blob: 0eee574d3e1f20635ad9ed9726c6339dc1616e8f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for Broadcom BRCMSTB, NSP, NS2, Cygnus SPI Controllers
*
* Copyright 2016 Broadcom
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include "spi-bcm-qspi.h"
#define DRIVER_NAME "bcm_qspi"
/* BSPI register offsets */
#define BSPI_REVISION_ID 0x000
#define BSPI_SCRATCH 0x004
#define BSPI_MAST_N_BOOT_CTRL 0x008
#define BSPI_BUSY_STATUS 0x00c
#define BSPI_INTR_STATUS 0x010
#define BSPI_B0_STATUS 0x014
#define BSPI_B0_CTRL 0x018
#define BSPI_B1_STATUS 0x01c
#define BSPI_B1_CTRL 0x020
#define BSPI_STRAP_OVERRIDE_CTRL 0x024
#define BSPI_FLEX_MODE_ENABLE 0x028
#define BSPI_BITS_PER_CYCLE 0x02c
#define BSPI_BITS_PER_PHASE 0x030
#define BSPI_CMD_AND_MODE_BYTE 0x034
#define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
#define BSPI_BSPI_XOR_VALUE 0x03c
#define BSPI_BSPI_XOR_ENABLE 0x040
#define BSPI_BSPI_PIO_MODE_ENABLE 0x044
#define BSPI_BSPI_PIO_IODIR 0x048
#define BSPI_BSPI_PIO_DATA 0x04c
/* RAF register offsets */
#define BSPI_RAF_START_ADDR 0x100
#define BSPI_RAF_NUM_WORDS 0x104
#define BSPI_RAF_CTRL 0x108
#define BSPI_RAF_FULLNESS 0x10c
#define BSPI_RAF_WATERMARK 0x110
#define BSPI_RAF_STATUS 0x114
#define BSPI_RAF_READ_DATA 0x118
#define BSPI_RAF_WORD_CNT 0x11c
#define BSPI_RAF_CURR_ADDR 0x120
/* Override mode masks */
#define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE BIT(0)
#define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL BIT(1)
#define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE BIT(2)
#define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD BIT(3)
#define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE BIT(4)
#define BSPI_ADDRLEN_3BYTES 3
#define BSPI_ADDRLEN_4BYTES 4
#define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
#define BSPI_RAF_CTRL_START_MASK BIT(0)
#define BSPI_RAF_CTRL_CLEAR_MASK BIT(1)
#define BSPI_BPP_MODE_SELECT_MASK BIT(8)
#define BSPI_BPP_ADDR_SELECT_MASK BIT(16)
#define BSPI_READ_LENGTH 256
/* MSPI register offsets */
#define MSPI_SPCR0_LSB 0x000
#define MSPI_SPCR0_MSB 0x004
#define MSPI_SPCR0_MSB_CPHA BIT(0)
#define MSPI_SPCR0_MSB_CPOL BIT(1)
#define MSPI_SPCR0_MSB_BITS_SHIFT 0x2
#define MSPI_SPCR1_LSB 0x008
#define MSPI_SPCR1_MSB 0x00c
#define MSPI_NEWQP 0x010
#define MSPI_ENDQP 0x014
#define MSPI_SPCR2 0x018
#define MSPI_MSPI_STATUS 0x020
#define MSPI_CPTQP 0x024
#define MSPI_SPCR3 0x028
#define MSPI_REV 0x02c
#define MSPI_TXRAM 0x040
#define MSPI_RXRAM 0x0c0
#define MSPI_CDRAM 0x140
#define MSPI_WRITE_LOCK 0x180
#define MSPI_MASTER_BIT BIT(7)
#define MSPI_NUM_CDRAM 16
#define MSPI_CDRAM_OUTP BIT(8)
#define MSPI_CDRAM_CONT_BIT BIT(7)
#define MSPI_CDRAM_BITSE_BIT BIT(6)
#define MSPI_CDRAM_DT_BIT BIT(5)
#define MSPI_CDRAM_PCS 0xf
#define MSPI_SPCR2_SPE BIT(6)
#define MSPI_SPCR2_CONT_AFTER_CMD BIT(7)
#define MSPI_SPCR3_FASTBR BIT(0)
#define MSPI_SPCR3_FASTDT BIT(1)
#define MSPI_SPCR3_SYSCLKSEL_MASK GENMASK(11, 10)
#define MSPI_SPCR3_SYSCLKSEL_27 (MSPI_SPCR3_SYSCLKSEL_MASK & \
~(BIT(10) | BIT(11)))
#define MSPI_SPCR3_SYSCLKSEL_108 (MSPI_SPCR3_SYSCLKSEL_MASK & \
BIT(11))
#define MSPI_SPCR3_TXRXDAM_MASK GENMASK(4, 2)
#define MSPI_SPCR3_DAM_8BYTE 0
#define MSPI_SPCR3_DAM_16BYTE (BIT(2) | BIT(4))
#define MSPI_SPCR3_DAM_32BYTE (BIT(3) | BIT(5))
#define MSPI_SPCR3_HALFDUPLEX BIT(6)
#define MSPI_SPCR3_HDOUTTYPE BIT(7)
#define MSPI_SPCR3_DATA_REG_SZ BIT(8)
#define MSPI_SPCR3_CPHARX BIT(9)
#define MSPI_MSPI_STATUS_SPIF BIT(0)
#define INTR_BASE_BIT_SHIFT 0x02
#define INTR_COUNT 0x07
#define NUM_CHIPSELECT 4
#define QSPI_SPBR_MAX 255U
#define MSPI_BASE_FREQ 27000000UL
#define OPCODE_DIOR 0xBB
#define OPCODE_QIOR 0xEB
#define OPCODE_DIOR_4B 0xBC
#define OPCODE_QIOR_4B 0xEC
#define MAX_CMD_SIZE 6
#define ADDR_4MB_MASK GENMASK(22, 0)
/* stop at end of transfer, no other reason */
#define TRANS_STATUS_BREAK_NONE 0
/* stop at end of spi_message */
#define TRANS_STATUS_BREAK_EOM 1
/* stop at end of spi_transfer if delay */
#define TRANS_STATUS_BREAK_DELAY 2
/* stop at end of spi_transfer if cs_change */
#define TRANS_STATUS_BREAK_CS_CHANGE 4
/* stop if we run out of bytes */
#define TRANS_STATUS_BREAK_NO_BYTES 8
/* events that make us stop filling TX slots */
#define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM | \
TRANS_STATUS_BREAK_DELAY | \
TRANS_STATUS_BREAK_CS_CHANGE)
/* events that make us deassert CS */
#define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM | \
TRANS_STATUS_BREAK_CS_CHANGE)
/*
* Used for writing and reading data in the right order
* to TXRAM and RXRAM when used as 32-bit registers respectively
*/
#define swap4bytes(__val) \
((((__val) >> 24) & 0x000000FF) | (((__val) >> 8) & 0x0000FF00) | \
(((__val) << 8) & 0x00FF0000) | (((__val) << 24) & 0xFF000000))
