blob: 4699b78360013c1e16805d30aa9d5d306e43c321 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2023-2024 Intel Corporation
*/
#include <linux/string_choices.h>
#include <linux/wordpart.h>
#include "abi/guc_actions_sriov_abi.h"
#include "abi/guc_klvs_abi.h"
#include "regs/xe_guc_regs.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_ggtt.h"
#include "xe_gt.h"
#include "xe_gt_sriov_pf_config.h"
#include "xe_gt_sriov_pf_helpers.h"
#include "xe_gt_sriov_pf_policy.h"
#include "xe_gt_sriov_printk.h"
#include "xe_guc.h"
#include "xe_guc_ct.h"
#include "xe_guc_db_mgr.h"
#include "xe_guc_fwif.h"
#include "xe_guc_id_mgr.h"
#include "xe_guc_klv_helpers.h"
#include "xe_guc_klv_thresholds_set.h"
#include "xe_guc_submit.h"
#include "xe_lmtt.h"
#include "xe_map.h"
#include "xe_sriov.h"
#include "xe_ttm_vram_mgr.h"
#include "xe_wopcm.h"
/*
* Return: number of KLVs that were successfully parsed and saved,
* negative error code on failure.
*/
static int guc_action_update_vf_cfg(struct xe_guc *guc, u32 vfid,
u64 addr, u32 size)
{
u32 request[] = {
GUC_ACTION_PF2GUC_UPDATE_VF_CFG,
vfid,
lower_32_bits(addr),
upper_32_bits(addr),
size,
};
return xe_guc_ct_send_block(&guc->ct, request, ARRAY_SIZE(request));
}
/*
* Return: 0 on success, negative error code on failure.
*/
static int pf_send_vf_cfg_reset(struct xe_gt *gt, u32 vfid)
{
struct xe_guc *guc = &gt->uc.guc;
int ret;
ret = guc_action_update_vf_cfg(guc, vfid, 0, 0);
return ret <= 0 ? ret : -EPROTO;
}
/*
* Return: number of KLVs that were successfully parsed and saved,
* negative error code on failure.
*/
static int pf_send_vf_cfg_klvs(struct xe_gt *gt, u32 vfid, const u32 *klvs, u32 num_dwords)
{
const u32 bytes = num_dwords * sizeof(u32);
struct xe_tile *tile = gt_to_tile(gt);
struct xe_device *xe = tile_to_xe(tile);
struct xe_guc *guc = &gt->uc.guc;
struct xe_bo *bo;
int ret;
bo = xe_bo_create_pin_map(xe, tile, NULL,
ALIGN(bytes, PAGE_SIZE),
ttm_bo_type_kernel,
XE_BO_FLAG_VRAM_IF_DGFX(tile) |
XE_BO_FLAG_GGTT |
XE_BO_FLAG_GGTT_INVALIDATE);
if (IS_ERR(bo))
return PTR_ERR(bo);
xe_map_memcpy_to(xe, &bo->vmap, 0, klvs, bytes);
ret = guc_action_update_vf_cfg(guc, vfid, xe_bo_ggtt_addr(bo), num_dwords);
xe_bo_unpin_map_no_vm(bo);
return ret;
}
/*
* Return: 0 on success, -ENOKEY if some KLVs were not updated, -EPROTO if reply was malformed,
* negative error code on failure.
*/
static int pf_push_vf_cfg_klvs(struct xe_gt *gt, unsigned int vfid, u32 num_klvs,
const u32 *klvs, u32 num_dwords)
{
int ret;
xe_gt_assert(gt, num_klvs == xe_guc_klv_count(klvs, num_dwords));
ret = pf_send_vf_cfg_klvs(gt, vfid, klvs, num_dwords);
if (ret != num_klvs) {
int err = ret < 0 ? ret : ret < num_klvs ? -ENOKEY : -EPROTO;
struct drm_printer p = xe_gt_info_printer(gt);
char name[8];
xe_gt_sriov_notice(gt, "Failed to push %s %u config KLV%s (%pe)\n",
xe_sriov_function_name(vfid, name, sizeof(name)),
num_klvs, str_plural(num_klvs), ERR_PTR(err));
xe_guc_klv_print(klvs, num_dwords, &p);
return err;
}
if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_SRIOV)) {
struct drm_printer p = xe_gt_info_printer(gt);
xe_guc_klv_print(klvs, num_dwords, &p);
}
return 0;
}
static int pf_push_vf_cfg_u32(struct xe_gt *gt, unsigned int vfid, u16 key, u32 value)
{
u32 klv[] = {
FIELD_PREP(GUC_KLV_0_KEY, key) | FIELD_PREP(GUC_KLV_0_LEN, 1),
value,
};
return pf_push_vf_cfg_klvs(gt, vfid, 1, klv, ARRAY_SIZE(klv));
}
static int pf_push_vf_cfg_u64(struct xe_gt *gt, unsigned int vfid, u16 key, u64 value)
{
u32 klv[] = {
FIELD_PREP(GUC_KLV_0_KEY, key) | FIELD_PREP(GUC_KLV_0_LEN, 2),
lower_32_bits(value),
upper_32_bits(value),
};
return pf_push_vf_cfg_klvs(gt, vfid, 1, klv, ARRAY_SIZE(klv));
}
static int pf_push_vf_cfg_ggtt(struct xe_gt *gt, unsigned int vfid, u64 start, u64 size)
{
u32 klvs[] = {
PREP_GUC_KLV_TAG(VF_CFG_GGTT_START),
lower_32_bits(start),
upper_32_bits(start),
PREP_GUC_KLV_TAG(VF_CFG_GGTT_SIZE),
lower_32_bits(size),
upper_32_bits(size),
};
return pf_push_vf_cfg_klvs(gt, vfid, 2, klvs, ARRAY_SIZE(klvs));
}
static int pf_push_vf_cfg_ctxs(struct xe_gt *gt, unsigned int vfid, u32 begin, u32 num)
{
u32 klvs[] = {
PREP_GUC_KLV_TAG(VF_CFG_BEGIN_CONTEXT_ID),
begin,
PREP_GUC_KLV_TAG(VF_CFG_NUM_CONTEXTS),
num,
};
return pf_push_vf_cfg_klvs(gt, vfid, 2, klvs, ARRAY_SIZE(klvs));
}
static int pf_push_vf_cfg_dbs(struct xe_gt *gt, unsigned int vfid, u32 begin, u32 num)
{
u32 klvs[] = {
PREP_GUC_KLV_TAG(VF_CFG_BEGIN_DOORBELL_ID),
begin,
PREP_GUC_KLV_TAG(VF_CFG_NUM_DOORBELLS),
num,
};
return pf_push_vf_cfg_klvs(gt, vfid, 2, klvs, ARRAY_SIZE(klvs));
}
static int pf_push_vf_cfg_exec_quantum(struct xe_gt *gt, unsigned int vfid, u32 *exec_quantum)
{
/* GuC will silently clamp values exceeding max */
*exec_quantum = min_t(u32, *exec_quantum, GUC_KLV_VF_CFG_EXEC_QUANTUM_MAX_VALUE);
return pf_push_vf_cfg_u32(gt, vfid, GUC_KLV_VF_CFG_EXEC_QUANTUM_KEY, *exec_quantum);
}
static int pf_push_vf_cfg_preempt_timeout(struct xe_gt *gt, unsigned int vfid, u32 *preempt_timeout)
{
/* GuC will silently clamp values exceeding max */
*preempt_timeout = min_t(u32, *preempt_timeout, GUC_KLV_VF_CFG_PREEMPT_TIMEOUT_MAX_VALUE);
return pf_push_vf_cfg_u32(gt, vfid, GUC_KLV_VF_CFG_PREEMPT_TIMEOUT_KEY, *preempt_timeout);
}
static int pf_push_vf_cfg_lmem(struct xe_gt *gt, unsigned int vfid, u64 size)
{
return pf_push_vf_cfg_u64(gt, vfid, GUC_KLV_VF_CFG_LMEM_SIZE_KEY, size);
}
static int pf_push_vf_cfg_threshold(struct xe_gt *gt, unsigned int vfid,
enum xe_guc_klv_threshold_index index, u32 value)
{
u32 key = xe_guc_klv_threshold_index_to_key(index);
xe_gt_assert(gt, key);
return pf_push_vf_cfg_u32(gt, vfid, key, value);
}
static struct xe_gt_sriov_config *pf_pick_vf_config(struct xe_gt *gt, unsigned int vfid)
{
xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
xe_gt_assert(gt, vfid <= xe_sriov_pf_get_totalvfs(gt_to_xe(gt)));
lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
return &gt->sriov.pf.vfs[vfid].config;
}
/* Return: number of configuration dwords written */
static u32 encode_config_ggtt(u32 *cfg, const struct xe_gt_sriov_config *config)
{
u32 n = 0;
if (drm_mm_node_allocated(&config->ggtt_region)) {
cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_GGTT_START);
cfg[n++] = lower_32_bits(config->ggtt_region.start);
cfg[n++] = upper_32_bits(config->ggtt_region.start);
cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_GGTT_SIZE);
cfg[n++] = lower_32_bits(config->ggtt_region.size);
cfg[n++] = upper_32_bits(config->ggtt_region.size);
}
return n;
}
/* Return: number of configuration dwords written */
static u32 encode_config(u32 *cfg, const struct xe_gt_sriov_config *config)
{
u32 n = 0;
n += encode_config_ggtt(cfg, config);
cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_BEGIN_CONTEXT_ID);
cfg[n++] = config->begin_ctx;
cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_NUM_CONTEXTS);
cfg[n++] = config->num_ctxs;
cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_BEGIN_DOORBELL_ID);
cfg[n++] = config->begin_db;
cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_NUM_DOORBELLS);
cfg[n++] = config->num_dbs;
if (config->lmem_obj) {
cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_LMEM_SIZE);
cfg[n++] = lower_32_bits(config->lmem_obj->size);
cfg[n++] = upper_32_bits(config->lmem_obj->size);
}
cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_EXEC_QUANTUM);
cfg[n++] = config->exec_quantum;
cfg[n++] = PREP_GUC_KLV_TAG(VF_CFG_PREEMPT_TIMEOUT);
cfg[n++] = config->preempt_timeout;
return n;
}
static int pf_push_full_vf_config(struct xe_gt *gt, unsigned int vfid)
{
struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
u32 max_cfg_dwords = SZ_4K / sizeof(u32);
u32 num_dwords;
int num_klvs;
u32 *cfg;
int err;
cfg = kcalloc(max_cfg_dwords, sizeof(u32), GFP_KERNEL);
if (!cfg)
return -ENOMEM;
num_dwords = encode_config(cfg, config);
xe_gt_assert(gt, num_dwords <= max_cfg_dwords);
if (xe_gt_is_media_type(gt)) {
struct xe_gt *primary = gt->tile->primary_gt;
struct xe_gt_sriov_config *other = pf_pick_vf_config(primary, vfid);
/* media-GT will never include a GGTT config */
xe_gt_assert(gt, !encode_config_ggtt(cfg + num_dwords, config));
/* the GGTT config must be taken from the primary-GT instead */
num_dwords += encode_config_ggtt(cfg + num_dwords, other);
}
xe_gt_assert(gt, num_dwords <= max_cfg_dwords);
num_klvs = xe_guc_klv_count(cfg, num_dwords);
err = pf_push_vf_cfg_klvs(gt, vfid, num_klvs, cfg, num_dwords);
kfree(cfg);
return err;
}
static u64 pf_get_ggtt_alignment(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
return IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K;
}
static u64 pf_get_min_spare_ggtt(struct xe_gt *gt)
{
/* XXX: preliminary */
return IS_ENABLED(CONFIG_DRM_XE_DEBUG_SRIOV) ?
pf_get_ggtt_alignment(gt) : SZ_64M;
}
static u64 pf_get_spare_ggtt(struct xe_gt *gt)
{
u64 spare;
xe_gt_assert(gt, !xe_gt_is_media_type(gt));
xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
spare = gt->sriov.pf.spare.ggtt_size;
spare = max_t(u64, spare, pf_get_min_spare_ggtt(gt));
return spare;
}
static int pf_set_spare_ggtt(struct xe_gt *gt, u64 size)
{
xe_gt_assert(gt, !xe_gt_is_media_type(gt));
xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
if (size && size < pf_get_min_spare_ggtt(gt))
return -EINVAL;
size = round_up(size, pf_get_ggtt_alignment(gt));
gt->sriov.pf.spare.ggtt_size = size;
return 0;
}
static int pf_distribute_config_ggtt(struct xe_tile *tile, unsigned int vfid, u64 start, u64 size)
{
int err, err2 = 0;
err = pf_push_vf_cfg_ggtt(tile->primary_gt, vfid, start, size);
if (tile->media_gt && !err)
err2 = pf_push_vf_cfg_ggtt(tile->media_gt, vfid, start, size);
return err ?: err2;
}
static void pf_release_ggtt(struct xe_tile *tile, struct drm_mm_node *node)
{
struct xe_ggtt *ggtt = tile->mem.ggtt;
if (drm_mm_node_allocated(node)) {
/*
* explicit GGTT PTE assignment to the PF using xe_ggtt_assign()
* is redundant, as PTE will be implicitly re-assigned to PF by
* the xe_ggtt_clear() called by below xe_ggtt_remove_node().
*/
xe_ggtt_remove_node(ggtt, node, false);
}
}
static void pf_release_vf_config_ggtt(struct xe_gt *gt, struct xe_gt_sriov_config *config)
{
pf_release_ggtt(gt_to_tile(gt), &config->ggtt_region);
}
static int pf_provision_vf_ggtt(struct xe_gt *gt, unsigned int vfid, u64 size)
{
struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
struct drm_mm_node *node = &config->ggtt_region;
struct xe_tile *tile = gt_to_tile(gt);
struct xe_ggtt *ggtt = tile->mem.ggtt;
u64 alignment = pf_get_ggtt_alignment(gt);
int err;
xe_gt_assert(gt, vfid);
xe_gt_assert(gt, !xe_gt_is_media_type(gt));
xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
size = round_up(size, alignment);
if (drm_mm_node_allocated(node)) {
err = pf_distribute_config_ggtt(tile, vfid, 0, 0);
if (unlikely(err))
return err;
pf_release_ggtt(tile, node);
}
xe_gt_assert(gt, !drm_mm_node_allocated(node));
if (!size)
return 0;
err = xe_ggtt_insert_special_node(ggtt, node, size, alignment);
if (unlikely(err))
return err;
xe_ggtt_assign(ggtt, node, vfid);
xe_gt_sriov_dbg_verbose(gt, "VF%u assigned GGTT %llx-%llx\n",
vfid, node->start, node->start + node->size - 1);
err = pf_distribute_config_ggtt(gt->tile, vfid, node->start, node->size);
if (unlikely(err))
return err;
return 0;
}
static u64 pf_get_vf_config_ggtt(struct xe_gt *gt, unsigned int vfid)
{
struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
struct drm_mm_node *node = &config->ggtt_region;
xe_gt_assert(gt, !xe_gt_is_media_type(gt));
return drm_mm_node_allocated(node) ? node->size : 0;
}
/**
* xe_gt_sriov_pf_config_get_ggtt - Query size of GGTT address space of the VF.
