOCAL: |
| iip->ili_fields &= |
| ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); |
| if ((iip->ili_fields & XFS_ILOG_DDATA) && |
| ip->i_df.if_bytes > 0) { |
| /* |
| * Round i_bytes up to a word boundary. |
| * The underlying memory is guaranteed to |
| * to be there by xfs_idata_realloc(). |
| */ |
| data_bytes = roundup(ip->i_df.if_bytes, 4); |
| ASSERT(ip->i_df.if_u1.if_data != NULL); |
| ASSERT(ip->i_d.di_size > 0); |
| xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, |
| ip->i_df.if_u1.if_data, data_bytes); |
| ilf->ilf_dsize = (unsigned)data_bytes; |
| ilf->ilf_size++; |
| } else { |
| iip->ili_fields &= ~XFS_ILOG_DDATA; |
| } |
| break; |
| case XFS_DINODE_FMT_DEV: |
| iip->ili_fields &= |
| ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); |
| if (iip->ili_fields & XFS_ILOG_DEV) |
| ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); |
| break; |
| default: |
| ASSERT(0); |
| break; |
| } |
| } |
| |
| STATIC void |
| xfs_inode_item_format_attr_fork( |
| struct xfs_inode_log_item *iip, |
| struct xfs_inode_log_format *ilf, |
| struct xfs_log_vec *lv, |
| struct xfs_log_iovec **vecp) |
| { |
| struct xfs_inode *ip = iip->ili_inode; |
| size_t data_bytes; |
| |
| switch (ip->i_d.di_aformat) { |
| case XFS_DINODE_FMT_EXTENTS: |
| iip->ili_fields &= |
| ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); |
| |
| if ((iip->ili_fields & XFS_ILOG_AEXT) && |
| ip->i_d.di_anextents > 0 && |
| ip->i_afp->if_bytes > 0) { |
| struct xfs_bmbt_rec *p; |
| |
| ASSERT(xfs_iext_count(ip->i_afp) == |
| ip->i_d.di_anextents); |
| |
| p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); |
| data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); |
| xlog_finish_iovec(lv, *vecp, data_bytes); |
| |
| ilf->ilf_asize = data_bytes; |
| ilf->ilf_size++; |
| } else { |
| iip->ili_fields &= ~XFS_ILOG_AEXT; |
| } |
| break; |
| case XFS_DINODE_FMT_BTREE: |
| iip->ili_fields &= |
| ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); |
| |
| if ((iip->ili_fields & XFS_ILOG_ABROOT) && |
| ip->i_afp->if_broot_bytes > 0) { |
| ASSERT(ip->i_afp->if_broot != NULL); |
| |
| xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, |
| ip->i_afp->if_broot, |
| ip->i_afp->if_broot_bytes); |
| ilf->ilf_asize = ip->i_afp->if_broot_bytes; |
| ilf->ilf_size++; |
| } else { |
| iip->ili_fields &= ~XFS_ILOG_ABROOT; |
| } |
| break; |
| case XFS_DINODE_FMT_LOCAL: |
| iip->ili_fields &= |
| ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); |
| |
| if ((iip->ili_fields & XFS_ILOG_ADATA) && |
| ip->i_afp->if_bytes > 0) { |
| /* |
| * Round i_bytes up to a word boundary. |
| * The underlying memory is guaranteed to |
| * to be there by xfs_idata_realloc(). |
| */ |
| data_bytes = roundup(ip->i_afp->if_bytes, 4); |
| ASSERT(ip->i_afp->if_u1.if_data != NULL); |
| xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, |
| ip->i_afp->if_u1.if_data, |
| data_bytes); |
| ilf->ilf_asize = (unsigned)data_bytes; |
| ilf->ilf_size++; |
| } else { |
| iip->ili_fields &= ~XFS_ILOG_ADATA; |
| } |
| break; |
| default: |
| ASSERT(0); |
| break; |
| } |
| } |
| |
| static void |
| xfs_inode_to_log_dinode( |
| struct xfs_inode *ip, |
| struct xfs_log_dinode *to, |
| xfs_lsn_t lsn) |
| { |
| struct xfs_icdinode *from = &ip->i_d; |
| struct inode *inode = VFS_I(ip); |
| |
| to->di_magic = XFS_DINODE_MAGIC; |
| |
| to->di_version = from->di_version; |