struct bcm_qspi_parms {
u32 speed_hz;
u8 mode;
u8 bits_per_word;
};
struct bcm_xfer_mode {
bool flex_mode;
unsigned int width;
unsigned int addrlen;
unsigned int hp;
};
enum base_type {
MSPI,
BSPI,
CHIP_SELECT,
BASEMAX,
};
enum irq_source {
SINGLE_L2,
MUXED_L1,
};
struct bcm_qspi_irq {
const char *irq_name;
const irq_handler_t irq_handler;
int irq_source;
u32 mask;
};
struct bcm_qspi_dev_id {
const struct bcm_qspi_irq *irqp;
void *dev;
};
struct qspi_trans {
struct spi_transfer *trans;
int byte;
bool mspi_last_trans;
};
struct bcm_qspi {
struct platform_device *pdev;
struct spi_master *master;
struct clk *clk;
u32 base_clk;
u32 max_speed_hz;
void __iomem *base[BASEMAX];
/* Some SoCs provide custom interrupt status register(s) */
struct bcm_qspi_soc_intc *soc_intc;
struct bcm_qspi_parms last_parms;
struct qspi_trans trans_pos;
int curr_cs;
int bspi_maj_rev;
int bspi_min_rev;
int bspi_enabled;
const struct spi_mem_op *bspi_rf_op;
u32 bspi_rf_op_idx;
u32 bspi_rf_op_len;
u32 bspi_rf_op_status;
struct bcm_xfer_mode xfer_mode;
u32 s3_strap_override_ctrl;
bool bspi_mode;
bool big_endian;
int num_irqs;
struct bcm_qspi_dev_id *dev_ids;
struct completion mspi_done;
struct completion bspi_done;
u8 mspi_maj_rev;
u8 mspi_min_rev;
bool mspi_spcr3_sysclk;
};
static inline bool has_bspi(struct bcm_qspi *qspi)
{
return qspi->bspi_mode;
}
/* hardware supports spcr3 and fast baud-rate */
static inline bool bcm_qspi_has_fastbr(struct bcm_qspi *qspi)
{
if (!has_bspi(qspi) &&
((qspi->mspi_maj_rev >= 1) &&
(qspi->mspi_min_rev >= 5)))
return true;
return false;
}
/* hardware supports sys clk 108Mhz */
static inline bool bcm_qspi_has_sysclk_108(struct bcm_qspi *qspi)
{
if (!has_bspi(qspi) && (qspi->mspi_spcr3_sysclk ||
((qspi->mspi_maj_rev >= 1) &&
(qspi->mspi_min_rev >= 6))))
return true;
return false;
}
static inline int bcm_qspi_spbr_min(struct bcm_qspi *qspi)
{
if (bcm_qspi_has_fastbr(qspi))
return (bcm_qspi_has_sysclk_108(qspi) ? 4 : 1);
else
return 8;
}
static u32 bcm_qspi_calc_spbr(u32 clk_speed_hz,
const struct bcm_qspi_parms *xp)
{
u32 spbr = 0;
/* SPBR = System Clock/(2 * SCK Baud Rate) */
if (xp->speed_hz)
spbr = clk_speed_hz / (xp->speed_hz * 2);
return spbr;
}
/* Read qspi controller register*/
static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
unsigned int offset)
{
return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
}
/* Write qspi controller register*/
static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
unsigned int offset, unsigned int data)
{
bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
}
/* BSPI helpers */
static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
{
int i;
/* this should normally finish within 10us */
for (i = 0; i < 1000; i++) {
if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
return 0;
udelay(1);
}
dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
return -EIO;
}
static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
{
if (qspi->bspi_maj_rev < 4)
return true;
return false;
}
static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
{
bcm_qspi_bspi_busy_poll(qspi);
/* Force rising edge for the b0/b1 'flush' field */
bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
}
static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
{
return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
}
static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
{
u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
/* BSPI v3 LR is LE only, convert data to host endianness */
if (bcm_qspi_bspi_ver_three(qspi))
data = le32_to_cpu(data);
return data;
}
static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
{
bcm_qspi_bspi_busy_poll(qspi);
bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
BSPI_RAF_CTRL_START_MASK);
}
static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
{
bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
BSPI_RAF_CTRL_CLEAR_MASK);
bcm_qspi_bspi_flush_prefetch_buffers(qspi);
}
static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
{
u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
u32 data = 0;
dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
data = bcm_qspi_bspi_lr_read_fifo(qspi);
if (likely(qspi->bspi_rf_op_len >= 4) &&
IS_ALIGNED((uintptr_t)buf, 4)) {
buf[qspi->bspi_rf_op_idx++] = data;
qspi->bspi_rf_op_len -= 4;
} else {
/* Read out remaining bytes, make sure*/
u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
data = cpu_to_le32(data);
while (qspi->bspi_rf_op_len) {
*cbuf++ = (u8)data;
data >>= 8;
qspi->bspi_rf_op_len--;
}
}
}
}
static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
int bpp, int bpc, int flex_mode)
{
bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
}
static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