* @gt: the &xe_gt
* @vfid: the VF identifier
*
* This function can only be called on PF.
*
* Return: size of the VF's assigned (or PF's spare) GGTT address space.
*/
u64 xe_gt_sriov_pf_config_get_ggtt(struct xe_gt *gt, unsigned int vfid)
{
u64 size;
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
if (vfid)
size = pf_get_vf_config_ggtt(gt_to_tile(gt)->primary_gt, vfid);
else
size = pf_get_spare_ggtt(gt_to_tile(gt)->primary_gt);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return size;
}
static int pf_config_set_u64_done(struct xe_gt *gt, unsigned int vfid, u64 value,
u64 actual, const char *what, int err)
{
char size[10];
char name[8];
xe_sriov_function_name(vfid, name, sizeof(name));
if (unlikely(err)) {
string_get_size(value, 1, STRING_UNITS_2, size, sizeof(size));
xe_gt_sriov_notice(gt, "Failed to provision %s with %llu (%s) %s (%pe)\n",
name, value, size, what, ERR_PTR(err));
string_get_size(actual, 1, STRING_UNITS_2, size, sizeof(size));
xe_gt_sriov_info(gt, "%s provisioning remains at %llu (%s) %s\n",
name, actual, size, what);
return err;
}
/* the actual value may have changed during provisioning */
string_get_size(actual, 1, STRING_UNITS_2, size, sizeof(size));
xe_gt_sriov_info(gt, "%s provisioned with %llu (%s) %s\n",
name, actual, size, what);
return 0;
}
/**
* xe_gt_sriov_pf_config_set_ggtt - Provision VF with GGTT space.
* @gt: the &xe_gt (can't be media)
* @vfid: the VF identifier
* @size: requested GGTT size
*
* If &vfid represents PF, then function will change PF's spare GGTT config.
*
* This function can only be called on PF.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_set_ggtt(struct xe_gt *gt, unsigned int vfid, u64 size)
{
int err;
xe_gt_assert(gt, !xe_gt_is_media_type(gt));
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
if (vfid)
err = pf_provision_vf_ggtt(gt, vfid, size);
else
err = pf_set_spare_ggtt(gt, size);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return pf_config_set_u64_done(gt, vfid, size,
xe_gt_sriov_pf_config_get_ggtt(gt, vfid),
vfid ? "GGTT" : "spare GGTT", err);
}
static int pf_config_bulk_set_u64_done(struct xe_gt *gt, unsigned int first, unsigned int num_vfs,
u64 value, u64 (*get)(struct xe_gt*, unsigned int),
const char *what, unsigned int last, int err)
{
char size[10];
xe_gt_assert(gt, first);
xe_gt_assert(gt, num_vfs);
xe_gt_assert(gt, first <= last);
if (num_vfs == 1)
return pf_config_set_u64_done(gt, first, value, get(gt, first), what, err);
if (unlikely(err)) {
xe_gt_sriov_notice(gt, "Failed to bulk provision VF%u..VF%u with %s\n",
first, first + num_vfs - 1, what);
if (last > first)
pf_config_bulk_set_u64_done(gt, first, last - first, value,
get, what, last, 0);
return pf_config_set_u64_done(gt, last, value, get(gt, last), what, err);
}
/* pick actual value from first VF - bulk provisioning shall be equal across all VFs */
value = get(gt, first);
string_get_size(value, 1, STRING_UNITS_2, size, sizeof(size));
xe_gt_sriov_info(gt, "VF%u..VF%u provisioned with %llu (%s) %s\n",
first, first + num_vfs - 1, value, size, what);
return 0;
}
/**
* xe_gt_sriov_pf_config_bulk_set_ggtt - Provision many VFs with GGTT.
* @gt: the &xe_gt (can't be media)
* @vfid: starting VF identifier (can't be 0)
* @num_vfs: number of VFs to provision
* @size: requested GGTT size
*
* This function can only be called on PF.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_bulk_set_ggtt(struct xe_gt *gt, unsigned int vfid,
unsigned int num_vfs, u64 size)
{
unsigned int n;
int err = 0;
xe_gt_assert(gt, vfid);
xe_gt_assert(gt, !xe_gt_is_media_type(gt));
if (!num_vfs)
return 0;
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
for (n = vfid; n < vfid + num_vfs; n++) {
err = pf_provision_vf_ggtt(gt, n, size);
if (err)
break;
}
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return pf_config_bulk_set_u64_done(gt, vfid, num_vfs, size,
xe_gt_sriov_pf_config_get_ggtt,
"GGTT", n, err);
}
/* Return: size of the largest continuous GGTT region */
static u64 pf_get_max_ggtt(struct xe_gt *gt)
{
struct xe_ggtt *ggtt = gt_to_tile(gt)->mem.ggtt;
const struct drm_mm *mm = &ggtt->mm;
const struct drm_mm_node *entry;
u64 alignment = pf_get_ggtt_alignment(gt);
u64 spare = pf_get_spare_ggtt(gt);
u64 hole_min_start = xe_wopcm_size(gt_to_xe(gt));
u64 hole_start, hole_end, hole_size;
u64 max_hole = 0;
mutex_lock(&ggtt->lock);
drm_mm_for_each_hole(entry, mm, hole_start, hole_end) {
hole_start = max(hole_start, hole_min_start);
hole_start = ALIGN(hole_start, alignment);
hole_end = ALIGN_DOWN(hole_end, alignment);
if (hole_start >= hole_end)
continue;
hole_size = hole_end - hole_start;
xe_gt_sriov_dbg_verbose(gt, "HOLE start %llx size %lluK\n",
hole_start, hole_size / SZ_1K);
spare -= min3(spare, hole_size, max_hole);
max_hole = max(max_hole, hole_size);
}
mutex_unlock(&ggtt->lock);
xe_gt_sriov_dbg_verbose(gt, "HOLE max %lluK reserved %lluK\n",
max_hole / SZ_1K, spare / SZ_1K);
return max_hole > spare ? max_hole - spare : 0;
}
static u64 pf_estimate_fair_ggtt(struct xe_gt *gt, unsigned int num_vfs)
{
u64 available = pf_get_max_ggtt(gt);
u64 alignment = pf_get_ggtt_alignment(gt);
u64 fair;
/*
* To simplify the logic we only look at single largest GGTT region
* as that will be always the best fit for 1 VF case, and most likely
* will also nicely cover other cases where VFs are provisioned on the
* fresh and idle PF driver, without any stale GGTT allocations spread
* in the middle of the full GGTT range.
