blob: c14d7251d0bbe702ffb7142524de4351c653b704 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*/
#include <linux/delay.h>
#include <linux/highmem.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/platform_device.h>
#include <linux/ktime.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include "cqhci.h"
#include "cqhci-crypto.h"
#define DCMD_SLOT 31
#define NUM_SLOTS 32
struct cqhci_slot {
struct mmc_request *mrq;
unsigned int flags;
#define CQHCI_EXTERNAL_TIMEOUT BIT(0)
#define CQHCI_COMPLETED BIT(1)
#define CQHCI_HOST_CRC BIT(2)
#define CQHCI_HOST_TIMEOUT BIT(3)
#define CQHCI_HOST_OTHER BIT(4)
};
static inline u8 *get_desc(struct cqhci_host *cq_host, u8 tag)
{
return cq_host->desc_base + (tag * cq_host->slot_sz);
}
static inline u8 *get_link_desc(struct cqhci_host *cq_host, u8 tag)
{
u8 *desc = get_desc(cq_host, tag);
return desc + cq_host->task_desc_len;
}
static inline size_t get_trans_desc_offset(struct cqhci_host *cq_host, u8 tag)
{
return cq_host->trans_desc_len * cq_host->mmc->max_segs * tag;
}
static inline dma_addr_t get_trans_desc_dma(struct cqhci_host *cq_host, u8 tag)
{
size_t offset = get_trans_desc_offset(cq_host, tag);
return cq_host->trans_desc_dma_base + offset;
}
static inline u8 *get_trans_desc(struct cqhci_host *cq_host, u8 tag)
{
size_t offset = get_trans_desc_offset(cq_host, tag);
return cq_host->trans_desc_base + offset;
}
static void setup_trans_desc(struct cqhci_host *cq_host, u8 tag)
{
u8 *link_temp;
dma_addr_t trans_temp;
link_temp = get_link_desc(cq_host, tag);
trans_temp = get_trans_desc_dma(cq_host, tag);
memset(link_temp, 0, cq_host->link_desc_len);
if (cq_host->link_desc_len > 8)
*(link_temp + 8) = 0;
if (tag == DCMD_SLOT && (cq_host->mmc->caps2 & MMC_CAP2_CQE_DCMD)) {
*link_temp = CQHCI_VALID(0) | CQHCI_ACT(0) | CQHCI_END(1);
return;
}
*link_temp = CQHCI_VALID(1) | CQHCI_ACT(0x6) | CQHCI_END(0);
if (cq_host->dma64) {
__le64 *data_addr = (__le64 __force *)(link_temp + 4);
data_addr[0] = cpu_to_le64(trans_temp);
} else {
__le32 *data_addr = (__le32 __force *)(link_temp + 4);
data_addr[0] = cpu_to_le32(trans_temp);
}
}
static void cqhci_set_irqs(struct cqhci_host *cq_host, u32 set)
{
cqhci_writel(cq_host, set, CQHCI_ISTE);
cqhci_writel(cq_host, set, CQHCI_ISGE);
}
#define DRV_NAME "cqhci"
#define CQHCI_DUMP(f, x...) \
pr_err("%s: " DRV_NAME ": " f, mmc_hostname(mmc), ## x)
static void cqhci_dumpregs(struct cqhci_host *cq_host)
{
struct mmc_host *mmc = cq_host->mmc;
CQHCI_DUMP("============ CQHCI REGISTER DUMP ===========\n");
CQHCI_DUMP("Caps: 0x%08x | Version: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_CAP),
cqhci_readl(cq_host, CQHCI_VER));
CQHCI_DUMP("Config: 0x%08x | Control: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_CFG),
cqhci_readl(cq_host, CQHCI_CTL));
CQHCI_DUMP("Int stat: 0x%08x | Int enab: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_IS),
cqhci_readl(cq_host, CQHCI_ISTE));
CQHCI_DUMP("Int sig: 0x%08x | Int Coal: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_ISGE),
cqhci_readl(cq_host, CQHCI_IC));
CQHCI_DUMP("TDL base: 0x%08x | TDL up32: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_TDLBA),
cqhci_readl(cq_host, CQHCI_TDLBAU));
CQHCI_DUMP("Doorbell: 0x%08x | TCN: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_TDBR),
cqhci_readl(cq_host, CQHCI_TCN));
CQHCI_DUMP("Dev queue: 0x%08x | Dev Pend: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_DQS),
cqhci_readl(cq_host, CQHCI_DPT));
CQHCI_DUMP("Task clr: 0x%08x | SSC1: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_TCLR),
cqhci_readl(cq_host, CQHCI_SSC1));
CQHCI_DUMP("SSC2: 0x%08x | DCMD rsp: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_SSC2),
cqhci_readl(cq_host, CQHCI_CRDCT));
CQHCI_DUMP("RED mask: 0x%08x | TERRI: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_RMEM),
cqhci_readl(cq_host, CQHCI_TERRI));
CQHCI_DUMP("Resp idx: 0x%08x | Resp arg: 0x%08x\n",
cqhci_readl(cq_host, CQHCI_CRI),
cqhci_readl(cq_host, CQHCI_CRA));
if (cq_host->ops->dumpregs)
cq_host->ops->dumpregs(mmc);
else
CQHCI_DUMP(": ===========================================\n");
}
/*
* The allocated descriptor table for task, link & transfer descriptors
* looks like:
* |----------|
* |task desc | |->|----------|
* |----------| | |trans desc|
* |link desc-|->| |----------|
* |----------| .