const struct spi_mem_op *op, int hp)
{
int bpc = 0, bpp = 0;
u8 command = op->cmd.opcode;
int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
int addrlen = op->addr.nbytes;
int flex_mode = 1;
dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
width, addrlen, hp);
if (addrlen == BSPI_ADDRLEN_4BYTES)
bpp = BSPI_BPP_ADDR_SELECT_MASK;
if (op->dummy.nbytes)
bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
switch (width) {
case SPI_NBITS_SINGLE:
if (addrlen == BSPI_ADDRLEN_3BYTES)
/* default mode, does not need flex_cmd */
flex_mode = 0;
break;
case SPI_NBITS_DUAL:
bpc = 0x00000001;
if (hp) {
bpc |= 0x00010100; /* address and mode are 2-bit */
bpp = BSPI_BPP_MODE_SELECT_MASK;
}
break;
case SPI_NBITS_QUAD:
bpc = 0x00000002;
if (hp) {
bpc |= 0x00020200; /* address and mode are 4-bit */
bpp |= BSPI_BPP_MODE_SELECT_MASK;
}
break;
default:
return -EINVAL;
}
bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
return 0;
}
static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
const struct spi_mem_op *op, int hp)
{
int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
int addrlen = op->addr.nbytes;
u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
width, addrlen, hp);
switch (width) {
case SPI_NBITS_SINGLE:
/* clear quad/dual mode */
data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
break;
case SPI_NBITS_QUAD:
/* clear dual mode and set quad mode */
data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
break;
case SPI_NBITS_DUAL:
/* clear quad mode set dual mode */
data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
break;
default:
return -EINVAL;
}
if (addrlen == BSPI_ADDRLEN_4BYTES)
/* set 4byte mode*/
data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
else
/* clear 4 byte mode */
data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
/* set the override mode */
data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
return 0;
}
static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
const struct spi_mem_op *op, int hp)
{
int error = 0;
int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
int addrlen = op->addr.nbytes;
/* default mode */
qspi->xfer_mode.flex_mode = true;
if (!bcm_qspi_bspi_ver_three(qspi)) {
u32 val, mask;
val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
if (val & mask || qspi->s3_strap_override_ctrl & mask) {
qspi->xfer_mode.flex_mode = false;
bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
error = bcm_qspi_bspi_set_override(qspi, op, hp);
}
}
if (qspi->xfer_mode.flex_mode)
error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
if (error) {
dev_warn(&qspi->pdev->dev,
"INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
width, addrlen, hp);
} else if (qspi->xfer_mode.width != width ||
qspi->xfer_mode.addrlen != addrlen ||
qspi->xfer_mode.hp != hp) {
qspi->xfer_mode.width = width;
qspi->xfer_mode.addrlen = addrlen;
qspi->xfer_mode.hp = hp;
dev_dbg(&qspi->pdev->dev,
"cs:%d %d-lane output, %d-byte address%s\n",
qspi->curr_cs,
qspi->xfer_mode.width,
qspi->xfer_mode.addrlen,
qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
}
return error;
}
static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
{
if (!has_bspi(qspi))
return;
qspi->bspi_enabled = 1;
if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
return;
bcm_qspi_bspi_flush_prefetch_buffers(qspi);
udelay(1);
bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
udelay(1);
}
static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
{
if (!has_bspi(qspi))
return;
qspi->bspi_enabled = 0;
if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
return;
bcm_qspi_bspi_busy_poll(qspi);
bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
udelay(1);
}
static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
{
u32 rd = 0;
u32 wr = 0;
if (cs >= 0 && qspi->base[CHIP_SELECT]) {
rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
wr = (rd & ~0xff) | (1 << cs);
if (rd == wr)
return;
bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
usleep_range(10, 20);
}
dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
qspi->curr_cs = cs;
}
static bool bcmspi_parms_did_change(const struct bcm_qspi_parms * const cur,
const struct bcm_qspi_parms * const prev)
{
return (cur->speed_hz != prev->speed_hz) ||
(cur->mode != prev->mode) ||
(cur->bits_per_word != prev->bits_per_word);
}
/* MSPI helpers */
static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
const struct bcm_qspi_parms *xp)
{
u32 spcr, spbr = 0;
if (!bcmspi_parms_did_change(xp, &qspi->last_parms))
return;
if (!qspi->mspi_maj_rev)
/* legacy controller */
spcr = MSPI_MASTER_BIT;
else
spcr = 0;
/*
* Bits per transfer. BITS determines the number of data bits
* transferred if the command control bit (BITSE of a
* CDRAM Register) is equal to 1.