*/
fair = div_u64(available, num_vfs);
fair = ALIGN_DOWN(fair, alignment);
xe_gt_sriov_dbg_verbose(gt, "GGTT available(%lluK) fair(%u x %lluK)\n",
available / SZ_1K, num_vfs, fair / SZ_1K);
return fair;
}
/**
* xe_gt_sriov_pf_config_set_fair_ggtt - Provision many VFs with fair GGTT.
* @gt: the &xe_gt (can't be media)
* @vfid: starting VF identifier (can't be 0)
* @num_vfs: number of VFs to provision
*
* This function can only be called on PF.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_set_fair_ggtt(struct xe_gt *gt, unsigned int vfid,
unsigned int num_vfs)
{
u64 fair;
xe_gt_assert(gt, vfid);
xe_gt_assert(gt, num_vfs);
xe_gt_assert(gt, !xe_gt_is_media_type(gt));
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
fair = pf_estimate_fair_ggtt(gt, num_vfs);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
if (!fair)
return -ENOSPC;
return xe_gt_sriov_pf_config_bulk_set_ggtt(gt, vfid, num_vfs, fair);
}
static u32 pf_get_min_spare_ctxs(struct xe_gt *gt)
{
/* XXX: preliminary */
return IS_ENABLED(CONFIG_DRM_XE_DEBUG_SRIOV) ?
hweight64(gt->info.engine_mask) : SZ_256;
}
static u32 pf_get_spare_ctxs(struct xe_gt *gt)
{
u32 spare;
xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
spare = gt->sriov.pf.spare.num_ctxs;
spare = max_t(u32, spare, pf_get_min_spare_ctxs(gt));
return spare;
}
static int pf_set_spare_ctxs(struct xe_gt *gt, u32 spare)
{
xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
if (spare > GUC_ID_MAX)
return -EINVAL;
if (spare && spare < pf_get_min_spare_ctxs(gt))
return -EINVAL;
gt->sriov.pf.spare.num_ctxs = spare;
return 0;
}
/* Return: start ID or negative error code on failure */
static int pf_reserve_ctxs(struct xe_gt *gt, u32 num)
{
struct xe_guc_id_mgr *idm = &gt->uc.guc.submission_state.idm;
unsigned int spare = pf_get_spare_ctxs(gt);
return xe_guc_id_mgr_reserve(idm, num, spare);
}
static void pf_release_ctxs(struct xe_gt *gt, u32 start, u32 num)
{
struct xe_guc_id_mgr *idm = &gt->uc.guc.submission_state.idm;
if (num)
xe_guc_id_mgr_release(idm, start, num);
}
static void pf_release_config_ctxs(struct xe_gt *gt, struct xe_gt_sriov_config *config)
{
lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
pf_release_ctxs(gt, config->begin_ctx, config->num_ctxs);
config->begin_ctx = 0;
config->num_ctxs = 0;
}
static int pf_provision_vf_ctxs(struct xe_gt *gt, unsigned int vfid, u32 num_ctxs)
{
struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
int ret;
xe_gt_assert(gt, vfid);
if (num_ctxs > GUC_ID_MAX)
return -EINVAL;
if (config->num_ctxs) {
ret = pf_push_vf_cfg_ctxs(gt, vfid, 0, 0);
if (unlikely(ret))
return ret;
pf_release_config_ctxs(gt, config);
}
if (!num_ctxs)
return 0;
ret = pf_reserve_ctxs(gt, num_ctxs);
if (unlikely(ret < 0))
return ret;
config->begin_ctx = ret;
config->num_ctxs = num_ctxs;
ret = pf_push_vf_cfg_ctxs(gt, vfid, config->begin_ctx, config->num_ctxs);
if (unlikely(ret)) {
pf_release_config_ctxs(gt, config);
return ret;
}
xe_gt_sriov_dbg_verbose(gt, "VF%u contexts %u-%u\n",
vfid, config->begin_ctx, config->begin_ctx + config->num_ctxs - 1);
return 0;
}
static u32 pf_get_vf_config_ctxs(struct xe_gt *gt, unsigned int vfid)
{
struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
return config->num_ctxs;
}
/**
* xe_gt_sriov_pf_config_get_ctxs - Get VF's GuC contexts IDs quota.
* @gt: the &xe_gt
* @vfid: the VF identifier
*
* This function can only be called on PF.
* If &vfid represents a PF then number of PF's spare GuC context IDs is returned.
*
* Return: VF's quota (or PF's spare).
*/
u32 xe_gt_sriov_pf_config_get_ctxs(struct xe_gt *gt, unsigned int vfid)
{
u32 num_ctxs;
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
if (vfid)
num_ctxs = pf_get_vf_config_ctxs(gt, vfid);
else
num_ctxs = pf_get_spare_ctxs(gt);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return num_ctxs;
}
static const char *no_unit(u32 unused)
{
return "";
}
static const char *spare_unit(u32 unused)
{
return " spare";
}
static int pf_config_set_u32_done(struct xe_gt *gt, unsigned int vfid, u32 value, u32 actual,
const char *what, const char *(*unit)(u32), int err)
{
char name[8];
xe_sriov_function_name(vfid, name, sizeof(name));
if (unlikely(err)) {
xe_gt_sriov_notice(gt, "Failed to provision %s with %u%s %s (%pe)\n",
name, value, unit(value), what, ERR_PTR(err));
xe_gt_sriov_info(gt, "%s provisioning remains at %u%s %s\n",
name, actual, unit(actual), what);
return err;
}
/* the actual value may have changed during provisioning */
xe_gt_sriov_info(gt, "%s provisioned with %u%s %s\n",
name, actual, unit(actual), what);
return 0;
}
/**
* xe_gt_sriov_pf_config_set_ctxs - Configure GuC contexts IDs quota for the VF.
* @gt: the &xe_gt
* @vfid: the VF identifier
* @num_ctxs: requested number of GuC contexts IDs (0 to release)
*
* This function can only be called on PF.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_set_ctxs(struct xe_gt *gt, unsigned int vfid, u32 num_ctxs)
{
int err;
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
if (vfid)
err = pf_provision_vf_ctxs(gt, vfid, num_ctxs);
else
err = pf_set_spare_ctxs(gt, num_ctxs);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return pf_config_set_u32_done(gt, vfid, num_ctxs,
xe_gt_sriov_pf_config_get_ctxs(gt, vfid),
"GuC context IDs", vfid ? no_unit : spare_unit, err);
}
static int pf_config_bulk_set_u32_done(struct xe_gt *gt, unsigned int first, unsigned int num_vfs,
u32 value, u32 (*get)(struct xe_gt*, unsigned int),
const char *what, const char *(*unit)(u32),
unsigned int last, int err)
{
xe_gt_assert(gt, first);
xe_gt_assert(gt, num_vfs);
xe_gt_assert(gt, first <= last);
if (num_vfs == 1)
return pf_config_set_u32_done(gt, first, value, get(gt, first), what, unit, err);
if (unlikely(err)) {
xe_gt_sriov_notice(gt, "Failed to bulk provision VF%u..VF%u with %s\n",
first, first + num_vfs - 1, what);
if (last > first)
pf_config_bulk_set_u32_done(gt, first, last - first, value,
get, what, unit, last, 0);
return pf_config_set_u32_done(gt, last, value, get(gt, last), what, unit, err);
}
/* pick actual value from first VF - bulk provisioning shall be equal across all VFs */
value = get(gt, first);
xe_gt_sriov_info(gt, "VF%u..VF%u provisioned with %u%s %s\n",
first, first + num_vfs - 1, value, unit(value), what);
return 0;
}
/**
* xe_gt_sriov_pf_config_bulk_set_ctxs - Provision many VFs with GuC context IDs.