* . .
* no. of slots max-segs
* . |----------|
* |----------|
* The idea here is to create the [task+trans] table and mark & point the
* link desc to the transfer desc table on a per slot basis.
*/
static int cqhci_host_alloc_tdl(struct cqhci_host *cq_host)
{
int i = 0;
/* task descriptor can be 64/128 bit irrespective of arch */
if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
cqhci_writel(cq_host, cqhci_readl(cq_host, CQHCI_CFG) |
CQHCI_TASK_DESC_SZ, CQHCI_CFG);
cq_host->task_desc_len = 16;
} else {
cq_host->task_desc_len = 8;
}
/*
* 96 bits length of transfer desc instead of 128 bits which means
* ADMA would expect next valid descriptor at the 96th bit
* or 128th bit
*/
if (cq_host->dma64) {
if (cq_host->quirks & CQHCI_QUIRK_SHORT_TXFR_DESC_SZ)
cq_host->trans_desc_len = 12;
else
cq_host->trans_desc_len = 16;
cq_host->link_desc_len = 16;
} else {
cq_host->trans_desc_len = 8;
cq_host->link_desc_len = 8;
}
/* total size of a slot: 1 task & 1 transfer (link) */
cq_host->slot_sz = cq_host->task_desc_len + cq_host->link_desc_len;
cq_host->desc_size = cq_host->slot_sz * cq_host->num_slots;
cq_host->data_size = get_trans_desc_offset(cq_host, cq_host->mmc->cqe_qdepth);
pr_debug("%s: cqhci: desc_size: %zu data_sz: %zu slot-sz: %d\n",
mmc_hostname(cq_host->mmc), cq_host->desc_size, cq_host->data_size,
cq_host->slot_sz);
/*
* allocate a dma-mapped chunk of memory for the descriptors
* allocate a dma-mapped chunk of memory for link descriptors
* setup each link-desc memory offset per slot-number to
* the descriptor table.
*/
cq_host->desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
cq_host->desc_size,
&cq_host->desc_dma_base,
GFP_KERNEL);
if (!cq_host->desc_base)
return -ENOMEM;
cq_host->trans_desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
cq_host->data_size,
&cq_host->trans_desc_dma_base,
GFP_KERNEL);
if (!cq_host->trans_desc_base) {
dmam_free_coherent(mmc_dev(cq_host->mmc), cq_host->desc_size,
cq_host->desc_base,
cq_host->desc_dma_base);
cq_host->desc_base = NULL;
cq_host->desc_dma_base = 0;
return -ENOMEM;
}
pr_debug("%s: cqhci: desc-base: 0x%p trans-base: 0x%p\n desc_dma 0x%llx trans_dma: 0x%llx\n",
mmc_hostname(cq_host->mmc), cq_host->desc_base, cq_host->trans_desc_base,
(unsigned long long)cq_host->desc_dma_base,
(unsigned long long)cq_host->trans_desc_dma_base);
for (; i < (cq_host->num_slots); i++)
setup_trans_desc(cq_host, i);
return 0;
}
static void __cqhci_enable(struct cqhci_host *cq_host)
{
struct mmc_host *mmc = cq_host->mmc;
u32 cqcfg;
cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
/* Configuration must not be changed while enabled */
if (cqcfg & CQHCI_ENABLE) {
cqcfg &= ~CQHCI_ENABLE;
cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
}
cqcfg &= ~(CQHCI_DCMD | CQHCI_TASK_DESC_SZ);
if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
cqcfg |= CQHCI_DCMD;
if (cq_host->caps & CQHCI_TASK_DESC_SZ_128)
cqcfg |= CQHCI_TASK_DESC_SZ;
if (mmc->caps2 & MMC_CAP2_CRYPTO)
cqcfg |= CQHCI_CRYPTO_GENERAL_ENABLE;
cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
cqhci_writel(cq_host, lower_32_bits(cq_host->desc_dma_base),
CQHCI_TDLBA);
cqhci_writel(cq_host, upper_32_bits(cq_host->desc_dma_base),
CQHCI_TDLBAU);
cqhci_writel(cq_host, cq_host->rca, CQHCI_SSC2);
cqhci_set_irqs(cq_host, 0);
cqcfg |= CQHCI_ENABLE;
cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
if (cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT)
cqhci_writel(cq_host, 0, CQHCI_CTL);
mmc->cqe_on = true;
if (cq_host->ops->enable)
cq_host->ops->enable(mmc);
/* Ensure all writes are done before interrupts are enabled */
wmb();
cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
