blob: 3b7cc3be2ccdbea1542a08580677fad13f4368f0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* TC358775 DSI to LVDS bridge driver
*
* Copyright (C) 2020 SMART Wireless Computing
* Author: Vinay Simha BN <simhavcs@gmail.com>
*
*/
/* #define DEBUG */
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <asm/unaligned.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_probe_helper.h>
#define FLD_VAL(val, start, end) FIELD_PREP(GENMASK(start, end), val)
/* Registers */
/* DSI D-PHY Layer Registers */
#define D0W_DPHYCONTTX 0x0004 /* Data Lane 0 DPHY Tx Control */
#define CLW_DPHYCONTRX 0x0020 /* Clock Lane DPHY Rx Control */
#define D0W_DPHYCONTRX 0x0024 /* Data Lane 0 DPHY Rx Control */
#define D1W_DPHYCONTRX 0x0028 /* Data Lane 1 DPHY Rx Control */
#define D2W_DPHYCONTRX 0x002C /* Data Lane 2 DPHY Rx Control */
#define D3W_DPHYCONTRX 0x0030 /* Data Lane 3 DPHY Rx Control */
#define COM_DPHYCONTRX 0x0038 /* DPHY Rx Common Control */
#define CLW_CNTRL 0x0040 /* Clock Lane Control */
#define D0W_CNTRL 0x0044 /* Data Lane 0 Control */
#define D1W_CNTRL 0x0048 /* Data Lane 1 Control */
#define D2W_CNTRL 0x004C /* Data Lane 2 Control */
#define D3W_CNTRL 0x0050 /* Data Lane 3 Control */
#define DFTMODE_CNTRL 0x0054 /* DFT Mode Control */
/* DSI PPI Layer Registers */
#define PPI_STARTPPI 0x0104 /* START control bit of PPI-TX function. */
#define PPI_START_FUNCTION 1
#define PPI_BUSYPPI 0x0108
#define PPI_LINEINITCNT 0x0110 /* Line Initialization Wait Counter */
#define PPI_LPTXTIMECNT 0x0114
#define PPI_LANEENABLE 0x0134 /* Enables each lane at the PPI layer. */
#define PPI_TX_RX_TA 0x013C /* DSI Bus Turn Around timing parameters */
/* Analog timer function enable */
#define PPI_CLS_ATMR 0x0140 /* Delay for Clock Lane in LPRX */
#define PPI_D0S_ATMR 0x0144 /* Delay for Data Lane 0 in LPRX */
#define PPI_D1S_ATMR 0x0148 /* Delay for Data Lane 1 in LPRX */
#define PPI_D2S_ATMR 0x014C /* Delay for Data Lane 2 in LPRX */
#define PPI_D3S_ATMR 0x0150 /* Delay for Data Lane 3 in LPRX */
#define PPI_D0S_CLRSIPOCOUNT 0x0164 /* For lane 0 */
#define PPI_D1S_CLRSIPOCOUNT 0x0168 /* For lane 1 */
#define PPI_D2S_CLRSIPOCOUNT 0x016C /* For lane 2 */
#define PPI_D3S_CLRSIPOCOUNT 0x0170 /* For lane 3 */
#define CLS_PRE 0x0180 /* Digital Counter inside of PHY IO */
#define D0S_PRE 0x0184 /* Digital Counter inside of PHY IO */
#define D1S_PRE 0x0188 /* Digital Counter inside of PHY IO */
#define D2S_PRE 0x018C /* Digital Counter inside of PHY IO */
#define D3S_PRE 0x0190 /* Digital Counter inside of PHY IO */
#define CLS_PREP 0x01A0 /* Digital Counter inside of PHY IO */
#define D0S_PREP 0x01A4 /* Digital Counter inside of PHY IO */
#define D1S_PREP 0x01A8 /* Digital Counter inside of PHY IO */
#define D2S_PREP 0x01AC /* Digital Counter inside of PHY IO */
#define D3S_PREP 0x01B0 /* Digital Counter inside of PHY IO */
#define CLS_ZERO 0x01C0 /* Digital Counter inside of PHY IO */
#define D0S_ZERO 0x01C4 /* Digital Counter inside of PHY IO */
#define D1S_ZERO 0x01C8 /* Digital Counter inside of PHY IO */
#define D2S_ZERO 0x01CC /* Digital Counter inside of PHY IO */