* If CDRAM BITSE is equal to 0, 8 data bits are transferred
* regardless
*/
if (xp->bits_per_word != 16 && xp->bits_per_word != 64)
spcr |= xp->bits_per_word << MSPI_SPCR0_MSB_BITS_SHIFT;
spcr |= xp->mode & (MSPI_SPCR0_MSB_CPHA | MSPI_SPCR0_MSB_CPOL);
bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
if (bcm_qspi_has_fastbr(qspi)) {
spcr = 0;
/* enable fastbr */
spcr |= MSPI_SPCR3_FASTBR;
if (xp->mode & SPI_3WIRE)
spcr |= MSPI_SPCR3_HALFDUPLEX | MSPI_SPCR3_HDOUTTYPE;
if (bcm_qspi_has_sysclk_108(qspi)) {
/* check requested baud rate before moving to 108Mhz */
spbr = bcm_qspi_calc_spbr(MSPI_BASE_FREQ * 4, xp);
if (spbr > QSPI_SPBR_MAX) {
/* use SYSCLK_27Mhz for slower baud rates */
spcr &= ~MSPI_SPCR3_SYSCLKSEL_MASK;
qspi->base_clk = MSPI_BASE_FREQ;
} else {
/* SYSCLK_108Mhz */
spcr |= MSPI_SPCR3_SYSCLKSEL_108;
qspi->base_clk = MSPI_BASE_FREQ * 4;
}
}
if (xp->bits_per_word > 16) {
/* data_reg_size 1 (64bit) */
spcr |= MSPI_SPCR3_DATA_REG_SZ;
/* TxRx RAM data access mode 2 for 32B and set fastdt */
spcr |= MSPI_SPCR3_DAM_32BYTE | MSPI_SPCR3_FASTDT;
/*
* Set length of delay after transfer
* DTL from 0(256) to 1
*/
bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 1);
} else {
/* data_reg_size[8] = 0 */
spcr &= ~(MSPI_SPCR3_DATA_REG_SZ);
/*
* TxRx RAM access mode 8B
* and disable fastdt
*/
spcr &= ~(MSPI_SPCR3_DAM_32BYTE);
}
bcm_qspi_write(qspi, MSPI, MSPI_SPCR3, spcr);
}
/* SCK Baud Rate = System Clock/(2 * SPBR) */
qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
spbr = bcm_qspi_calc_spbr(qspi->base_clk, xp);
spbr = clamp_val(spbr, bcm_qspi_spbr_min(qspi), QSPI_SPBR_MAX);
bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spbr);
qspi->last_parms = *xp;
}
static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
struct spi_device *spi,
struct spi_transfer *trans)
{
struct bcm_qspi_parms xp;
xp.speed_hz = trans->speed_hz;
xp.bits_per_word = trans->bits_per_word;
xp.mode = spi->mode;
bcm_qspi_hw_set_parms(qspi, &xp);
}
static int bcm_qspi_setup(struct spi_device *spi)
{
struct bcm_qspi_parms *xp;
if (spi->bits_per_word > 64)
return -EINVAL;
xp = spi_get_ctldata(spi);
if (!xp) {
xp = kzalloc(sizeof(*xp), GFP_KERNEL);
if (!xp)
return -ENOMEM;
spi_set_ctldata(spi, xp);
}
xp->speed_hz = spi->max_speed_hz;
xp->mode = spi->mode;
if (spi->bits_per_word)
xp->bits_per_word = spi->bits_per_word;
else
xp->bits_per_word = 8;
return 0;
}
static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
struct qspi_trans *qt)
{
if (qt->mspi_last_trans &&
spi_transfer_is_last(qspi->master, qt->trans))
return true;
else
return false;
}
static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
struct qspi_trans *qt, int flags)
{
int ret = TRANS_STATUS_BREAK_NONE;
/* count the last transferred bytes */
if (qt->trans->bits_per_word <= 8)
qt->byte++;
else if (qt->trans->bits_per_word <= 16)
qt->byte += 2;
else if (qt->trans->bits_per_word <= 32)
qt->byte += 4;
else if (qt->trans->bits_per_word <= 64)
qt->byte += 8;
if (qt->byte >= qt->trans->len) {
/* we're at the end of the spi_transfer */
/* in TX mode, need to pause for a delay or CS change */
if (qt->trans->delay.value &&
(flags & TRANS_STATUS_BREAK_DELAY))
ret |= TRANS_STATUS_BREAK_DELAY;
if (qt->trans->cs_change &&
(flags & TRANS_STATUS_BREAK_CS_CHANGE))
ret |= TRANS_STATUS_BREAK_CS_CHANGE;
if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
ret |= TRANS_STATUS_BREAK_EOM;
else
ret |= TRANS_STATUS_BREAK_NO_BYTES;
qt->trans = NULL;
}
dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
return ret;
}
static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
{
u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
/* mask out reserved bits */
return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
}
static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
{
u32 reg_offset = MSPI_RXRAM;
u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
u32 msb_offset = reg_offset + (slot << 3);
return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
}
static inline u32 read_rxram_slot_u32(struct bcm_qspi *qspi, int slot)
{
u32 reg_offset = MSPI_RXRAM;
u32 offset = reg_offset + (slot << 3);
u32 val;
val = bcm_qspi_read(qspi, MSPI, offset);
val = swap4bytes(val);
return val;
}
static inline u64 read_rxram_slot_u64(struct bcm_qspi *qspi, int slot)
{
u32 reg_offset = MSPI_RXRAM;
u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
u32 msb_offset = reg_offset + (slot << 3);
u32 msb, lsb;
msb = bcm_qspi_read(qspi, MSPI, msb_offset);
msb = swap4bytes(msb);
lsb = bcm_qspi_read(qspi, MSPI, lsb_offset);
lsb = swap4bytes(lsb);
return ((u64)msb << 32 | lsb);
}
static void read_from_hw(struct bcm_qspi *qspi, int slots)
{
struct qspi_trans tp;
int slot;
bcm_qspi_disable_bspi(qspi);
if (slots > MSPI_NUM_CDRAM) {
/* should never happen */
dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
return;
}
tp = qspi->trans_pos;
for (slot = 0; slot < slots; slot++) {
if (tp.trans->bits_per_word <= 8) {
u8 *buf = tp.trans->rx_buf;
if (buf)
buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
dev_dbg(&qspi->pdev->dev, "RD %02x\n",
buf ? buf[tp.byte] : 0x0);
} else if (tp.trans->bits_per_word <= 16) {
u16 *buf = tp.trans->rx_buf;
if (buf)
buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
slot);
dev_dbg(&qspi->pdev->dev, "RD %04x\n",
buf ? buf[tp.byte / 2] : 0x0);
} else if (tp.trans->bits_per_word <= 32) {
u32 *buf = tp.trans->rx_buf;
if (buf)
buf[tp.byte / 4] = read_rxram_slot_u32(qspi,
slot);
dev_dbg(&qspi->pdev->dev, "RD %08x\n",
buf ? buf[tp.byte / 4] : 0x0);
} else if (tp.trans->bits_per_word <= 64) {
u64 *buf = tp.trans->rx_buf;
if (buf)