cq_host->activated = true;
}
static void __cqhci_disable(struct cqhci_host *cq_host)
{
u32 cqcfg;
cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
cqcfg &= ~CQHCI_ENABLE;
cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
cq_host->mmc->cqe_on = false;
cq_host->activated = false;
}
int cqhci_deactivate(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
if (cq_host->enabled && cq_host->activated)
__cqhci_disable(cq_host);
return 0;
}
EXPORT_SYMBOL(cqhci_deactivate);
int cqhci_resume(struct mmc_host *mmc)
{
/* Re-enable is done upon first request */
return 0;
}
EXPORT_SYMBOL(cqhci_resume);
static int cqhci_enable(struct mmc_host *mmc, struct mmc_card *card)
{
struct cqhci_host *cq_host = mmc->cqe_private;
int err;
if (!card->ext_csd.cmdq_en)
return -EINVAL;
if (cq_host->enabled)
return 0;
cq_host->rca = card->rca;
err = cqhci_host_alloc_tdl(cq_host);
if (err) {
pr_err("%s: Failed to enable CQE, error %d\n",
mmc_hostname(mmc), err);
return err;
}
__cqhci_enable(cq_host);
cq_host->enabled = true;
#ifdef DEBUG
cqhci_dumpregs(cq_host);
#endif
return 0;
}
/* CQHCI is idle and should halt immediately, so set a small timeout */
#define CQHCI_OFF_TIMEOUT 100
static u32 cqhci_read_ctl(struct cqhci_host *cq_host)
{
return cqhci_readl(cq_host, CQHCI_CTL);
}
static void cqhci_off(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
u32 reg;
int err;
if (!cq_host->enabled || !mmc->cqe_on || cq_host->recovery_halt)
return;
if (cq_host->ops->disable)
cq_host->ops->disable(mmc, false);
cqhci_writel(cq_host, CQHCI_HALT, CQHCI_CTL);
err = readx_poll_timeout(cqhci_read_ctl, cq_host, reg,
reg & CQHCI_HALT, 0, CQHCI_OFF_TIMEOUT);
if (err < 0)
pr_err("%s: cqhci: CQE stuck on\n", mmc_hostname(mmc));
else
pr_debug("%s: cqhci: CQE off\n", mmc_hostname(mmc));
if (cq_host->ops->post_disable)
cq_host->ops->post_disable(mmc);
mmc->cqe_on = false;
}
static void cqhci_disable(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
if (!cq_host->enabled)
return;
cqhci_off(mmc);
__cqhci_disable(cq_host);
dmam_free_coherent(mmc_dev(mmc), cq_host->data_size,
cq_host->trans_desc_base,
cq_host->trans_desc_dma_base);
dmam_free_coherent(mmc_dev(mmc), cq_host->desc_size,
cq_host->desc_base,
cq_host->desc_dma_base);
cq_host->trans_desc_base = NULL;
cq_host->desc_base = NULL;
cq_host->enabled = false;
}
static void cqhci_prep_task_desc(struct mmc_request *mrq,
struct cqhci_host *cq_host, int tag)
{
__le64 *task_desc = (__le64 __force *)get_desc(cq_host, tag);
u32 req_flags = mrq->data->flags;
u64 desc0;
desc0 = CQHCI_VALID(1) |
CQHCI_END(1) |
CQHCI_INT(1) |
CQHCI_ACT(0x5) |
CQHCI_FORCED_PROG(!!(req_flags & MMC_DATA_FORCED_PRG)) |
CQHCI_DATA_TAG(!!(req_flags & MMC_DATA_DAT_TAG)) |
CQHCI_DATA_DIR(!!(req_flags & MMC_DATA_READ)) |
CQHCI_PRIORITY(!!(req_flags & MMC_DATA_PRIO)) |
CQHCI_QBAR(!!(req_flags & MMC_DATA_QBR)) |
CQHCI_REL_WRITE(!!(req_flags & MMC_DATA_REL_WR)) |
CQHCI_BLK_COUNT(mrq->data->blocks) |
CQHCI_BLK_ADDR((u64)mrq->data->blk_addr);
task_desc[0] = cpu_to_le64(desc0);
if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
u64 desc1 = cqhci_crypto_prep_task_desc(mrq);
task_desc[1] = cpu_to_le64(desc1);
pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx%016llx\n",
mmc_hostname(mrq->host), mrq->tag, desc1, desc0);
} else {
pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx\n",
mmc_hostname(mrq->host), mrq->tag, desc0);
}
}
static int cqhci_dma_map(struct mmc_host *host, struct mmc_request *mrq)
{
int sg_count;
struct mmc_data *data = mrq->data;
if (!data)
return -EINVAL;
sg_count = dma_map_sg(mmc_dev(host), data->sg,
data->sg_len,
(data->flags & MMC_DATA_WRITE) ?
DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (!sg_count) {
pr_err("%s: sg-len: %d\n", __func__, data->sg_len);
return -ENOMEM;
}
return sg_count;
}
void cqhci_set_tran_desc(u8 *desc, dma_addr_t addr, int len, bool end,
bool dma64)
{
__le32 *attr = (__le32 __force *)desc;
*attr = (CQHCI_VALID(1) |
CQHCI_END(end ? 1 : 0) |
CQHCI_INT(0) |
CQHCI_ACT(0x4) |
CQHCI_DAT_LENGTH(len));
if (dma64) {
__le64 *dataddr = (__le64 __force *)(desc + 4);
dataddr[0] = cpu_to_le64(addr);
} else {
__le32 *dataddr = (__le32 __force *)(desc + 4);
dataddr[0] = cpu_to_le32(addr);
}
}
EXPORT_SYMBOL(cqhci_set_tran_desc);
static int cqhci_prep_tran_desc(struct mmc_request *mrq,
struct cqhci_host *cq_host, int tag)
{
struct mmc_data *data = mrq->data;
int i, sg_count, len;
bool end = false;
bool dma64 = cq_host->dma64;
dma_addr_t addr;
u8 *desc;
struct scatterlist *sg;
sg_count = cqhci_dma_map(mrq->host, mrq);
if (sg_count < 0) {
pr_err("%s: %s: unable to map sg lists, %d\n",
mmc_hostname(mrq->host), __func__, sg_count);
return sg_count;
}
desc = get_trans_desc(cq_host, tag);
for_each_sg(data->sg, sg, sg_count, i) {
addr = sg_dma_address(sg);
len = sg_dma_len(sg);
if ((i+1) == sg_count)
end = true;
if (cq_host->ops->set_tran_desc)
cq_host->ops->set_tran_desc(cq_host, &desc, addr, len, end, dma64);
else
cqhci_set_tran_desc(desc, addr, len, end, dma64);
desc += cq_host->trans_desc_len;
}
return 0;
}
static void cqhci_prep_dcmd_desc(struct mmc_host *mmc,
struct mmc_request *mrq)
{
u64 *task_desc = NULL;
u64 data = 0;
u8 resp_type;
u8 *desc;
__le64 *dataddr;
struct cqhci_host *cq_host = mmc->cqe_private;
u8 timing;
if (!(mrq->cmd->flags & MMC_RSP_PRESENT)) {
resp_type = 0x0;
timing = 0x1;
} else {
if (mrq->cmd->flags & MMC_RSP_R1B) {
resp_type = 0x3;
timing = 0x0;
} else {
resp_type = 0x2;
timing = 0x1;
}
}
task_desc = (__le64 __force *)get_desc(cq_host, cq_host->dcmd_slot);
memset(task_desc, 0, cq_host->task_desc_len);
data |= (CQHCI_VALID(1) |
CQHCI_END(1) |
CQHCI_INT(1) |
CQHCI_QBAR(1) |
CQHCI_ACT(0x5) |
CQHCI_CMD_INDEX(mrq->cmd->opcode) |
CQHCI_CMD_TIMING(timing) | CQHCI_RESP_TYPE(resp_type));
if (cq_host->ops->update_dcmd_desc)
cq_host->ops->update_dcmd_desc(mmc, mrq, &data);
*task_desc |= data;
desc = (u8 *)task_desc;
pr_debug("%s: cqhci: dcmd: cmd: %d timing: %d resp: %d\n",
mmc_hostname(mmc), mrq->cmd->opcode, timing, resp_type);
dataddr = (__le64 __force *)(desc + 4);
dataddr[0] = cpu_to_le64((u64)mrq->cmd->arg);
}
static void cqhci_post_req(struct mmc_host *host, struct mmc_request *mrq)
{
struct mmc_data *data = mrq->data;
if (data) {
dma_unmap_sg(mmc_dev(host), data->sg, data->sg_len,
(data->flags & MMC_DATA_READ) ?