#define D3S_ZERO 0x01D0 /* Digital Counter inside of PHY IO */
#define PPI_CLRFLG 0x01E0 /* PRE Counters has reached set values */
#define PPI_CLRSIPO 0x01E4 /* Clear SIPO values, Slave mode use only. */
#define HSTIMEOUT 0x01F0 /* HS Rx Time Out Counter */
#define HSTIMEOUTENABLE 0x01F4 /* Enable HS Rx Time Out Counter */
#define DSI_STARTDSI 0x0204 /* START control bit of DSI-TX function */
#define DSI_RX_START 1
#define DSI_BUSYDSI 0x0208
#define DSI_LANEENABLE 0x0210 /* Enables each lane at the Protocol layer. */
#define DSI_LANESTATUS0 0x0214 /* Displays lane is in HS RX mode. */
#define DSI_LANESTATUS1 0x0218 /* Displays lane is in ULPS or STOP state */
#define DSI_INTSTATUS 0x0220 /* Interrupt Status */
#define DSI_INTMASK 0x0224 /* Interrupt Mask */
#define DSI_INTCLR 0x0228 /* Interrupt Clear */
#define DSI_LPTXTO 0x0230 /* Low Power Tx Time Out Counter */
#define DSIERRCNT 0x0300 /* DSI Error Count */
#define APLCTRL 0x0400 /* Application Layer Control */
#define RDPKTLN 0x0404 /* Command Read Packet Length */
#define VPCTRL 0x0450 /* Video Path Control */
#define EVTMODE BIT(5) /* Video event mode enable, tc35876x only */
#define HTIM1 0x0454 /* Horizontal Timing Control 1 */
#define HTIM2 0x0458 /* Horizontal Timing Control 2 */
#define VTIM1 0x045C /* Vertical Timing Control 1 */
#define VTIM2 0x0460 /* Vertical Timing Control 2 */
#define VFUEN 0x0464 /* Video Frame Timing Update Enable */
#define VFUEN_EN BIT(0) /* Upload Enable */
/* Mux Input Select for LVDS LINK Input */
#define LV_MX0003 0x0480 /* Bit 0 to 3 */
#define LV_MX0407 0x0484 /* Bit 4 to 7 */
#define LV_MX0811 0x0488 /* Bit 8 to 11 */
#define LV_MX1215 0x048C /* Bit 12 to 15 */
#define LV_MX1619 0x0490 /* Bit 16 to 19 */
#define LV_MX2023 0x0494 /* Bit 20 to 23 */
#define LV_MX2427 0x0498 /* Bit 24 to 27 */
#define LV_MX(b0, b1, b2, b3) (FLD_VAL(b0, 4, 0) | FLD_VAL(b1, 12, 8) | \
FLD_VAL(b2, 20, 16) | FLD_VAL(b3, 28, 24))
/* Input bit numbers used in mux registers */
enum {
LVI_R0,
LVI_R1,
LVI_R2,
LVI_R3,
LVI_R4,
LVI_R5,
LVI_R6,
LVI_R7,
LVI_G0,
LVI_G1,
LVI_G2,
LVI_G3,
LVI_G4,
LVI_G5,
LVI_G6,
LVI_G7,
LVI_B0,
LVI_B1,
LVI_B2,
LVI_B3,
LVI_B4,
LVI_B5,
LVI_B6,
LVI_B7,
LVI_HS,
LVI_VS,
LVI_DE,
LVI_L0
};
#define LVCFG 0x049C /* LVDS Configuration */
#define LVPHY0 0x04A0 /* LVDS PHY 0 */
#define LV_PHY0_RST(v) FLD_VAL(v, 22, 22) /* PHY reset */
#define LV_PHY0_IS(v) FLD_VAL(v, 15, 14)
#define LV_PHY0_ND(v) FLD_VAL(v, 4, 0) /* Frequency range select */
#define LV_PHY0_PRBS_ON(v) FLD_VAL(v, 20, 16) /* Clock/Data Flag pins */
#define LVPHY1 0x04A4 /* LVDS PHY 1 */
#define SYSSTAT 0x0500 /* System Status */
#define SYSRST 0x0504 /* System Reset */
#define SYS_RST_I2CS BIT(0) /* Reset I2C-Slave controller */
#define SYS_RST_I2CM BIT(1) /* Reset I2C-Master controller */
#define SYS_RST_LCD BIT(2) /* Reset LCD controller */
#define SYS_RST_BM BIT(3) /* Reset Bus Management controller */
#define SYS_RST_DSIRX BIT(4) /* Reset DSI-RX and App controller */
#define SYS_RST_REG BIT(5) /* Reset Register module */
/* GPIO Registers */