buf[tp.byte / 8] = read_rxram_slot_u64(qspi,
slot);
dev_dbg(&qspi->pdev->dev, "RD %llx\n",
buf ? buf[tp.byte / 8] : 0x0);
}
update_qspi_trans_byte_count(qspi, &tp,
TRANS_STATUS_BREAK_NONE);
}
qspi->trans_pos = tp;
}
static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
u8 val)
{
u32 reg_offset = MSPI_TXRAM + (slot << 3);
/* mask out reserved bits */
bcm_qspi_write(qspi, MSPI, reg_offset, val);
}
static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
u16 val)
{
u32 reg_offset = MSPI_TXRAM;
u32 msb_offset = reg_offset + (slot << 3);
u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
}
static inline void write_txram_slot_u32(struct bcm_qspi *qspi, int slot,
u32 val)
{
u32 reg_offset = MSPI_TXRAM;
u32 msb_offset = reg_offset + (slot << 3);
bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(val));
}
static inline void write_txram_slot_u64(struct bcm_qspi *qspi, int slot,
u64 val)
{
u32 reg_offset = MSPI_TXRAM;
u32 msb_offset = reg_offset + (slot << 3);
u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
u32 msb = upper_32_bits(val);
u32 lsb = lower_32_bits(val);
bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(msb));
bcm_qspi_write(qspi, MSPI, lsb_offset, swap4bytes(lsb));
}
static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
{
return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
}
static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
{
bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
}
/* Return number of slots written */
static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
{
struct qspi_trans tp;
int slot = 0, tstatus = 0;
u32 mspi_cdram = 0;
bcm_qspi_disable_bspi(qspi);
tp = qspi->trans_pos;
bcm_qspi_update_parms(qspi, spi, tp.trans);
/* Run until end of transfer or reached the max data */
while (!tstatus && slot < MSPI_NUM_CDRAM) {
mspi_cdram = MSPI_CDRAM_CONT_BIT;
if (tp.trans->bits_per_word <= 8) {
const u8 *buf = tp.trans->tx_buf;
u8 val = buf ? buf[tp.byte] : 0x00;
write_txram_slot_u8(qspi, slot, val);
dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
} else if (tp.trans->bits_per_word <= 16) {
const u16 *buf = tp.trans->tx_buf;
u16 val = buf ? buf[tp.byte / 2] : 0x0000;
write_txram_slot_u16(qspi, slot, val);
dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
} else if (tp.trans->bits_per_word <= 32) {
const u32 *buf = tp.trans->tx_buf;
u32 val = buf ? buf[tp.byte/4] : 0x0;
write_txram_slot_u32(qspi, slot, val);
dev_dbg(&qspi->pdev->dev, "WR %08x\n", val);
} else if (tp.trans->bits_per_word <= 64) {
const u64 *buf = tp.trans->tx_buf;
u64 val = (buf ? buf[tp.byte/8] : 0x0);
/* use the length of delay from SPCR1_LSB */
if (bcm_qspi_has_fastbr(qspi))
mspi_cdram |= MSPI_CDRAM_DT_BIT;
write_txram_slot_u64(qspi, slot, val);
dev_dbg(&qspi->pdev->dev, "WR %llx\n", val);
}
mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
MSPI_CDRAM_BITSE_BIT);
/* set 3wrire halfduplex mode data from master to slave */
if ((spi->mode & SPI_3WIRE) && tp.trans->tx_buf)
mspi_cdram |= MSPI_CDRAM_OUTP;
if (has_bspi(qspi))
mspi_cdram &= ~1;
else
mspi_cdram |= (~(1 << spi->chip_select) &
MSPI_CDRAM_PCS);
write_cdram_slot(qspi, slot, mspi_cdram);
tstatus = update_qspi_trans_byte_count(qspi, &tp,
TRANS_STATUS_BREAK_TX);
slot++;
}
if (!slot) {
dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
goto done;
}
dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
/*
* case 1) EOM =1, cs_change =0: SSb inactive
* case 2) EOM =1, cs_change =1: SSb stay active
* case 3) EOM =0, cs_change =0: SSb stay active
* case 4) EOM =0, cs_change =1: SSb inactive
*/
if (((tstatus & TRANS_STATUS_BREAK_DESELECT)
== TRANS_STATUS_BREAK_CS_CHANGE) ||
((tstatus & TRANS_STATUS_BREAK_DESELECT)
== TRANS_STATUS_BREAK_EOM)) {
mspi_cdram = read_cdram_slot(qspi, slot - 1) &
~MSPI_CDRAM_CONT_BIT;
write_cdram_slot(qspi, slot - 1, mspi_cdram);
}
if (has_bspi(qspi))
bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
/* Must flush previous writes before starting MSPI operation */
mb();
/* Set cont | spe | spifie */
bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
done:
return slot;
}
static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
const struct spi_mem_op *op)
{
struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
u32 addr = 0, len, rdlen, len_words, from = 0;
int ret = 0;
unsigned long timeo = msecs_to_jiffies(100);
struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
if (bcm_qspi_bspi_ver_three(qspi))
if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
return -EIO;
from = op->addr.val;
if (!spi->cs_gpiod)
bcm_qspi_chip_select(qspi, spi->chip_select);
bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
/*
* when using flex mode we need to send
* the upper address byte to bspi
*/
if (!bcm_qspi_bspi_ver_three(qspi)) {
addr = from & 0xff000000;
bcm_qspi_write(qspi, BSPI,
BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
}
if (!qspi->xfer_mode.flex_mode)
addr = from;
else
addr = from & 0x00ffffff;
if (bcm_qspi_bspi_ver_three(qspi) == true)
addr = (addr + 0xc00000) & 0xffffff;
/*
* read into the entire buffer by breaking the reads
* into RAF buffer read lengths
*/
len = op->data.nbytes;
qspi->bspi_rf_op_idx = 0;
do {
if (len > BSPI_READ_LENGTH)
rdlen = BSPI_READ_LENGTH;
else
rdlen = len;
reinit_completion(&qspi->bspi_done);
bcm_qspi_enable_bspi(qspi);
len_words = (rdlen + 3) >> 2;
qspi->bspi_rf_op = op;
qspi->bspi_rf_op_status = 0;
qspi->bspi_rf_op_len = rdlen;
dev_dbg(&qspi->pdev->dev,
"bspi xfr addr 0x%x len 0x%x", addr, rdlen);
bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
if (qspi->soc_intc) {
/*
* clear soc MSPI and BSPI interrupts and enable
* BSPI interrupts.