DMA_FROM_DEVICE : DMA_TO_DEVICE);
}
}
static inline int cqhci_tag(struct mmc_request *mrq)
{
return mrq->cmd ? DCMD_SLOT : mrq->tag;
}
static int cqhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
int err = 0;
int tag = cqhci_tag(mrq);
struct cqhci_host *cq_host = mmc->cqe_private;
unsigned long flags;
if (!cq_host->enabled) {
pr_err("%s: cqhci: not enabled\n", mmc_hostname(mmc));
return -EINVAL;
}
/* First request after resume has to re-enable */
if (!cq_host->activated)
__cqhci_enable(cq_host);
if (!mmc->cqe_on) {
if (cq_host->ops->pre_enable)
cq_host->ops->pre_enable(mmc);
cqhci_writel(cq_host, 0, CQHCI_CTL);
mmc->cqe_on = true;
pr_debug("%s: cqhci: CQE on\n", mmc_hostname(mmc));
if (cqhci_readl(cq_host, CQHCI_CTL) && CQHCI_HALT) {
pr_err("%s: cqhci: CQE failed to exit halt state\n",
mmc_hostname(mmc));
}
if (cq_host->ops->enable)
cq_host->ops->enable(mmc);
}
if (mrq->data) {
cqhci_prep_task_desc(mrq, cq_host, tag);
err = cqhci_prep_tran_desc(mrq, cq_host, tag);
if (err) {
pr_err("%s: cqhci: failed to setup tx desc: %d\n",
mmc_hostname(mmc), err);
return err;
}
} else {
cqhci_prep_dcmd_desc(mmc, mrq);
}
spin_lock_irqsave(&cq_host->lock, flags);
if (cq_host->recovery_halt) {
err = -EBUSY;
goto out_unlock;
}
cq_host->slot[tag].mrq = mrq;
cq_host->slot[tag].flags = 0;
cq_host->qcnt += 1;
/* Make sure descriptors are ready before ringing the doorbell */
wmb();
cqhci_writel(cq_host, 1 << tag, CQHCI_TDBR);
if (!(cqhci_readl(cq_host, CQHCI_TDBR) & (1 << tag)))
pr_debug("%s: cqhci: doorbell not set for tag %d\n",
mmc_hostname(mmc), tag);
out_unlock:
spin_unlock_irqrestore(&cq_host->lock, flags);
if (err)
cqhci_post_req(mmc, mrq);
return err;
}
static void cqhci_recovery_needed(struct mmc_host *mmc, struct mmc_request *mrq,
bool notify)
{
struct cqhci_host *cq_host = mmc->cqe_private;
if (!cq_host->recovery_halt) {
cq_host->recovery_halt = true;
pr_debug("%s: cqhci: recovery needed\n", mmc_hostname(mmc));
wake_up(&cq_host->wait_queue);
if (notify && mrq->recovery_notifier)
mrq->recovery_notifier(mrq);
}
}
static unsigned int cqhci_error_flags(int error1, int error2)
{
int error = error1 ? error1 : error2;
switch (error) {
case -EILSEQ:
return CQHCI_HOST_CRC;
case -ETIMEDOUT:
return CQHCI_HOST_TIMEOUT;
default:
return CQHCI_HOST_OTHER;
}
}
static void cqhci_error_irq(struct mmc_host *mmc, u32 status, int cmd_error,
int data_error)
{
struct cqhci_host *cq_host = mmc->cqe_private;
struct cqhci_slot *slot;
u32 terri;
u32 tdpe;
int tag;
spin_lock(&cq_host->lock);
terri = cqhci_readl(cq_host, CQHCI_TERRI);
pr_debug("%s: cqhci: error IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
mmc_hostname(mmc), status, cmd_error, data_error, terri);
/* Forget about errors when recovery has already been triggered */
if (cq_host->recovery_halt)
goto out_unlock;
if (!cq_host->qcnt) {
WARN_ONCE(1, "%s: cqhci: error when idle. IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
mmc_hostname(mmc), status, cmd_error, data_error,
terri);
goto out_unlock;
}
if (CQHCI_TERRI_C_VALID(terri)) {
tag = CQHCI_TERRI_C_TASK(terri);
slot = &cq_host->slot[tag];
if (slot->mrq) {
slot->flags = cqhci_error_flags(cmd_error, data_error);
cqhci_recovery_needed(mmc, slot->mrq, true);
}
}
if (CQHCI_TERRI_D_VALID(terri)) {
tag = CQHCI_TERRI_D_TASK(terri);
slot = &cq_host->slot[tag];
if (slot->mrq) {
slot->flags = cqhci_error_flags(data_error, cmd_error);
cqhci_recovery_needed(mmc, slot->mrq, true);
}
}
/*
* Handle ICCE ("Invalid Crypto Configuration Error"). This should
* never happen, since the block layer ensures that all crypto-enabled
* I/O requests have a valid keyslot before they reach the driver.
*
* Note that GCE ("General Crypto Error") is different; it already got
* handled above by checking TERRI.
*/
if (status & CQHCI_IS_ICCE) {
tdpe = cqhci_readl(cq_host, CQHCI_TDPE);
WARN_ONCE(1,
"%s: cqhci: invalid crypto configuration error. IRQ status: 0x%08x TDPE: 0x%08x\n",
mmc_hostname(mmc), status, tdpe);
while (tdpe != 0) {
tag = __ffs(tdpe);
tdpe &= ~(1 << tag);
slot = &cq_host->slot[tag];
if (!slot->mrq)
continue;
slot->flags = cqhci_error_flags(data_error, cmd_error);
cqhci_recovery_needed(mmc, slot->mrq, true);
}
}
if (!cq_host->recovery_halt) {
/*
* The only way to guarantee forward progress is to mark at
* least one task in error, so if none is indicated, pick one.