| to->di_format = from->di_format; |
| to->di_uid = from->di_uid; |
| to->di_gid = from->di_gid; |
| to->di_projid_lo = from->di_projid & 0xffff; |
| to->di_projid_hi = from->di_projid >> 16; |
| |
| memset(to->di_pad, 0, sizeof(to->di_pad)); |
| memset(to->di_pad3, 0, sizeof(to->di_pad3)); |
| to->di_atime.t_sec = inode->i_atime.tv_sec; |
| to->di_atime.t_nsec = inode->i_atime.tv_nsec; |
| to->di_mtime.t_sec = inode->i_mtime.tv_sec; |
| to->di_mtime.t_nsec = inode->i_mtime.tv_nsec; |
| to->di_ctime.t_sec = inode->i_ctime.tv_sec; |
| to->di_ctime.t_nsec = inode->i_ctime.tv_nsec; |
| to->di_nlink = inode->i_nlink; |
| to->di_gen = inode->i_generation; |
| to->di_mode = inode->i_mode; |
| |
| to->di_size = from->di_size; |
| to->di_nblocks = from->di_nblocks; |
| to->di_extsize = from->di_extsize; |
| to->di_nextents = from->di_nextents; |
| to->di_anextents = from->di_anextents; |
| to->di_forkoff = from->di_forkoff; |
| to->di_aformat = from->di_aformat; |
| to->di_dmevmask = from->di_dmevmask; |
| to->di_dmstate = from->di_dmstate; |
| to->di_flags = from->di_flags; |
| |
| /* log a dummy value to ensure log structure is fully initialised */ |
| to->di_next_unlinked = NULLAGINO; |
| |
| if (from->di_version == 3) { |
| to->di_changecount = inode_peek_iversion(inode); |
| to->di_crtime.t_sec = from->di_crtime.tv_sec; |
| to->di_crtime.t_nsec = from->di_crtime.tv_nsec; |
| to->di_flags2 = from->di_flags2; |
| to->di_cowextsize = from->di_cowextsize; |
| to->di_ino = ip->i_ino; |
| to->di_lsn = lsn; |
| memset(to->di_pad2, 0, sizeof(to->di_pad2)); |
| uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); |
| to->di_flushiter = 0; |
| } else { |
| to->di_flushiter = from->di_flushiter; |
| } |
| } |
| |
| /* |
| * Format the inode core. Current timestamp data is only in the VFS inode |
| * fields, so we need to grab them from there. Hence rather than just copying |
| * the XFS inode core structure, format the fields directly into the iovec. |
| */ |
| static void |
| xfs_inode_item_format_core( |
| struct xfs_inode *ip, |
| struct xfs_log_vec *lv, |
| struct xfs_log_iovec **vecp) |
| { |
| struct xfs_log_dinode *dic; |
| |
| dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); |
| xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); |
| xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version)); |
| } |
| |
| /* |
| * This is called to fill in the vector of log iovecs for the given inode |
| * log item. It fills the first item with an inode log format structure, |
| * the second with the on-disk inode structure, and a possible third and/or |
| * fourth with the inode data/extents/b-tree root and inode attributes |
| * data/extents/b-tree root. |
| * |
| * Note: Always use the 64 bit inode log format structure so we don't |
| * leave an uninitialised hole in the format item on 64 bit systems. Log |
| * recovery on 32 bit systems handles this just fine, so there's no reason |
| * for not using an initialising the properly padded structure all the time. |
| */ |
| STATIC void |
| xfs_inode_item_format( |
| struct xfs_log_item *lip, |
| struct xfs_log_vec *lv) |
| { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| struct xfs_inode *ip = iip->ili_inode; |
| struct xfs_log_iovec *vecp = NULL; |
| struct xfs_inode_log_format *ilf; |
| |
| ASSERT(ip->i_d.di_version > 1); |
| |
| ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); |
| ilf->ilf_type = XFS_LI_INODE; |
| ilf->ilf_ino = ip->i_ino; |
| ilf->ilf_blkno = ip->i_imap.im_blkno; |
| ilf->ilf_len = ip->i_imap.im_len; |
| ilf->ilf_boffset = ip->i_imap.im_boffset; |
| ilf->ilf_fields = XFS_ILOG_CORE; |
| ilf->ilf_size = 2; /* format + core */ |
| |
| /* |
| * make sure we don't leak uninitialised data into the log in the case |
| * when we don't log every field in the inode. |
| */ |
| ilf->ilf_dsize = 0; |
| ilf->ilf_asize = 0; |
| ilf->ilf_pad = 0; |
| memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); |
| |
| xlog_finish_iovec(lv, vecp, sizeof(*ilf)); |
| |
| xfs_inode_item_format_core(ip, lv, &vecp); |
| xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); |
| if (XFS_IFORK_Q(ip)) { |
| xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); |
| } else { |
| iip->ili_fields &= |
| ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); |
| } |
| |
| /* update the format with the exact fields we actually logged */ |
| ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); |
| } |
| |
| /* |
| * This is called to pin the inode associated with the inode log |
| * item in memory so it cannot be written out. |
| */ |
| STATIC void |
| xfs_inode_item_pin( |
| struct xfs_log_item *lip) |
| { |
| struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| |
| trace_xfs_inode_pin(ip, _RET_IP_); |
| atomic_inc(&ip->i_pincount); |
| } |
| |
| |
| /* |
| * This is called to unpin the inode associated with the inode log |
| * item which was previously pinned with a call to xfs_inode_item_pin(). |
| * |
| * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. |
| */ |
| STATIC void |
| xfs_inode_item_unpin( |
| struct xfs_log_item *lip, |
| int remove) |
| { |
| struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; |
| |
| trace_xfs_inode_unpin(ip, _RET_IP_); |
| ASSERT(atomic_read(&ip->i_pincount) > 0); |
| if (atomic_dec_and_test(&ip->i_pincount)) |
| wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); |
| } |
| |
| /* |
| * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer |
| * have been failed during writeback |
| * |
| * This informs the AIL that the inode is already flush locked on the next push, |
| * and acquires a hold on the buffer to ensure that it isn't reclaimed before |
| * dirty data makes it to disk. |
| */ |
| STATIC void |
| xfs_inode_item_error( |
| struct xfs_log_item *lip, |
| struct xfs_buf *bp) |
| { |
| ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode)); |
| xfs_set_li_failed(lip, bp); |
| } |
| |
| STATIC uint |
| xfs_inode_item_push( |
| struct xfs_log_item *lip, |
| struct list_head *buffer_list) |
| __releases(&lip->li_ailp->ail_lock) |
| __acquires(&lip->li_ailp->ail_lock) |
| { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| struct xfs_inode *ip = iip->ili_inode; |
| struct xfs_buf *bp = lip->li_buf; |
| uint rval = XFS_ITEM_SUCCESS; |
| int error; |
| |
| if (xfs_ipincount(ip) > 0) |
| return XFS_ITEM_PINNED; |
| |
| /* |
| * The buffer containing this item failed to be written back |
| * previously. Resubmit the buffer for IO. |
| */ |
| if (test_bit(XFS_LI_FAILED, &lip->li_flags)) { |
| if (!xfs_buf_trylock(bp)) |
| return XFS_ITEM_LOCKED; |
| |
| if (!xfs_buf_resubmit_failed_buffers(bp, buffer_list)) |
| rval = XFS_ITEM_FLUSHING; |
| |
| xfs_buf_unlock(bp); |
| return rval; |
| } |