*/
soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
}
/* Must flush previous writes before starting BSPI operation */
mb();
bcm_qspi_bspi_lr_start(qspi);
if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
ret = -ETIMEDOUT;
break;
}
/* set msg return length */
addr += rdlen;
len -= rdlen;
} while (len);
return ret;
}
static int bcm_qspi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *trans)
{
struct bcm_qspi *qspi = spi_master_get_devdata(master);
int slots;
unsigned long timeo = msecs_to_jiffies(100);
if (!spi->cs_gpiod)
bcm_qspi_chip_select(qspi, spi->chip_select);
qspi->trans_pos.trans = trans;
qspi->trans_pos.byte = 0;
while (qspi->trans_pos.byte < trans->len) {
reinit_completion(&qspi->mspi_done);
slots = write_to_hw(qspi, spi);
if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
return -ETIMEDOUT;
}
read_from_hw(qspi, slots);
}
bcm_qspi_enable_bspi(qspi);
return 0;
}
static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
const struct spi_mem_op *op)
{
struct spi_master *master = spi->master;
struct bcm_qspi *qspi = spi_master_get_devdata(master);
struct spi_transfer t[2];
u8 cmd[6] = { };
int ret, i;
memset(cmd, 0, sizeof(cmd));
memset(t, 0, sizeof(t));
/* tx */
/* opcode is in cmd[0] */
cmd[0] = op->cmd.opcode;
for (i = 0; i < op->addr.nbytes; i++)
cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
t[0].tx_buf = cmd;
t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
t[0].bits_per_word = spi->bits_per_word;
t[0].tx_nbits = op->cmd.buswidth;
/* lets mspi know that this is not last transfer */
qspi->trans_pos.mspi_last_trans = false;
ret = bcm_qspi_transfer_one(master, spi, &t[0]);
/* rx */
qspi->trans_pos.mspi_last_trans = true;
if (!ret) {
/* rx */
t[1].rx_buf = op->data.buf.in;
t[1].len = op->data.nbytes;
t[1].rx_nbits = op->data.buswidth;
t[1].bits_per_word = spi->bits_per_word;
ret = bcm_qspi_transfer_one(master, spi, &t[1]);
}
return ret;
}
static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct spi_device *spi = mem->spi;
struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
int ret = 0;
bool mspi_read = false;
u32 addr = 0, len;
u_char *buf;
if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
op->data.dir != SPI_MEM_DATA_IN)
return -ENOTSUPP;
buf = op->data.buf.in;
addr = op->addr.val;
len = op->data.nbytes;
if (has_bspi(qspi) && bcm_qspi_bspi_ver_three(qspi) == true) {
/*
* The address coming into this function is a raw flash offset.
* But for BSPI <= V3, we need to convert it to a remapped BSPI
* address. If it crosses a 4MB boundary, just revert back to
* using MSPI.
*/
addr = (addr + 0xc00000) & 0xffffff;
if ((~ADDR_4MB_MASK & addr) ^
(~ADDR_4MB_MASK & (addr + len - 1)))
mspi_read = true;
}
/* non-aligned and very short transfers are handled by MSPI */
if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
len < 4)
mspi_read = true;
if (!has_bspi(qspi) || mspi_read)
return bcm_qspi_mspi_exec_mem_op(spi, op);
ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
if (!ret)
ret = bcm_qspi_bspi_exec_mem_op(spi, op);
return ret;
}
static void bcm_qspi_cleanup(struct spi_device *spi)
{
struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
kfree(xp);
}
static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
{
struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
struct bcm_qspi *qspi = qspi_dev_id->dev;
u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
if (status & MSPI_MSPI_STATUS_SPIF) {
struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
/* clear interrupt */
status &= ~MSPI_MSPI_STATUS_SPIF;
bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
if (qspi->soc_intc)
soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
complete(&qspi->mspi_done);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
{
struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
struct bcm_qspi *qspi = qspi_dev_id->dev;
struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
u32 status = qspi_dev_id->irqp->mask;
if (qspi->bspi_enabled && qspi->bspi_rf_op) {
bcm_qspi_bspi_lr_data_read(qspi);
if (qspi->bspi_rf_op_len == 0) {
qspi->bspi_rf_op = NULL;
if (qspi->soc_intc) {
/* disable soc BSPI interrupt */
soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
false);
/* indicate done */
status = INTR_BSPI_LR_SESSION_DONE_MASK;
}
if (qspi->bspi_rf_op_status)
bcm_qspi_bspi_lr_clear(qspi);
else
bcm_qspi_bspi_flush_prefetch_buffers(qspi);
}
if (qspi->soc_intc)
/* clear soc BSPI interrupt */
soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
}
status &= INTR_BSPI_LR_SESSION_DONE_MASK;
if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
complete(&qspi->bspi_done);
return IRQ_HANDLED;
}
static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
{
struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
struct bcm_qspi *qspi = qspi_dev_id->dev;
struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
dev_err(&qspi->pdev->dev, "BSPI INT error\n");
qspi->bspi_rf_op_status = -EIO;
if (qspi->soc_intc)
/* clear soc interrupt */
soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
complete(&qspi->bspi_done);
return IRQ_HANDLED;
}
static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
{
struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
struct bcm_qspi *qspi = qspi_dev_id->dev;
struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
irqreturn_t ret = IRQ_NONE;
if (soc_intc) {
u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
if (status & MSPI_DONE)
ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
else if (status & BSPI_DONE)
ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
else if (status & BSPI_ERR)
ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
}
return ret;
}
static const struct bcm_qspi_irq qspi_irq_tab[] = {
{
.irq_name = "spi_lr_fullness_reached",
.irq_handler = bcm_qspi_bspi_lr_l2_isr,
.mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
},
{
.irq_name = "spi_lr_session_aborted",
.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
.mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
},
{
.irq_name = "spi_lr_impatient",
.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
.mask = INTR_BSPI_LR_IMPATIENT_MASK,
},
{
.irq_name = "spi_lr_session_done",
.irq_handler = bcm_qspi_bspi_lr_l2_isr,
.mask = INTR_BSPI_LR_SESSION_DONE_MASK,
},
#ifdef QSPI_INT_DEBUG
/* this interrupt is for debug purposes only, dont request irq */
{
.irq_name = "spi_lr_overread",
.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
.mask = INTR_BSPI_LR_OVERREAD_MASK,
},
#endif
{
.irq_name = "mspi_done",
.irq_handler = bcm_qspi_mspi_l2_isr,
.mask = INTR_MSPI_DONE_MASK,
},
{
.irq_name = "mspi_halted",
.irq_handler = bcm_qspi_mspi_l2_isr,
.mask = INTR_MSPI_HALTED_MASK,
},
{
/* single muxed L1 interrupt source */
.irq_name = "spi_l1_intr",
.irq_handler = bcm_qspi_l1_isr,
.irq_source = MUXED_L1,
.mask = QSPI_INTERRUPTS_ALL,
},
};
static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
{
u32 val = 0;
val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
qspi->bspi_maj_rev = (val >> 8) & 0xff;
qspi->bspi_min_rev = val & 0xff;
if (!(bcm_qspi_bspi_ver_three(qspi))) {
/* Force mapping of BSPI address -> flash offset */
bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
}
qspi->bspi_enabled = 1;
bcm_qspi_disable_bspi(qspi);
bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
}
static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
{
struct bcm_qspi_parms parms;
bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
parms.mode = SPI_MODE_3;
parms.bits_per_word = 8;
parms.speed_hz = qspi->max_speed_hz;
bcm_qspi_hw_set_parms(qspi, &parms);
if (has_bspi(qspi))
bcm_qspi_bspi_init(qspi);
}
static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
{
u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
if (has_bspi(qspi))
bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
/* clear interrupt */
bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status & ~1);
}
static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
.exec_op = bcm_qspi_exec_mem_op,
};
struct bcm_qspi_data {
bool has_mspi_rev;
bool has_spcr3_sysclk;
};
static const struct bcm_qspi_data bcm_qspi_no_rev_data = {
.has_mspi_rev = false,
.has_spcr3_sysclk = false,
};
static const struct bcm_qspi_data bcm_qspi_rev_data = {
.has_mspi_rev = true,
.has_spcr3_sysclk = false,
};
static const struct bcm_qspi_data bcm_qspi_spcr3_data = {
.has_mspi_rev = true,
.has_spcr3_sysclk = true,
};
static const struct of_device_id bcm_qspi_of_match[] = {
{
.compatible = "brcm,spi-bcm7445-qspi",
.data = &bcm_qspi_rev_data,
},
{
.compatible = "brcm,spi-bcm-qspi",
.data = &bcm_qspi_no_rev_data,
},
{
.compatible = "brcm,spi-bcm7216-qspi",
.data = &bcm_qspi_spcr3_data,
},
{
.compatible = "brcm,spi-bcm7278-qspi",
.data = &bcm_qspi_spcr3_data,
},
{},
};
MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
int bcm_qspi_probe(struct platform_device *pdev,
struct bcm_qspi_soc_intc *soc_intc)
{
const struct of_device_id *of_id = NULL;
const struct bcm_qspi_data *data;
struct device *dev = &pdev->dev;
struct bcm_qspi *qspi;
struct spi_master *master;
struct resource *res;
int irq, ret = 0, num_ints = 0;
u32 val;
u32 rev = 0;
const char *name = NULL;
int num_irqs = ARRAY_SIZE(qspi_irq_tab);
/* We only support device-tree instantiation */
if (!dev->of_node)
return -ENODEV;
of_id = of_match_node(bcm_qspi_of_match, dev->of_node);
if (!of_id)
return -ENODEV;
data = of_id->data;
master = devm_spi_alloc_master(dev, sizeof(struct bcm_qspi));
if (!master) {
dev_err(dev, "error allocating spi_master\n");
return -ENOMEM;
}
qspi = spi_master_get_devdata(master);
qspi->clk = devm_clk_get_optional(&pdev->dev, NULL);
if (IS_ERR(qspi->clk))
return PTR_ERR(qspi->clk);
qspi->pdev = pdev;
qspi->trans_pos.trans = NULL;
qspi->trans_pos.byte = 0;
qspi->trans_pos.mspi_last_trans = true;
qspi->master = master;
master->bus_num = -1;
master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD |
SPI_3WIRE;
master->setup = bcm_qspi_setup;