*/
for (tag = 0; tag < NUM_SLOTS; tag++) {
slot = &cq_host->slot[tag];
if (!slot->mrq)
continue;
slot->flags = cqhci_error_flags(data_error, cmd_error);
cqhci_recovery_needed(mmc, slot->mrq, true);
break;
}
}
out_unlock:
spin_unlock(&cq_host->lock);
}
static void cqhci_finish_mrq(struct mmc_host *mmc, unsigned int tag)
{
struct cqhci_host *cq_host = mmc->cqe_private;
struct cqhci_slot *slot = &cq_host->slot[tag];
struct mmc_request *mrq = slot->mrq;
struct mmc_data *data;
if (!mrq) {
WARN_ONCE(1, "%s: cqhci: spurious TCN for tag %d\n",
mmc_hostname(mmc), tag);
return;
}
/* No completions allowed during recovery */
if (cq_host->recovery_halt) {
slot->flags |= CQHCI_COMPLETED;
return;
}
slot->mrq = NULL;
cq_host->qcnt -= 1;
data = mrq->data;
if (data) {
if (data->error)
data->bytes_xfered = 0;
else
data->bytes_xfered = data->blksz * data->blocks;
}
mmc_cqe_request_done(mmc, mrq);
}
irqreturn_t cqhci_irq(struct mmc_host *mmc, u32 intmask, int cmd_error,
int data_error)
{
u32 status;
unsigned long tag = 0, comp_status;
struct cqhci_host *cq_host = mmc->cqe_private;
status = cqhci_readl(cq_host, CQHCI_IS);
cqhci_writel(cq_host, status, CQHCI_IS);
pr_debug("%s: cqhci: IRQ status: 0x%08x\n", mmc_hostname(mmc), status);
if ((status & (CQHCI_IS_RED | CQHCI_IS_GCE | CQHCI_IS_ICCE)) ||
cmd_error || data_error) {
if (status & CQHCI_IS_RED)
mmc_debugfs_err_stats_inc(mmc, MMC_ERR_CMDQ_RED);
if (status & CQHCI_IS_GCE)
mmc_debugfs_err_stats_inc(mmc, MMC_ERR_CMDQ_GCE);
if (status & CQHCI_IS_ICCE)
mmc_debugfs_err_stats_inc(mmc, MMC_ERR_CMDQ_ICCE);
cqhci_error_irq(mmc, status, cmd_error, data_error);
}
if (status & CQHCI_IS_TCC) {
/* read TCN and complete the request */
comp_status = cqhci_readl(cq_host, CQHCI_TCN);
cqhci_writel(cq_host, comp_status, CQHCI_TCN);
pr_debug("%s: cqhci: TCN: 0x%08lx\n",
mmc_hostname(mmc), comp_status);
spin_lock(&cq_host->lock);
for_each_set_bit(tag, &comp_status, cq_host->num_slots) {
/* complete the corresponding mrq */
pr_debug("%s: cqhci: completing tag %lu\n",
mmc_hostname(mmc), tag);
cqhci_finish_mrq(mmc, tag);
}
if (cq_host->waiting_for_idle && !cq_host->qcnt) {
cq_host->waiting_for_idle = false;
wake_up(&cq_host->wait_queue);
}
spin_unlock(&cq_host->lock);
}
if (status & CQHCI_IS_TCL)
wake_up(&cq_host->wait_queue);
if (status & CQHCI_IS_HAC)
wake_up(&cq_host->wait_queue);
return IRQ_HANDLED;
}
EXPORT_SYMBOL(cqhci_irq);
static bool cqhci_is_idle(struct cqhci_host *cq_host, int *ret)
{
unsigned long flags;
bool is_idle;
spin_lock_irqsave(&cq_host->lock, flags);
is_idle = !cq_host->qcnt || cq_host->recovery_halt;
*ret = cq_host->recovery_halt ? -EBUSY : 0;
cq_host->waiting_for_idle = !is_idle;
spin_unlock_irqrestore(&cq_host->lock, flags);
return is_idle;
}
static int cqhci_wait_for_idle(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
int ret;
wait_event(cq_host->wait_queue, cqhci_is_idle(cq_host, &ret));
return ret;
}
static bool cqhci_timeout(struct mmc_host *mmc, struct mmc_request *mrq,
bool *recovery_needed)
{
struct cqhci_host *cq_host = mmc->cqe_private;
int tag = cqhci_tag(mrq);
struct cqhci_slot *slot = &cq_host->slot[tag];
unsigned long flags;
bool timed_out;
spin_lock_irqsave(&cq_host->lock, flags);
timed_out = slot->mrq == mrq;
if (timed_out) {
slot->flags |= CQHCI_EXTERNAL_TIMEOUT;
cqhci_recovery_needed(mmc, mrq, false);
*recovery_needed = cq_host->recovery_halt;
}
spin_unlock_irqrestore(&cq_host->lock, flags);
if (timed_out) {
pr_err("%s: cqhci: timeout for tag %d, qcnt %d\n",
mmc_hostname(mmc), tag, cq_host->qcnt);
cqhci_dumpregs(cq_host);
}
return timed_out;
}
static bool cqhci_tasks_cleared(struct cqhci_host *cq_host)