* @gt: the &xe_gt
* @vfid: starting VF identifier
* @num_vfs: number of VFs to provision
* @num_ctxs: requested number of GuC contexts IDs (0 to release)
*
* This function can only be called on PF.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_bulk_set_ctxs(struct xe_gt *gt, unsigned int vfid,
unsigned int num_vfs, u32 num_ctxs)
{
unsigned int n;
int err = 0;
xe_gt_assert(gt, vfid);
if (!num_vfs)
return 0;
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
for (n = vfid; n < vfid + num_vfs; n++) {
err = pf_provision_vf_ctxs(gt, n, num_ctxs);
if (err)
break;
}
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return pf_config_bulk_set_u32_done(gt, vfid, num_vfs, num_ctxs,
xe_gt_sriov_pf_config_get_ctxs,
"GuC context IDs", no_unit, n, err);
}
static u32 pf_estimate_fair_ctxs(struct xe_gt *gt, unsigned int num_vfs)
{
struct xe_guc_id_mgr *idm = &gt->uc.guc.submission_state.idm;
u32 spare = pf_get_spare_ctxs(gt);
u32 fair = (idm->total - spare) / num_vfs;
int ret;
for (; fair; --fair) {
ret = xe_guc_id_mgr_reserve(idm, fair * num_vfs, spare);
if (ret < 0)
continue;
xe_guc_id_mgr_release(idm, ret, fair * num_vfs);
break;
}
xe_gt_sriov_dbg_verbose(gt, "contexts fair(%u x %u)\n", num_vfs, fair);
return fair;
}
/**
* xe_gt_sriov_pf_config_set_fair_ctxs - Provision many VFs with fair GuC context IDs.
* @gt: the &xe_gt
* @vfid: starting VF identifier (can't be 0)
* @num_vfs: number of VFs to provision (can't be 0)
*
* This function can only be called on PF.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_set_fair_ctxs(struct xe_gt *gt, unsigned int vfid,
unsigned int num_vfs)
{
u32 fair;
xe_gt_assert(gt, vfid);
xe_gt_assert(gt, num_vfs);
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
fair = pf_estimate_fair_ctxs(gt, num_vfs);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
if (!fair)
return -ENOSPC;
return xe_gt_sriov_pf_config_bulk_set_ctxs(gt, vfid, num_vfs, fair);
}
static u32 pf_get_min_spare_dbs(struct xe_gt *gt)
{
/* XXX: preliminary, we don't use doorbells yet! */
return IS_ENABLED(CONFIG_DRM_XE_DEBUG_SRIOV) ? 1 : 0;
}
static u32 pf_get_spare_dbs(struct xe_gt *gt)
{
u32 spare;
xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
spare = gt->sriov.pf.spare.num_dbs;
spare = max_t(u32, spare, pf_get_min_spare_dbs(gt));
return spare;
}
static int pf_set_spare_dbs(struct xe_gt *gt, u32 spare)
{
xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
if (spare > GUC_NUM_DOORBELLS)
return -EINVAL;
if (spare && spare < pf_get_min_spare_dbs(gt))
return -EINVAL;
gt->sriov.pf.spare.num_dbs = spare;
return 0;
}
/* Return: start ID or negative error code on failure */
static int pf_reserve_dbs(struct xe_gt *gt, u32 num)
{
struct xe_guc_db_mgr *dbm = &gt->uc.guc.dbm;
unsigned int spare = pf_get_spare_dbs(gt);
return xe_guc_db_mgr_reserve_range(dbm, num, spare);
}
static void pf_release_dbs(struct xe_gt *gt, u32 start, u32 num)
{
struct xe_guc_db_mgr *dbm = &gt->uc.guc.dbm;
if (num)
xe_guc_db_mgr_release_range(dbm, start, num);
}
static void pf_release_config_dbs(struct xe_gt *gt, struct xe_gt_sriov_config *config)
{
lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
pf_release_dbs(gt, config->begin_db, config->num_dbs);
config->begin_db = 0;
config->num_dbs = 0;
}
static int pf_provision_vf_dbs(struct xe_gt *gt, unsigned int vfid, u32 num_dbs)
{
struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
int ret;
xe_gt_assert(gt, vfid);
if (num_dbs > GUC_NUM_DOORBELLS)
return -EINVAL;
if (config->num_dbs) {
ret = pf_push_vf_cfg_dbs(gt, vfid, 0, 0);
if (unlikely(ret))
return ret;
pf_release_config_dbs(gt, config);
}
if (!num_dbs)
return 0;
ret = pf_reserve_dbs(gt, num_dbs);
if (unlikely(ret < 0))
return ret;
config->begin_db = ret;
config->num_dbs = num_dbs;
ret = pf_push_vf_cfg_dbs(gt, vfid, config->begin_db, config->num_dbs);
if (unlikely(ret)) {
pf_release_config_dbs(gt, config);
return ret;
}
xe_gt_sriov_dbg_verbose(gt, "VF%u doorbells %u-%u\n",
vfid, config->begin_db, config->begin_db + config->num_dbs - 1);
return 0;
}
static u32 pf_get_vf_config_dbs(struct xe_gt *gt, unsigned int vfid)
{
struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
return config->num_dbs;
}
/**
* xe_gt_sriov_pf_config_get_dbs - Get VF's GuC doorbells IDs quota.
* @gt: the &xe_gt
* @vfid: the VF identifier
*
* This function can only be called on PF.
* If &vfid represents a PF then number of PF's spare GuC doorbells IDs is returned.
*
* Return: VF's quota (or PF's spare).
*/
u32 xe_gt_sriov_pf_config_get_dbs(struct xe_gt *gt, unsigned int vfid)
{
u32 num_dbs;
xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
xe_gt_assert(gt, vfid <= xe_sriov_pf_get_totalvfs(gt_to_xe(gt)));
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
if (vfid)
num_dbs = pf_get_vf_config_dbs(gt, vfid);
else
num_dbs = pf_get_spare_dbs(gt);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return num_dbs;
}
/**
* xe_gt_sriov_pf_config_set_dbs - Configure GuC doorbells IDs quota for the VF.