| |
| if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) |
| return XFS_ITEM_LOCKED; |
| |
| /* |
| * Re-check the pincount now that we stabilized the value by |
| * taking the ilock. |
| */ |
| if (xfs_ipincount(ip) > 0) { |
| rval = XFS_ITEM_PINNED; |
| goto out_unlock; |
| } |
| |
| /* |
| * Stale inode items should force out the iclog. |
| */ |
| if (ip->i_flags & XFS_ISTALE) { |
| rval = XFS_ITEM_PINNED; |
| goto out_unlock; |
| } |
| |
| /* |
| * Someone else is already flushing the inode. Nothing we can do |
| * here but wait for the flush to finish and remove the item from |
| * the AIL. |
| */ |
| if (!xfs_iflock_nowait(ip)) { |
| rval = XFS_ITEM_FLUSHING; |
| goto out_unlock; |
| } |
| |
| ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); |
| ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount)); |
| |
| spin_unlock(&lip->li_ailp->ail_lock); |
| |
| error = xfs_iflush(ip, &bp); |
| if (!error) { |
| if (!xfs_buf_delwri_queue(bp, buffer_list)) |
| rval = XFS_ITEM_FLUSHING; |
| xfs_buf_relse(bp); |
| } |
| |
| spin_lock(&lip->li_ailp->ail_lock); |
| out_unlock: |
| xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| return rval; |
| } |
| |
| /* |
| * Unlock the inode associated with the inode log item. |
| */ |
| STATIC void |
| xfs_inode_item_release( |
| struct xfs_log_item *lip) |
| { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| struct xfs_inode *ip = iip->ili_inode; |
| unsigned short lock_flags; |
| |
| ASSERT(ip->i_itemp != NULL); |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| |
| lock_flags = iip->ili_lock_flags; |
| iip->ili_lock_flags = 0; |
| if (lock_flags) |
| xfs_iunlock(ip, lock_flags); |
| } |
| |
| /* |
| * This is called to find out where the oldest active copy of the inode log |
| * item in the on disk log resides now that the last log write of it completed |
| * at the given lsn. Since we always re-log all dirty data in an inode, the |
| * latest copy in the on disk log is the only one that matters. Therefore, |
| * simply return the given lsn. |
| * |
| * If the inode has been marked stale because the cluster is being freed, we |
| * don't want to (re-)insert this inode into the AIL. There is a race condition |
| * where the cluster buffer may be unpinned before the inode is inserted into |
| * the AIL during transaction committed processing. If the buffer is unpinned |
| * before the inode item has been committed and inserted, then it is possible |
| * for the buffer to be written and IO completes before the inode is inserted |
| * into the AIL. In that case, we'd be inserting a clean, stale inode into the |
| * AIL which will never get removed. It will, however, get reclaimed which |
| * triggers an assert in xfs_inode_free() complaining about freein an inode |
| * still in the AIL. |
| * |
| * To avoid this, just unpin the inode directly and return a LSN of -1 so the |
| * transaction committed code knows that it does not need to do any further |
| * processing on the item. |
| */ |
| STATIC xfs_lsn_t |
| xfs_inode_item_committed( |
| struct xfs_log_item *lip, |
| xfs_lsn_t lsn) |
| { |
| struct xfs_inode_log_item *iip = INODE_ITEM(lip); |
| struct xfs_inode *ip = iip->ili_inode; |
| |
| if (xfs_iflags_test(ip, XFS_ISTALE)) { |
| xfs_inode_item_unpin(lip, 0); |
| return -1; |
| } |
| return lsn; |
| } |
| |
| STATIC void |
| xfs_inode_item_committing( |