{
return !(cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_CLEAR_ALL_TASKS);
}
static bool cqhci_clear_all_tasks(struct mmc_host *mmc, unsigned int timeout)
{
struct cqhci_host *cq_host = mmc->cqe_private;
bool ret;
u32 ctl;
cqhci_set_irqs(cq_host, CQHCI_IS_TCL);
ctl = cqhci_readl(cq_host, CQHCI_CTL);
ctl |= CQHCI_CLEAR_ALL_TASKS;
cqhci_writel(cq_host, ctl, CQHCI_CTL);
wait_event_timeout(cq_host->wait_queue, cqhci_tasks_cleared(cq_host),
msecs_to_jiffies(timeout) + 1);
cqhci_set_irqs(cq_host, 0);
ret = cqhci_tasks_cleared(cq_host);
if (!ret)
pr_warn("%s: cqhci: Failed to clear tasks\n",
mmc_hostname(mmc));
return ret;
}
static bool cqhci_halted(struct cqhci_host *cq_host)
{
return cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT;
}
static bool cqhci_halt(struct mmc_host *mmc, unsigned int timeout)
{
struct cqhci_host *cq_host = mmc->cqe_private;
bool ret;
u32 ctl;
if (cqhci_halted(cq_host))
return true;
cqhci_set_irqs(cq_host, CQHCI_IS_HAC);
ctl = cqhci_readl(cq_host, CQHCI_CTL);
ctl |= CQHCI_HALT;
cqhci_writel(cq_host, ctl, CQHCI_CTL);
wait_event_timeout(cq_host->wait_queue, cqhci_halted(cq_host),
msecs_to_jiffies(timeout) + 1);
cqhci_set_irqs(cq_host, 0);
ret = cqhci_halted(cq_host);
if (!ret)
pr_warn("%s: cqhci: Failed to halt\n", mmc_hostname(mmc));
return ret;
}
/*
* After halting we expect to be able to use the command line. We interpret the
* failure to halt to mean the data lines might still be in use (and the upper
* layers will need to send a STOP command), however failing to halt complicates
* the recovery, so set a timeout that would reasonably allow I/O to complete.
*/
#define CQHCI_START_HALT_TIMEOUT 500
static void cqhci_recovery_start(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
WARN_ON(!cq_host->recovery_halt);
cqhci_halt(mmc, CQHCI_START_HALT_TIMEOUT);
if (cq_host->ops->disable)
cq_host->ops->disable(mmc, true);
mmc->cqe_on = false;
}
static int cqhci_error_from_flags(unsigned int flags)
{
if (!flags)
return 0;
/* CRC errors might indicate re-tuning so prefer to report that */
if (flags & CQHCI_HOST_CRC)
return -EILSEQ;
if (flags & (CQHCI_EXTERNAL_TIMEOUT | CQHCI_HOST_TIMEOUT))
return -ETIMEDOUT;
return -EIO;
}
static void cqhci_recover_mrq(struct cqhci_host *cq_host, unsigned int tag)
{
struct cqhci_slot *slot = &cq_host->slot[tag];
struct mmc_request *mrq = slot->mrq;
struct mmc_data *data;
if (!mrq)
return;
slot->mrq = NULL;
cq_host->qcnt -= 1;
data = mrq->data;
if (data) {
data->bytes_xfered = 0;
data->error = cqhci_error_from_flags(slot->flags);
} else {
mrq->cmd->error = cqhci_error_from_flags(slot->flags);
}
mmc_cqe_request_done(cq_host->mmc, mrq);
}
static void cqhci_recover_mrqs(struct cqhci_host *cq_host)
{
int i;
for (i = 0; i < cq_host->num_slots; i++)
cqhci_recover_mrq(cq_host, i);
}
/*
* By now the command and data lines should be unused so there is no reason for
* CQHCI to take a long time to halt, but if it doesn't halt there could be
* problems clearing tasks, so be generous.
*/
#define CQHCI_FINISH_HALT_TIMEOUT 20
/* CQHCI could be expected to clear it's internal state pretty quickly */
#define CQHCI_CLEAR_TIMEOUT 20
static void cqhci_recovery_finish(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
unsigned long flags;
u32 cqcfg;
bool ok;
pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
WARN_ON(!cq_host->recovery_halt);
ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
/*
* The specification contradicts itself, by saying that tasks cannot be
* cleared if CQHCI does not halt, but if CQHCI does not halt, it should
* be disabled/re-enabled, but not to disable before clearing tasks.