* @gt: the &xe_gt
* @vfid: the VF identifier
* @num_dbs: requested number of GuC doorbells IDs (0 to release)
*
* This function can only be called on PF.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_set_dbs(struct xe_gt *gt, unsigned int vfid, u32 num_dbs)
{
int err;
xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
xe_gt_assert(gt, vfid <= xe_sriov_pf_get_totalvfs(gt_to_xe(gt)));
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
if (vfid)
err = pf_provision_vf_dbs(gt, vfid, num_dbs);
else
err = pf_set_spare_dbs(gt, num_dbs);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return pf_config_set_u32_done(gt, vfid, num_dbs,
xe_gt_sriov_pf_config_get_dbs(gt, vfid),
"GuC doorbell IDs", vfid ? no_unit : spare_unit, err);
}
/**
* xe_gt_sriov_pf_config_bulk_set_dbs - Provision many VFs with GuC context IDs.
* @gt: the &xe_gt
* @vfid: starting VF identifier (can't be 0)
* @num_vfs: number of VFs to provision
* @num_dbs: requested number of GuC doorbell IDs (0 to release)
*
* This function can only be called on PF.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_bulk_set_dbs(struct xe_gt *gt, unsigned int vfid,
unsigned int num_vfs, u32 num_dbs)
{
unsigned int n;
int err = 0;
xe_gt_assert(gt, vfid);
if (!num_vfs)
return 0;
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
for (n = vfid; n < vfid + num_vfs; n++) {
err = pf_provision_vf_dbs(gt, n, num_dbs);
if (err)
break;
}
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return pf_config_bulk_set_u32_done(gt, vfid, num_vfs, num_dbs,
xe_gt_sriov_pf_config_get_dbs,
"GuC doorbell IDs", no_unit, n, err);
}
static u32 pf_estimate_fair_dbs(struct xe_gt *gt, unsigned int num_vfs)
{
struct xe_guc_db_mgr *dbm = &gt->uc.guc.dbm;
u32 spare = pf_get_spare_dbs(gt);
u32 fair = (GUC_NUM_DOORBELLS - spare) / num_vfs;
int ret;
for (; fair; --fair) {
ret = xe_guc_db_mgr_reserve_range(dbm, fair * num_vfs, spare);
if (ret < 0)
continue;
xe_guc_db_mgr_release_range(dbm, ret, fair * num_vfs);
break;
}
xe_gt_sriov_dbg_verbose(gt, "doorbells fair(%u x %u)\n", num_vfs, fair);
return fair;
}
/**
* xe_gt_sriov_pf_config_set_fair_dbs - Provision many VFs with fair GuC doorbell IDs.
* @gt: the &xe_gt
* @vfid: starting VF identifier (can't be 0)
* @num_vfs: number of VFs to provision (can't be 0)
*
* This function can only be called on PF.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_set_fair_dbs(struct xe_gt *gt, unsigned int vfid,
unsigned int num_vfs)
{
u32 fair;
xe_gt_assert(gt, vfid);
xe_gt_assert(gt, num_vfs);
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
fair = pf_estimate_fair_dbs(gt, num_vfs);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
if (!fair)
return -ENOSPC;
return xe_gt_sriov_pf_config_bulk_set_dbs(gt, vfid, num_vfs, fair);
}
static u64 pf_get_lmem_alignment(struct xe_gt *gt)
{
/* this might be platform dependent */
return SZ_2M;
}
static u64 pf_get_min_spare_lmem(struct xe_gt *gt)
{
/* this might be platform dependent */
return SZ_128M; /* XXX: preliminary */
}
static u64 pf_get_spare_lmem(struct xe_gt *gt)
{
u64 spare;
xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
spare = gt->sriov.pf.spare.lmem_size;
spare = max_t(u64, spare, pf_get_min_spare_lmem(gt));
return spare;
}
static int pf_set_spare_lmem(struct xe_gt *gt, u64 size)
{
xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
if (size && size < pf_get_min_spare_lmem(gt))
return -EINVAL;
gt->sriov.pf.spare.lmem_size = size;
return 0;
}
static u64 pf_get_vf_config_lmem(struct xe_gt *gt, unsigned int vfid)
{
struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
struct xe_bo *bo;
bo = config->lmem_obj;
return bo ? bo->size : 0;
}
static int pf_distribute_config_lmem(struct xe_gt *gt, unsigned int vfid, u64 size)
{
struct xe_device *xe = gt_to_xe(gt);
struct xe_tile *tile;
unsigned int tid;
int err;
for_each_tile(tile, xe, tid) {
if (tile->primary_gt == gt) {
err = pf_push_vf_cfg_lmem(gt, vfid, size);
} else {
u64 lmem = pf_get_vf_config_lmem(tile->primary_gt, vfid);
if (!lmem)
continue;
err = pf_push_vf_cfg_lmem(gt, vfid, lmem);
}
if (unlikely(err))
return err;
}
return 0;
}
static void pf_force_lmtt_invalidate(struct xe_device *xe)
{
/* TODO */
}
static void pf_reset_vf_lmtt(struct xe_device *xe, unsigned int vfid)
{
struct xe_lmtt *lmtt;
struct xe_tile *tile;
unsigned int tid;
xe_assert(xe, IS_DGFX(xe));
xe_assert(xe, IS_SRIOV_PF(xe));
for_each_tile(tile, xe, tid) {
lmtt = &tile->sriov.pf.lmtt;
xe_lmtt_drop_pages(lmtt, vfid);
}
}
static int pf_update_vf_lmtt(struct xe_device *xe, unsigned int vfid)
{
struct xe_gt_sriov_config *config;
struct xe_tile *tile;
struct xe_lmtt *lmtt;
struct xe_bo *bo;
struct xe_gt *gt;
u64 total, offset;
unsigned int gtid;
unsigned int tid;
int err;
xe_assert(xe, IS_DGFX(xe));
xe_assert(xe, IS_SRIOV_PF(xe));
total = 0;
for_each_tile(tile, xe, tid)
total += pf_get_vf_config_lmem(tile->primary_gt, vfid);
for_each_tile(tile, xe, tid) {
lmtt = &tile->sriov.pf.lmtt;
xe_lmtt_drop_pages(lmtt, vfid);
if (!total)
continue;
err = xe_lmtt_prepare_pages(lmtt, vfid, total);
if (err)
goto fail;
offset = 0;
for_each_gt(gt, xe, gtid) {
if (xe_gt_is_media_type(gt))
continue;
config = pf_pick_vf_config(gt, vfid);
bo = config->lmem_obj;
if (!bo)
continue;
err = xe_lmtt_populate_pages(lmtt, vfid, bo, offset);
if (err)
goto fail;
offset += bo->size;
}
}
pf_force_lmtt_invalidate(xe);
return 0;
fail:
for_each_tile(tile, xe, tid) {
lmtt = &tile->sriov.pf.lmtt;
xe_lmtt_drop_pages(lmtt, vfid);
}
return err;
}
static void pf_release_vf_config_lmem(struct xe_gt *gt, struct xe_gt_sriov_config *config)
{
xe_gt_assert(gt, IS_DGFX(gt_to_xe(gt)));
xe_gt_assert(gt, !xe_gt_is_media_type(gt));
lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
if (config->lmem_obj) {
xe_bo_unpin_map_no_vm(config->lmem_obj);
config->lmem_obj = NULL;
}
}
static int pf_provision_vf_lmem(struct xe_gt *gt, unsigned int vfid, u64 size)
{
struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
struct xe_device *xe = gt_to_xe(gt);
struct xe_tile *tile = gt_to_tile(gt);
struct xe_bo *bo;
int err;
xe_gt_assert(gt, vfid);
xe_gt_assert(gt, IS_DGFX(xe));
xe_gt_assert(gt, !xe_gt_is_media_type(gt));
size = round_up(size, pf_get_lmem_alignment(gt));
if (config->lmem_obj) {
err = pf_distribute_config_lmem(gt, vfid, 0);
if (unlikely(err))
return err;
pf_reset_vf_lmtt(xe, vfid);
pf_release_vf_config_lmem(gt, config);
}
xe_gt_assert(gt, !config->lmem_obj);
if (!size)
return 0;
xe_gt_assert(gt, pf_get_lmem_alignment(gt) == SZ_2M);
bo = xe_bo_create_pin_map(xe, tile, NULL,
ALIGN(size, PAGE_SIZE),
ttm_bo_type_kernel,
XE_BO_FLAG_VRAM_IF_DGFX(tile) |
XE_BO_FLAG_PINNED);
if (IS_ERR(bo))
return PTR_ERR(bo);
config->lmem_obj = bo;
err = pf_update_vf_lmtt(xe, vfid);
if (unlikely(err))
goto release;
err = pf_push_vf_cfg_lmem(gt, vfid, bo->size);
if (unlikely(err))
goto reset_lmtt;
xe_gt_sriov_dbg_verbose(gt, "VF%u LMEM %zu (%zuM)\n",
vfid, bo->size, bo->size / SZ_1M);
return 0;
reset_lmtt:
pf_reset_vf_lmtt(xe, vfid);
release:
pf_release_vf_config_lmem(gt, config);
return err;
}
/**
* xe_gt_sriov_pf_config_get_lmem - Get VF's LMEM quota.