#define GPIOC 0x0520 /* GPIO Control */
#define GPIOO 0x0524 /* GPIO Output */
#define GPIOI 0x0528 /* GPIO Input */
/* I2C Registers */
#define I2CTIMCTRL 0x0540 /* I2C IF Timing and Enable Control */
#define I2CMADDR 0x0544 /* I2C Master Addressing */
#define WDATAQ 0x0548 /* Write Data Queue */
#define RDATAQ 0x054C /* Read Data Queue */
/* Chip ID and Revision ID Register */
#define IDREG 0x0580
#define LPX_PERIOD 4
#define TTA_GET 0x40000
#define TTA_SURE 6
#define SINGLE_LINK 1
#define DUAL_LINK 2
#define TC358775XBG_ID 0x00007500
/* Debug Registers */
#define DEBUG00 0x05A0 /* Debug */
#define DEBUG01 0x05A4 /* LVDS Data */
#define DSI_CLEN_BIT BIT(0)
#define DIVIDE_BY_3 3 /* PCLK=DCLK/3 */
#define DIVIDE_BY_6 6 /* PCLK=DCLK/6 */
#define LVCFG_LVEN_BIT BIT(0)
#define L0EN BIT(1)
#define TC358775_VPCTRL_VSDELAY__MASK 0x3FF00000
#define TC358775_VPCTRL_VSDELAY__SHIFT 20
static inline u32 TC358775_VPCTRL_VSDELAY(uint32_t val)
{
return ((val) << TC358775_VPCTRL_VSDELAY__SHIFT) &
TC358775_VPCTRL_VSDELAY__MASK;
}
#define TC358775_VPCTRL_OPXLFMT__MASK 0x00000100
#define TC358775_VPCTRL_OPXLFMT__SHIFT 8
static inline u32 TC358775_VPCTRL_OPXLFMT(uint32_t val)
{
return ((val) << TC358775_VPCTRL_OPXLFMT__SHIFT) &
TC358775_VPCTRL_OPXLFMT__MASK;
}
#define TC358775_VPCTRL_MSF__MASK 0x00000001
#define TC358775_VPCTRL_MSF__SHIFT 0
static inline u32 TC358775_VPCTRL_MSF(uint32_t val)
{
return ((val) << TC358775_VPCTRL_MSF__SHIFT) &
TC358775_VPCTRL_MSF__MASK;
}
#define TC358775_LVCFG_PCLKDIV__MASK 0x000000f0
#define TC358775_LVCFG_PCLKDIV__SHIFT 4
static inline u32 TC358775_LVCFG_PCLKDIV(uint32_t val)
{
return ((val) << TC358775_LVCFG_PCLKDIV__SHIFT) &
TC358775_LVCFG_PCLKDIV__MASK;
}
#define TC358775_LVCFG_LVDLINK__MASK 0x00000002
#define TC358775_LVCFG_LVDLINK__SHIFT 1
static inline u32 TC358775_LVCFG_LVDLINK(uint32_t val)
{
return ((val) << TC358775_LVCFG_LVDLINK__SHIFT) &
TC358775_LVCFG_LVDLINK__MASK;
}
enum tc358775_ports {
TC358775_DSI_IN,
TC358775_LVDS_OUT0,
TC358775_LVDS_OUT1,
};
enum tc3587x5_type {
TC358765 = 0x65,
TC358775 = 0x75,
};
struct tc_data {
struct i2c_client *i2c;
struct device *dev;
struct drm_bridge bridge;
struct drm_bridge *panel_bridge;
struct device_node *host_node;
struct mipi_dsi_device *dsi;
u8 num_dsi_lanes;
struct regulator *vdd;
struct regulator *vddio;
struct gpio_desc *reset_gpio;
struct gpio_desc *stby_gpio;
u8 lvds_link; /* single-link or dual-link */
u8 bpc;
enum tc3587x5_type type;
};
static inline struct tc_data *bridge_to_tc(struct drm_bridge *b)
{
return container_of(b, struct tc_data, bridge);
}
static void tc_bridge_pre_enable(struct drm_bridge *bridge)
{
struct tc_data *tc = bridge_to_tc(bridge);
struct device *dev = &tc->dsi->dev;
int ret;
ret = regulator_enable(tc->vddio);
if (ret < 0)
dev_err(dev, "regulator vddio enable failed, %d\n", ret);
usleep_range(10000, 11000);
ret = regulator_enable(tc->vdd);
if (ret < 0)
dev_err(dev, "regulator vdd enable failed, %d\n", ret);
usleep_range(10000, 11000);
gpiod_set_value(tc->stby_gpio, 0);
usleep_range(10000, 11000);
gpiod_set_value(tc->reset_gpio, 0);