| struct xfs_log_item *lip, |
| xfs_lsn_t commit_lsn) |
| { |
| INODE_ITEM(lip)->ili_last_lsn = commit_lsn; |
| return xfs_inode_item_release(lip); |
| } |
| |
| static const struct xfs_item_ops xfs_inode_item_ops = { |
| .iop_size = xfs_inode_item_size, |
| .iop_format = xfs_inode_item_format, |
| .iop_pin = xfs_inode_item_pin, |
| .iop_unpin = xfs_inode_item_unpin, |
| .iop_release = xfs_inode_item_release, |
| .iop_committed = xfs_inode_item_committed, |
| .iop_push = xfs_inode_item_push, |
| .iop_committing = xfs_inode_item_committing, |
| .iop_error = xfs_inode_item_error |
| }; |
| |
| |
| /* |
| * Initialize the inode log item for a newly allocated (in-core) inode. |
| */ |
| void |
| xfs_inode_item_init( |
| struct xfs_inode *ip, |
| struct xfs_mount *mp) |
| { |
| struct xfs_inode_log_item *iip; |
| |
| ASSERT(ip->i_itemp == NULL); |
| iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, 0); |
| |
| iip->ili_inode = ip; |
| xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, |
| &xfs_inode_item_ops); |
| } |
| |
| /* |
| * Free the inode log item and any memory hanging off of it. |
| */ |
| void |
| xfs_inode_item_destroy( |
| xfs_inode_t *ip) |
| { |
| kmem_free(ip->i_itemp->ili_item.li_lv_shadow); |
| kmem_cache_free(xfs_ili_zone, ip->i_itemp); |
| } |
| |
| |
| /* |
| * This is the inode flushing I/O completion routine. It is called |
| * from interrupt level when the buffer containing the inode is |
| * flushed to disk. It is responsible for removing the inode item |
| * from the AIL if it has not been re-logged, and unlocking the inode's |
| * flush lock. |
| * |
| * To reduce AIL lock traffic as much as possible, we scan the buffer log item |
| * list for other inodes that will run this function. We remove them from the |
| * buffer list so we can process all the inode IO completions in one AIL lock |
| * traversal. |
| */ |
| void |
| xfs_iflush_done( |
| struct xfs_buf *bp, |
| struct xfs_log_item *lip) |
| { |
| struct xfs_inode_log_item *iip; |
| struct xfs_log_item *blip, *n; |
| struct xfs_ail *ailp = lip->li_ailp; |
| int need_ail = 0; |
| LIST_HEAD(tmp); |
| |
| /* |
| * Scan the buffer IO completions for other inodes being completed and |
| * attach them to the current inode log item. |
| */ |
| |
| list_add_tail(&lip->li_bio_list, &tmp); |
| |
| list_for_each_entry_safe(blip, n, &bp->b_li_list, li_bio_list) { |
| if (lip->li_cb != xfs_iflush_done) |
| continue; |
| |
| list_move_tail(&blip->li_bio_list, &tmp); |
| /* |
| * while we have the item, do the unlocked check for needing |
| * the AIL lock. |
| */ |
| iip = INODE_ITEM(blip); |
| if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) || |
| test_bit(XFS_LI_FAILED, &blip->li_flags)) |
| need_ail++; |
| } |
| |
| /* make sure we capture the state of the initial inode. */ |
| iip = INODE_ITEM(lip); |
| if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) || |
| test_bit(XFS_LI_FAILED, &lip->li_flags)) |
| need_ail++; |
| |
| /* |
| * We only want to pull the item from the AIL if it is |
| * actually there and its location in the log has not |
| * changed since we started the flush. Thus, we only bother |
| * if the ili_logged flag is set and the inode's lsn has not |
| * changed. First we check the lsn outside |
| * the lock since it's cheaper, and then we recheck while |
| * holding the lock before removing the inode from the AIL. |