* @gt: the &xe_gt
* @vfid: the VF identifier
*
* This function can only be called on PF.
*
* Return: VF's (or PF's spare) LMEM quota.
*/
u64 xe_gt_sriov_pf_config_get_lmem(struct xe_gt *gt, unsigned int vfid)
{
u64 size;
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
if (vfid)
size = pf_get_vf_config_lmem(gt, vfid);
else
size = pf_get_spare_lmem(gt);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return size;
}
/**
* xe_gt_sriov_pf_config_set_lmem - Provision VF with LMEM.
* @gt: the &xe_gt (can't be media)
* @vfid: the VF identifier
* @size: requested LMEM size
*
* This function can only be called on PF.
*/
int xe_gt_sriov_pf_config_set_lmem(struct xe_gt *gt, unsigned int vfid, u64 size)
{
int err;
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
if (vfid)
err = pf_provision_vf_lmem(gt, vfid, size);
else
err = pf_set_spare_lmem(gt, size);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return pf_config_set_u64_done(gt, vfid, size,
xe_gt_sriov_pf_config_get_lmem(gt, vfid),
vfid ? "LMEM" : "spare LMEM", err);
}
/**
* xe_gt_sriov_pf_config_bulk_set_lmem - Provision many VFs with LMEM.
* @gt: the &xe_gt (can't be media)
* @vfid: starting VF identifier (can't be 0)
* @num_vfs: number of VFs to provision
* @size: requested LMEM size
*
* This function can only be called on PF.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_bulk_set_lmem(struct xe_gt *gt, unsigned int vfid,
unsigned int num_vfs, u64 size)
{
unsigned int n;
int err = 0;
xe_gt_assert(gt, vfid);
xe_gt_assert(gt, !xe_gt_is_media_type(gt));
if (!num_vfs)
return 0;
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
for (n = vfid; n < vfid + num_vfs; n++) {
err = pf_provision_vf_lmem(gt, n, size);
if (err)
break;
}
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return pf_config_bulk_set_u64_done(gt, vfid, num_vfs, size,
xe_gt_sriov_pf_config_get_lmem,
"LMEM", n, err);
}
static u64 pf_query_free_lmem(struct xe_gt *gt)
{
struct xe_tile *tile = gt->tile;
return xe_ttm_vram_get_avail(&tile->mem.vram_mgr->manager);
}
static u64 pf_query_max_lmem(struct xe_gt *gt)
{
u64 alignment = pf_get_lmem_alignment(gt);
u64 spare = pf_get_spare_lmem(gt);
u64 free = pf_query_free_lmem(gt);
u64 avail;
/* XXX: need to account for 2MB blocks only */
avail = free > spare ? free - spare : 0;
avail = round_down(avail, alignment);
return avail;
}
#ifdef CONFIG_DRM_XE_DEBUG_SRIOV
#define MAX_FAIR_LMEM SZ_128M /* XXX: make it small for the driver bringup */
#else
#define MAX_FAIR_LMEM SZ_2G /* XXX: known issue with allocating BO over 2GiB */
#endif
static u64 pf_estimate_fair_lmem(struct xe_gt *gt, unsigned int num_vfs)
{
u64 available = pf_query_max_lmem(gt);
u64 alignment = pf_get_lmem_alignment(gt);
u64 fair;
fair = div_u64(available, num_vfs);
fair = rounddown_pow_of_two(fair); /* XXX: ttm_vram_mgr & drm_buddy limitation */
fair = ALIGN_DOWN(fair, alignment);
#ifdef MAX_FAIR_LMEM
fair = min_t(u64, MAX_FAIR_LMEM, fair);
#endif
xe_gt_sriov_dbg_verbose(gt, "LMEM available(%lluM) fair(%u x %lluM)\n",
available / SZ_1M, num_vfs, fair / SZ_1M);
return fair;
}
/**
* xe_gt_sriov_pf_config_set_fair_lmem - Provision many VFs with fair LMEM.
* @gt: the &xe_gt (can't be media)
* @vfid: starting VF identifier (can't be 0)
* @num_vfs: number of VFs to provision (can't be 0)
*
* This function can only be called on PF.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_set_fair_lmem(struct xe_gt *gt, unsigned int vfid,
unsigned int num_vfs)
{
u64 fair;
xe_gt_assert(gt, vfid);
xe_gt_assert(gt, num_vfs);
xe_gt_assert(gt, !xe_gt_is_media_type(gt));
if (!IS_DGFX(gt_to_xe(gt)))
return 0;
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
fair = pf_estimate_fair_lmem(gt, num_vfs);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
if (!fair)
return -ENOSPC;
return xe_gt_sriov_pf_config_bulk_set_lmem(gt, vfid, num_vfs, fair);
}
/**
* xe_gt_sriov_pf_config_set_fair - Provision many VFs with fair resources.
* @gt: the &xe_gt
* @vfid: starting VF identifier (can't be 0)
* @num_vfs: number of VFs to provision (can't be 0)
*
* This function can only be called on PF.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_set_fair(struct xe_gt *gt, unsigned int vfid,
unsigned int num_vfs)
{
int result = 0;
int err;
xe_gt_assert(gt, vfid);
xe_gt_assert(gt, num_vfs);
if (!xe_gt_is_media_type(gt)) {
err = xe_gt_sriov_pf_config_set_fair_ggtt(gt, vfid, num_vfs);
result = result ?: err;
err = xe_gt_sriov_pf_config_set_fair_lmem(gt, vfid, num_vfs);
result = result ?: err;
}
err = xe_gt_sriov_pf_config_set_fair_ctxs(gt, vfid, num_vfs);
result = result ?: err;
err = xe_gt_sriov_pf_config_set_fair_dbs(gt, vfid, num_vfs);
result = result ?: err;
return result;
}
static const char *exec_quantum_unit(u32 exec_quantum)
{
return exec_quantum ? "ms" : "(infinity)";
}
static int pf_provision_exec_quantum(struct xe_gt *gt, unsigned int vfid,
u32 exec_quantum)
{
struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
int err;
err = pf_push_vf_cfg_exec_quantum(gt, vfid, &exec_quantum);
if (unlikely(err))
return err;
config->exec_quantum = exec_quantum;
return 0;
}
static int pf_get_exec_quantum(struct xe_gt *gt, unsigned int vfid)
{
struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
return config->exec_quantum;
}
/**
* xe_gt_sriov_pf_config_set_exec_quantum - Configure execution quantum for the VF.