usleep_range(10, 20);
}
static void tc_bridge_post_disable(struct drm_bridge *bridge)
{
struct tc_data *tc = bridge_to_tc(bridge);
struct device *dev = &tc->dsi->dev;
int ret;
gpiod_set_value(tc->reset_gpio, 1);
usleep_range(10, 20);
gpiod_set_value(tc->stby_gpio, 1);
usleep_range(10000, 11000);
ret = regulator_disable(tc->vdd);
if (ret < 0)
dev_err(dev, "regulator vdd disable failed, %d\n", ret);
usleep_range(10000, 11000);
ret = regulator_disable(tc->vddio);
if (ret < 0)
dev_err(dev, "regulator vddio disable failed, %d\n", ret);
usleep_range(10000, 11000);
}
static void d2l_read(struct i2c_client *i2c, u16 addr, u32 *val)
{
int ret;
u8 buf_addr[2];
put_unaligned_be16(addr, buf_addr);
ret = i2c_master_send(i2c, buf_addr, sizeof(buf_addr));
if (ret < 0)
goto fail;
ret = i2c_master_recv(i2c, (u8 *)val, sizeof(*val));
if (ret < 0)
goto fail;
pr_debug("d2l: I2C : addr:%04x value:%08x\n", addr, *val);
return;
fail:
dev_err(&i2c->dev, "Error %d reading from subaddress 0x%x\n",
ret, addr);
}
static void d2l_write(struct i2c_client *i2c, u16 addr, u32 val)
{
u8 data[6];
int ret;
put_unaligned_be16(addr, data);
put_unaligned_le32(val, data + 2);
ret = i2c_master_send(i2c, data, ARRAY_SIZE(data));
if (ret < 0)
dev_err(&i2c->dev, "Error %d writing to subaddress 0x%x\n",
ret, addr);
}
/* helper function to access bus_formats */
static struct drm_connector *get_connector(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct drm_connector *connector;
list_for_each_entry(connector, &dev->mode_config.connector_list, head)
if (connector->encoder == encoder)
return connector;
return NULL;
}
static void tc_bridge_enable(struct drm_bridge *bridge)
{
struct tc_data *tc = bridge_to_tc(bridge);
u32 hback_porch, hsync_len, hfront_porch, hactive, htime1, htime2;
u32 vback_porch, vsync_len, vfront_porch, vactive, vtime1, vtime2;
u32 val = 0;
u16 dsiclk, clkdiv, byteclk, t1, t2, t3, vsdelay;
struct drm_display_mode *mode;
struct drm_connector *connector = get_connector(bridge->encoder);
mode = &bridge->encoder->crtc->state->adjusted_mode;
hback_porch = mode->htotal - mode->hsync_end;
hsync_len = mode->hsync_end - mode->hsync_start;
vback_porch = mode->vtotal - mode->vsync_end;
vsync_len = mode->vsync_end - mode->vsync_start;
htime1 = (hback_porch << 16) + hsync_len;
vtime1 = (vback_porch << 16) + vsync_len;
hfront_porch = mode->hsync_start - mode->hdisplay;
hactive = mode->hdisplay;
vfront_porch = mode->vsync_start - mode->vdisplay;
vactive = mode->vdisplay;
htime2 = (hfront_porch << 16) + hactive;
vtime2 = (vfront_porch << 16) + vactive;
d2l_read(tc->i2c, IDREG, &val);
dev_info(tc->dev, "DSI2LVDS Chip ID.%02x Revision ID. %02x **\n",
(val >> 8) & 0xFF, val & 0xFF);
d2l_write(tc->i2c, SYSRST, SYS_RST_REG | SYS_RST_DSIRX | SYS_RST_BM |
SYS_RST_LCD | SYS_RST_I2CM);
usleep_range(30000, 40000);
d2l_write(tc->i2c, PPI_TX_RX_TA, TTA_GET | TTA_SURE);
d2l_write(tc->i2c, PPI_LPTXTIMECNT, LPX_PERIOD);
d2l_write(tc->i2c, PPI_D0S_CLRSIPOCOUNT, 3);
d2l_write(tc->i2c, PPI_D1S_CLRSIPOCOUNT, 3);
d2l_write(tc->i2c, PPI_D2S_CLRSIPOCOUNT, 3);
d2l_write(tc->i2c, PPI_D3S_CLRSIPOCOUNT, 3);