master->transfer_one = bcm_qspi_transfer_one;
master->mem_ops = &bcm_qspi_mem_ops;
master->cleanup = bcm_qspi_cleanup;
master->dev.of_node = dev->of_node;
master->num_chipselect = NUM_CHIPSELECT;
master->use_gpio_descriptors = true;
qspi->big_endian = of_device_is_big_endian(dev->of_node);
if (!of_property_read_u32(dev->of_node, "num-cs", &val))
master->num_chipselect = val;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
if (!res)
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"mspi");
if (res) {
qspi->base[MSPI] = devm_ioremap_resource(dev, res);
if (IS_ERR(qspi->base[MSPI]))
return PTR_ERR(qspi->base[MSPI]);
} else {
return 0;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
if (res) {
qspi->base[BSPI] = devm_ioremap_resource(dev, res);
if (IS_ERR(qspi->base[BSPI]))
return PTR_ERR(qspi->base[BSPI]);
qspi->bspi_mode = true;
} else {
qspi->bspi_mode = false;
}
dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
if (res) {
qspi->base[CHIP_SELECT] = devm_ioremap_resource(dev, res);
if (IS_ERR(qspi->base[CHIP_SELECT]))
return PTR_ERR(qspi->base[CHIP_SELECT]);
}
qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
GFP_KERNEL);
if (!qspi->dev_ids)
return -ENOMEM;
/*
* Some SoCs integrate spi controller (e.g., its interrupt bits)
* in specific ways
*/
if (soc_intc) {
qspi->soc_intc = soc_intc;
soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
} else {
qspi->soc_intc = NULL;
}
if (qspi->clk) {
ret = clk_prepare_enable(qspi->clk);
if (ret) {
dev_err(dev, "failed to prepare clock\n");
goto qspi_probe_err;
}
qspi->base_clk = clk_get_rate(qspi->clk);
} else {
qspi->base_clk = MSPI_BASE_FREQ;
}
if (data->has_mspi_rev) {
rev = bcm_qspi_read(qspi, MSPI, MSPI_REV);
/* some older revs do not have a MSPI_REV register */
if ((rev & 0xff) == 0xff)
rev = 0;
}
qspi->mspi_maj_rev = (rev >> 4) & 0xf;
qspi->mspi_min_rev = rev & 0xf;
qspi->mspi_spcr3_sysclk = data->has_spcr3_sysclk;
qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
/*
* On SW resets it is possible to have the mask still enabled
* Need to disable the mask and clear the status while we init
*/
bcm_qspi_hw_uninit(qspi);
for (val = 0; val < num_irqs; val++) {
irq = -1;
name = qspi_irq_tab[val].irq_name;
if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
/* get the l2 interrupts */
irq = platform_get_irq_byname_optional(pdev, name);
} else if (!num_ints && soc_intc) {
/* all mspi, bspi intrs muxed to one L1 intr */
irq = platform_get_irq(pdev, 0);
}
if (irq >= 0) {
ret = devm_request_irq(&pdev->dev, irq,
qspi_irq_tab[val].irq_handler, 0,
name,
&qspi->dev_ids[val]);
if (ret < 0) {
dev_err(&pdev->dev, "IRQ %s not found\n", name);
goto qspi_unprepare_err;
}
qspi->dev_ids[val].dev = qspi;
qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
num_ints++;
dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
qspi_irq_tab[val].irq_name,
irq);
}
}
if (!num_ints) {
dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
ret = -EINVAL;
goto qspi_unprepare_err;
}
bcm_qspi_hw_init(qspi);
init_completion(&qspi->mspi_done);
init_completion(&qspi->bspi_done);
qspi->curr_cs = -1;
platform_set_drvdata(pdev, qspi);
qspi->xfer_mode.width = -1;
qspi->xfer_mode.addrlen = -1;
qspi->xfer_mode.hp = -1;
ret = spi_register_master(master);
if (ret < 0) {
dev_err(dev, "can't register master\n");
goto qspi_reg_err;
}
return 0;
qspi_reg_err:
bcm_qspi_hw_uninit(qspi);
qspi_unprepare_err:
clk_disable_unprepare(qspi->clk);
qspi_probe_err:
kfree(qspi->dev_ids);
return ret;
}
/* probe function to be called by SoC specific platform driver probe */
EXPORT_SYMBOL_GPL(bcm_qspi_probe);
void bcm_qspi_remove(struct platform_device *pdev)
{
struct bcm_qspi *qspi = platform_get_drvdata(pdev);
spi_unregister_master(qspi->master);
bcm_qspi_hw_uninit(qspi);
clk_disable_unprepare(qspi->clk);
kfree(qspi->dev_ids);
}
/* function to be called by SoC specific platform driver remove() */
EXPORT_SYMBOL_GPL(bcm_qspi_remove);
static int __maybe_unused bcm_qspi_suspend(struct device *dev)
{
struct bcm_qspi *qspi = dev_get_drvdata(dev);
/* store the override strap value */
if (!bcm_qspi_bspi_ver_three(qspi))
qspi->s3_strap_override_ctrl =
bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
spi_master_suspend(qspi->master);
clk_disable_unprepare(qspi->clk);
bcm_qspi_hw_uninit(qspi);
return 0;
};
static int __maybe_unused bcm_qspi_resume(struct device *dev)
{
struct bcm_qspi *qspi = dev_get_drvdata(dev);
int ret = 0;
bcm_qspi_hw_init(qspi);
bcm_qspi_chip_select(qspi, qspi->curr_cs);
if (qspi->soc_intc)
/* enable MSPI interrupt */
qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
true);
ret = clk_prepare_enable(qspi->clk);
if (!ret)
spi_master_resume(qspi->master);
return ret;
}
SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
/* pm_ops to be called by SoC specific platform driver */
EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
MODULE_AUTHOR("Kamal Dasu");
MODULE_DESCRIPTION("Broadcom QSPI driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRIVER_NAME);