* Have a go anyway.
*/
if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
ok = false;
/* Disable to make sure tasks really are cleared */
cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
cqcfg &= ~CQHCI_ENABLE;
cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
cqcfg |= CQHCI_ENABLE;
cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
if (!ok)
cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT);
cqhci_recover_mrqs(cq_host);
WARN_ON(cq_host->qcnt);
spin_lock_irqsave(&cq_host->lock, flags);
cq_host->qcnt = 0;
cq_host->recovery_halt = false;
mmc->cqe_on = false;
spin_unlock_irqrestore(&cq_host->lock, flags);
/* Ensure all writes are done before interrupts are re-enabled */
wmb();
cqhci_writel(cq_host, CQHCI_IS_HAC | CQHCI_IS_TCL, CQHCI_IS);
cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
pr_debug("%s: cqhci: recovery done\n", mmc_hostname(mmc));
}
static const struct mmc_cqe_ops cqhci_cqe_ops = {
.cqe_enable = cqhci_enable,
.cqe_disable = cqhci_disable,
.cqe_request = cqhci_request,
.cqe_post_req = cqhci_post_req,
.cqe_off = cqhci_off,
.cqe_wait_for_idle = cqhci_wait_for_idle,
.cqe_timeout = cqhci_timeout,
.cqe_recovery_start = cqhci_recovery_start,
.cqe_recovery_finish = cqhci_recovery_finish,
};
struct cqhci_host *cqhci_pltfm_init(struct platform_device *pdev)
{
struct cqhci_host *cq_host;
struct resource *cqhci_memres = NULL;
/* check and setup CMDQ interface */
cqhci_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"cqhci");
if (!cqhci_memres) {
dev_dbg(&pdev->dev, "CMDQ not supported\n");
return ERR_PTR(-EINVAL);
}
cq_host = devm_kzalloc(&pdev->dev, sizeof(*cq_host), GFP_KERNEL);
if (!cq_host)
return ERR_PTR(-ENOMEM);
cq_host->mmio = devm_ioremap(&pdev->dev,
cqhci_memres->start,
resource_size(cqhci_memres));
if (!cq_host->mmio) {
dev_err(&pdev->dev, "failed to remap cqhci regs\n");
return ERR_PTR(-EBUSY);
}
dev_dbg(&pdev->dev, "CMDQ ioremap: done\n");
return cq_host;
}
EXPORT_SYMBOL(cqhci_pltfm_init);
static unsigned int cqhci_ver_major(struct cqhci_host *cq_host)
{
return CQHCI_VER_MAJOR(cqhci_readl(cq_host, CQHCI_VER));
}
static unsigned int cqhci_ver_minor(struct cqhci_host *cq_host)
{
u32 ver = cqhci_readl(cq_host, CQHCI_VER);
return CQHCI_VER_MINOR1(ver) * 10 + CQHCI_VER_MINOR2(ver);
}
int cqhci_init(struct cqhci_host *cq_host, struct mmc_host *mmc,
bool dma64)
{
int err;
cq_host->dma64 = dma64;
cq_host->mmc = mmc;
cq_host->mmc->cqe_private = cq_host;
cq_host->num_slots = NUM_SLOTS;
cq_host->dcmd_slot = DCMD_SLOT;
mmc->cqe_ops = &cqhci_cqe_ops;
mmc->cqe_qdepth = NUM_SLOTS;
if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
mmc->cqe_qdepth -= 1;
cq_host->slot = devm_kcalloc(mmc_dev(mmc), cq_host->num_slots,
sizeof(*cq_host->slot), GFP_KERNEL);
if (!cq_host->slot) {
err = -ENOMEM;
goto out_err;
}
err = cqhci_crypto_init(cq_host);
if (err) {
pr_err("%s: CQHCI crypto initialization failed\n",
mmc_hostname(mmc));
goto out_err;
}
spin_lock_init(&cq_host->lock);
init_completion(&cq_host->halt_comp);
init_waitqueue_head(&cq_host->wait_queue);
pr_info("%s: CQHCI version %u.%02u\n",
mmc_hostname(mmc), cqhci_ver_major(cq_host),
cqhci_ver_minor(cq_host));
return 0;
out_err:
pr_err("%s: CQHCI version %u.%02u failed to initialize, error %d\n",
mmc_hostname(mmc), cqhci_ver_major(cq_host),
cqhci_ver_minor(cq_host), err);
return err;
}
EXPORT_SYMBOL(cqhci_init);
MODULE_AUTHOR("Venkat Gopalakrishnan <venkatg@codeaurora.org>");
MODULE_DESCRIPTION("Command Queue Host Controller Interface driver");
MODULE_LICENSE("GPL v2");