val = ((L0EN << tc->num_dsi_lanes) - L0EN) | DSI_CLEN_BIT;
d2l_write(tc->i2c, PPI_LANEENABLE, val);
d2l_write(tc->i2c, DSI_LANEENABLE, val);
d2l_write(tc->i2c, PPI_STARTPPI, PPI_START_FUNCTION);
d2l_write(tc->i2c, DSI_STARTDSI, DSI_RX_START);
/* Video event mode vs pulse mode bit, does not exist for tc358775 */
if (tc->type == TC358765)
val = EVTMODE;
else
val = 0;
if (tc->bpc == 8)
val |= TC358775_VPCTRL_OPXLFMT(1);
else /* bpc = 6; */
val |= TC358775_VPCTRL_MSF(1);
dsiclk = mode->crtc_clock * 3 * tc->bpc / tc->num_dsi_lanes / 1000;
clkdiv = dsiclk / (tc->lvds_link == DUAL_LINK ? DIVIDE_BY_6 : DIVIDE_BY_3);
byteclk = dsiclk / 4;
t1 = hactive * (tc->bpc * 3 / 8) / tc->num_dsi_lanes;
t2 = ((100000 / clkdiv)) * (hactive + hback_porch + hsync_len + hfront_porch) / 1000;
t3 = ((t2 * byteclk) / 100) - (hactive * (tc->bpc * 3 / 8) /
tc->num_dsi_lanes);
vsdelay = (clkdiv * (t1 + t3) / byteclk) - hback_porch - hsync_len - hactive;
val |= TC358775_VPCTRL_VSDELAY(vsdelay);
d2l_write(tc->i2c, VPCTRL, val);
d2l_write(tc->i2c, HTIM1, htime1);
d2l_write(tc->i2c, VTIM1, vtime1);
d2l_write(tc->i2c, HTIM2, htime2);
d2l_write(tc->i2c, VTIM2, vtime2);
d2l_write(tc->i2c, VFUEN, VFUEN_EN);
d2l_write(tc->i2c, SYSRST, SYS_RST_LCD);
d2l_write(tc->i2c, LVPHY0, LV_PHY0_PRBS_ON(4) | LV_PHY0_ND(6));
dev_dbg(tc->dev, "bus_formats %04x bpc %d\n",
connector->display_info.bus_formats[0],
tc->bpc);
if (connector->display_info.bus_formats[0] ==
MEDIA_BUS_FMT_RGB888_1X7X4_SPWG) {
/* VESA-24 */
d2l_write(tc->i2c, LV_MX0003, LV_MX(LVI_R0, LVI_R1, LVI_R2, LVI_R3));
d2l_write(tc->i2c, LV_MX0407, LV_MX(LVI_R4, LVI_R7, LVI_R5, LVI_G0));
d2l_write(tc->i2c, LV_MX0811, LV_MX(LVI_G1, LVI_G2, LVI_G6, LVI_G7));
d2l_write(tc->i2c, LV_MX1215, LV_MX(LVI_G3, LVI_G4, LVI_G5, LVI_B0));
d2l_write(tc->i2c, LV_MX1619, LV_MX(LVI_B6, LVI_B7, LVI_B1, LVI_B2));
d2l_write(tc->i2c, LV_MX2023, LV_MX(LVI_B3, LVI_B4, LVI_B5, LVI_L0));
d2l_write(tc->i2c, LV_MX2427, LV_MX(LVI_HS, LVI_VS, LVI_DE, LVI_R6));
} else {
/* JEIDA-18 and JEIDA-24 */
d2l_write(tc->i2c, LV_MX0003, LV_MX(LVI_R2, LVI_R3, LVI_R4, LVI_R5));
d2l_write(tc->i2c, LV_MX0407, LV_MX(LVI_R6, LVI_R1, LVI_R7, LVI_G2));
d2l_write(tc->i2c, LV_MX0811, LV_MX(LVI_G3, LVI_G4, LVI_G0, LVI_G1));
d2l_write(tc->i2c, LV_MX1215, LV_MX(LVI_G5, LVI_G6, LVI_G7, LVI_B2));
d2l_write(tc->i2c, LV_MX1619, LV_MX(LVI_B0, LVI_B1, LVI_B3, LVI_B4));
d2l_write(tc->i2c, LV_MX2023, LV_MX(LVI_B5, LVI_B6, LVI_B7, LVI_L0));
d2l_write(tc->i2c, LV_MX2427, LV_MX(LVI_HS, LVI_VS, LVI_DE, LVI_R0));
}
d2l_write(tc->i2c, VFUEN, VFUEN_EN);
val = LVCFG_LVEN_BIT;
if (tc->lvds_link == DUAL_LINK) {
val |= TC358775_LVCFG_LVDLINK(1);
val |= TC358775_LVCFG_PCLKDIV(DIVIDE_BY_6);
} else {
val |= TC358775_LVCFG_PCLKDIV(DIVIDE_BY_3);
}
d2l_write(tc->i2c, LVCFG, val);
}
static enum drm_mode_status
tc_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct tc_data *tc = bridge_to_tc(bridge);
/*
* Maximum pixel clock speed 135MHz for single-link
* 270MHz for dual-link
*/
if ((mode->clock > 135000 && tc->lvds_link == SINGLE_LINK) ||
(mode->clock > 270000 && tc->lvds_link == DUAL_LINK))