| */ |
| if (need_ail) { |
| bool mlip_changed = false; |
| |
| /* this is an opencoded batch version of xfs_trans_ail_delete */ |
| spin_lock(&ailp->ail_lock); |
| list_for_each_entry(blip, &tmp, li_bio_list) { |
| if (INODE_ITEM(blip)->ili_logged && |
| blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn) |
| mlip_changed |= xfs_ail_delete_one(ailp, blip); |
| else { |
| xfs_clear_li_failed(blip); |
| } |
| } |
| |
| if (mlip_changed) { |
| if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount)) |
| xlog_assign_tail_lsn_locked(ailp->ail_mount); |
| if (list_empty(&ailp->ail_head)) |
| wake_up_all(&ailp->ail_empty); |
| } |
| spin_unlock(&ailp->ail_lock); |
| |
| if (mlip_changed) |
| xfs_log_space_wake(ailp->ail_mount); |
| } |
| |
| /* |
| * clean up and unlock the flush lock now we are done. We can clear the |
| * ili_last_fields bits now that we know that the data corresponding to |
| * them is safely on disk. |
| */ |
| list_for_each_entry_safe(blip, n, &tmp, li_bio_list) { |
| list_del_init(&blip->li_bio_list); |
| iip = INODE_ITEM(blip); |
| iip->ili_logged = 0; |
| iip->ili_last_fields = 0; |
| xfs_ifunlock(iip->ili_inode); |
| } |
| list_del(&tmp); |
| } |
| |
| /* |
| * This is the inode flushing abort routine. It is called from xfs_iflush when |
| * the filesystem is shutting down to clean up the inode state. It is |
| * responsible for removing the inode item from the AIL if it has not been |
| * re-logged, and unlocking the inode's flush lock. |
| */ |
| void |
| xfs_iflush_abort( |
| xfs_inode_t *ip, |
| bool stale) |
| { |
| xfs_inode_log_item_t *iip = ip->i_itemp; |
| |
| if (iip) { |
| if (test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)) { |
| xfs_trans_ail_remove(&iip->ili_item, |
| stale ? SHUTDOWN_LOG_IO_ERROR : |
| SHUTDOWN_CORRUPT_INCORE); |
| } |
| iip->ili_logged = 0; |
| /* |
| * Clear the ili_last_fields bits now that we know that the |
| * data corresponding to them is safely on disk. |
| */ |
| iip->ili_last_fields = 0; |
| /* |
| * Clear the inode logging fields so no more flushes are |
| * attempted. |
| */ |
| iip->ili_fields = 0; |
| iip->ili_fsync_fields = 0; |
| } |
| /* |
| * Release the inode's flush lock since we're done with it. |
| */ |
| xfs_ifunlock(ip); |
| } |
| |
| void |
| xfs_istale_done( |
| struct xfs_buf *bp, |
| struct xfs_log_item *lip) |
| { |
| xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true); |
| } |
| |
| /* |
| * convert an xfs_inode_log_format struct from the old 32 bit version |
| * (which can have different field alignments) to the native 64 bit version |
| */ |
| int |
| xfs_inode_item_format_convert( |
| struct xfs_log_iovec *buf, |
| struct xfs_inode_log_format *in_f) |
| { |
| struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; |
| |
| if (buf->i_len != sizeof(*in_f32)) { |
| XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); |
| return -EFSCORRUPTED; |
| } |
| |
| in_f->ilf_type = in_f32->ilf_type; |
| in_f->ilf_size = in_f32->ilf_size; |
| in_f->ilf_fields = in_f32->ilf_fields; |
| in_f->ilf_asize = in_f32->ilf_asize; |
| in_f->ilf_dsize = in_f32->ilf_dsize; |
| in_f->ilf_ino = in_f32->ilf_ino; |
| memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); |
| in_f->ilf_blkno = in_f32->ilf_blkno; |
| in_f->ilf_len = in_f32->ilf_len; |
| in_f->ilf_boffset = in_f32->ilf_boffset; |
| return 0; |
| } |