return MODE_CLOCK_HIGH;
switch (info->bus_formats[0]) {
case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
/* RGB888 */
tc->bpc = 8;
break;
case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
/* RGB666 */
tc->bpc = 6;
break;
default:
dev_warn(tc->dev,
"unsupported LVDS bus format 0x%04x\n",
info->bus_formats[0]);
return MODE_NOMODE;
}
return MODE_OK;
}
static int tc358775_parse_dt(struct device_node *np, struct tc_data *tc)
{
struct device_node *endpoint;
struct device_node *remote;
int dsi_lanes = -1;
endpoint = of_graph_get_endpoint_by_regs(tc->dev->of_node,
TC358775_DSI_IN, -1);
dsi_lanes = drm_of_get_data_lanes_count(endpoint, 1, 4);
/* Quirk old dtb: Use data lanes from the DSI host side instead of bridge */
if (dsi_lanes == -EINVAL || dsi_lanes == -ENODEV) {
remote = of_graph_get_remote_endpoint(endpoint);
dsi_lanes = drm_of_get_data_lanes_count(remote, 1, 4);
of_node_put(remote);
if (dsi_lanes >= 1)
dev_warn(tc->dev, "no dsi-lanes for the bridge, using host lanes\n");
}
of_node_put(endpoint);
if (dsi_lanes < 0)
return dsi_lanes;
tc->num_dsi_lanes = dsi_lanes;
tc->host_node = of_graph_get_remote_node(np, 0, 0);
if (!tc->host_node)
return -ENODEV;
of_node_put(tc->host_node);
tc->lvds_link = SINGLE_LINK;
endpoint = of_graph_get_endpoint_by_regs(tc->dev->of_node,
TC358775_LVDS_OUT1, -1);
if (endpoint) {
remote = of_graph_get_remote_port_parent(endpoint);
of_node_put(endpoint);
if (remote) {
if (of_device_is_available(remote))
tc->lvds_link = DUAL_LINK;
of_node_put(remote);
}
}
dev_dbg(tc->dev, "no.of dsi lanes: %d\n", tc->num_dsi_lanes);
dev_dbg(tc->dev, "operating in %d-link mode\n", tc->lvds_link);
return 0;
}
static int tc_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct tc_data *tc = bridge_to_tc(bridge);
/* Attach the panel-bridge to the dsi bridge */
return drm_bridge_attach(bridge->encoder, tc->panel_bridge,
&tc->bridge, flags);
}
static const struct drm_bridge_funcs tc_bridge_funcs = {
.attach = tc_bridge_attach,
.pre_enable = tc_bridge_pre_enable,
.enable = tc_bridge_enable,
.mode_valid = tc_mode_valid,
.post_disable = tc_bridge_post_disable,
};
static int tc_attach_host(struct tc_data *tc)
{
struct device *dev = &tc->i2c->dev;
struct mipi_dsi_host *host;
struct mipi_dsi_device *dsi;
int ret;
const struct mipi_dsi_device_info info = { .type = "tc358775",
.channel = 0,
.node = NULL,
};
host = of_find_mipi_dsi_host_by_node(tc->host_node);
if (!host)
return dev_err_probe(dev, -EPROBE_DEFER, "failed to find dsi host\n");
dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
if (IS_ERR(dsi)) {
dev_err(dev, "failed to create dsi device\n");
return PTR_ERR(dsi);
}
tc->dsi = dsi;
dsi->lanes = tc->num_dsi_lanes;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
MIPI_DSI_MODE_LPM;
/*
* The hs_rate and lp_rate are data rate values. The HS mode is
* differential, while the LP mode is single ended. As the HS mode
* uses DDR, the DSI clock frequency is half the hs_rate. The 10 Mbs
* data rate for LP mode is not specified in the bridge data sheet,
* but seems to be part of the MIPI DSI spec.
*/
if (tc->type == TC358765)
dsi->hs_rate = 800000000;
else
dsi->hs_rate = 1000000000;
dsi->lp_rate = 10000000;
ret = devm_mipi_dsi_attach(dev, dsi);
if (ret < 0) {
dev_err(dev, "failed to attach dsi to host\n");
return ret;
}
return 0;
}
static int tc_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct tc_data *tc;
int ret;
tc = devm_kzalloc(dev, sizeof(*tc), GFP_KERNEL);
if (!tc)
return -ENOMEM;
tc->dev = dev;
tc->i2c = client;
tc->type = (enum tc3587x5_type)(unsigned long)of_device_get_match_data(dev);
tc->panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node,
TC358775_LVDS_OUT0, 0);
if (IS_ERR(tc->panel_bridge))
return PTR_ERR(tc->panel_bridge);
ret = tc358775_parse_dt(dev->of_node, tc);
if (ret)
return ret;
tc->vddio = devm_regulator_get(dev, "vddio-supply");
if (IS_ERR(tc->vddio)) {
ret = PTR_ERR(tc->vddio);
dev_err(dev, "vddio-supply not found\n");
return ret;
}
tc->vdd = devm_regulator_get(dev, "vdd-supply");
if (IS_ERR(tc->vdd)) {
ret = PTR_ERR(tc->vdd);
dev_err(dev, "vdd-supply not found\n");
return ret;
}
tc->stby_gpio = devm_gpiod_get_optional(dev, "stby", GPIOD_OUT_HIGH);
if (IS_ERR(tc->stby_gpio))
return PTR_ERR(tc->stby_gpio);
tc->reset_gpio = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(tc->reset_gpio)) {
ret = PTR_ERR(tc->reset_gpio);
dev_err(dev, "cannot get reset-gpios %d\n", ret);
return ret;
}
tc->bridge.funcs = &tc_bridge_funcs;
tc->bridge.of_node = dev->of_node;
tc->bridge.pre_enable_prev_first = true;
drm_bridge_add(&tc->bridge);
i2c_set_clientdata(client, tc);
ret = tc_attach_host(tc);
if (ret)
goto err_bridge_remove;
return 0;
err_bridge_remove:
drm_bridge_remove(&tc->bridge);
return ret;
}
static void tc_remove(struct i2c_client *client)
{
struct tc_data *tc = i2c_get_clientdata(client);
drm_bridge_remove(&tc->bridge);
}
static const struct i2c_device_id tc358775_i2c_ids[] = {
{ "tc358765", TC358765, },
{ "tc358775", TC358775, },
{ }
};
MODULE_DEVICE_TABLE(i2c, tc358775_i2c_ids);
static const struct of_device_id tc358775_of_ids[] = {
{ .compatible = "toshiba,tc358765", .data = (void *)TC358765, },
{ .compatible = "toshiba,tc358775", .data = (void *)TC358775, },
{ }
};
MODULE_DEVICE_TABLE(of, tc358775_of_ids);
static struct i2c_driver tc358775_driver = {
.driver = {
.name = "tc358775",
.of_match_table = tc358775_of_ids,
},
.id_table = tc358775_i2c_ids,
.probe = tc_probe,
.remove = tc_remove,
};
module_i2c_driver(tc358775_driver);
MODULE_AUTHOR("Vinay Simha BN <simhavcs@gmail.com>");
MODULE_DESCRIPTION("TC358775 DSI/LVDS bridge driver");
MODULE_LICENSE("GPL v2");