* @gt: the &xe_gt
* @vfid: the VF identifier
* @exec_quantum: requested execution quantum in milliseconds (0 is infinity)
*
* This function can only be called on PF.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_set_exec_quantum(struct xe_gt *gt, unsigned int vfid,
u32 exec_quantum)
{
int err;
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
err = pf_provision_exec_quantum(gt, vfid, exec_quantum);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return pf_config_set_u32_done(gt, vfid, exec_quantum,
xe_gt_sriov_pf_config_get_exec_quantum(gt, vfid),
"execution quantum", exec_quantum_unit, err);
}
/**
* xe_gt_sriov_pf_config_get_exec_quantum - Get VF's execution quantum.
* @gt: the &xe_gt
* @vfid: the VF identifier
*
* This function can only be called on PF.
*
* Return: VF's (or PF's) execution quantum in milliseconds.
*/
u32 xe_gt_sriov_pf_config_get_exec_quantum(struct xe_gt *gt, unsigned int vfid)
{
u32 exec_quantum;
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
exec_quantum = pf_get_exec_quantum(gt, vfid);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return exec_quantum;
}
static const char *preempt_timeout_unit(u32 preempt_timeout)
{
return preempt_timeout ? "us" : "(infinity)";
}
static int pf_provision_preempt_timeout(struct xe_gt *gt, unsigned int vfid,
u32 preempt_timeout)
{
struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
int err;
err = pf_push_vf_cfg_preempt_timeout(gt, vfid, &preempt_timeout);
if (unlikely(err))
return err;
config->preempt_timeout = preempt_timeout;
return 0;
}
static int pf_get_preempt_timeout(struct xe_gt *gt, unsigned int vfid)
{
struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
return config->preempt_timeout;
}
/**
* xe_gt_sriov_pf_config_set_preempt_timeout - Configure preemption timeout for the VF.
* @gt: the &xe_gt
* @vfid: the VF identifier
* @preempt_timeout: requested preemption timeout in microseconds (0 is infinity)
*
* This function can only be called on PF.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_set_preempt_timeout(struct xe_gt *gt, unsigned int vfid,
u32 preempt_timeout)
{
int err;
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
err = pf_provision_preempt_timeout(gt, vfid, preempt_timeout);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return pf_config_set_u32_done(gt, vfid, preempt_timeout,
xe_gt_sriov_pf_config_get_preempt_timeout(gt, vfid),
"preemption timeout", preempt_timeout_unit, err);
}
/**
* xe_gt_sriov_pf_config_get_preempt_timeout - Get VF's preemption timeout.
* @gt: the &xe_gt
* @vfid: the VF identifier
*
* This function can only be called on PF.
*
* Return: VF's (or PF's) preemption timeout in microseconds.
*/
u32 xe_gt_sriov_pf_config_get_preempt_timeout(struct xe_gt *gt, unsigned int vfid)
{
u32 preempt_timeout;
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
preempt_timeout = pf_get_preempt_timeout(gt, vfid);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return preempt_timeout;
}
static void pf_reset_config_sched(struct xe_gt *gt, struct xe_gt_sriov_config *config)
{
lockdep_assert_held(xe_gt_sriov_pf_master_mutex(gt));
config->exec_quantum = 0;
config->preempt_timeout = 0;
}
static int pf_provision_threshold(struct xe_gt *gt, unsigned int vfid,
enum xe_guc_klv_threshold_index index, u32 value)
{
struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
int err;
err = pf_push_vf_cfg_threshold(gt, vfid, index, value);
if (unlikely(err))
return err;
config->thresholds[index] = value;
return 0;
}
static int pf_get_threshold(struct xe_gt *gt, unsigned int vfid,
enum xe_guc_klv_threshold_index index)
{
struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
return config->thresholds[index];
}
static const char *threshold_unit(u32 threshold)
{
return threshold ? "" : "(disabled)";
}
/**
* xe_gt_sriov_pf_config_set_threshold - Configure threshold for the VF.
* @gt: the &xe_gt
* @vfid: the VF identifier
* @index: the threshold index
* @value: requested value (0 means disabled)
*
* This function can only be called on PF.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_set_threshold(struct xe_gt *gt, unsigned int vfid,
enum xe_guc_klv_threshold_index index, u32 value)
{
u32 key = xe_guc_klv_threshold_index_to_key(index);
const char *name = xe_guc_klv_key_to_string(key);
int err;
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
err = pf_provision_threshold(gt, vfid, index, value);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return pf_config_set_u32_done(gt, vfid, value,
xe_gt_sriov_pf_config_get_threshold(gt, vfid, index),
name, threshold_unit, err);
}
/**
* xe_gt_sriov_pf_config_get_threshold - Get VF's threshold.
* @gt: the &xe_gt
* @vfid: the VF identifier
* @index: the threshold index
*
* This function can only be called on PF.
*
* Return: value of VF's (or PF's) threshold.
*/
u32 xe_gt_sriov_pf_config_get_threshold(struct xe_gt *gt, unsigned int vfid,
enum xe_guc_klv_threshold_index index)
{
u32 value;
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
value = pf_get_threshold(gt, vfid, index);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return value;
}
static void pf_release_vf_config(struct xe_gt *gt, unsigned int vfid)
{
struct xe_gt_sriov_config *config = pf_pick_vf_config(gt, vfid);
struct xe_device *xe = gt_to_xe(gt);
if (!xe_gt_is_media_type(gt)) {
pf_release_vf_config_ggtt(gt, config);
if (IS_DGFX(xe)) {
pf_release_vf_config_lmem(gt, config);
pf_update_vf_lmtt(xe, vfid);
}
}
pf_release_config_ctxs(gt, config);
pf_release_config_dbs(gt, config);
pf_reset_config_sched(gt, config);
}
/**
* xe_gt_sriov_pf_config_release - Release and reset VF configuration.
* @gt: the &xe_gt
* @vfid: the VF identifier (can't be PF)
* @force: force configuration release
*
* This function can only be called on PF.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_release(struct xe_gt *gt, unsigned int vfid, bool force)
{
int err;
xe_gt_assert(gt, vfid);
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
err = pf_send_vf_cfg_reset(gt, vfid);
if (!err || force)
pf_release_vf_config(gt, vfid);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
if (unlikely(err)) {
xe_gt_sriov_notice(gt, "VF%u unprovisioning failed with error (%pe)%s\n",
vfid, ERR_PTR(err),
force ? " but all resources were released anyway!" : "");
}
return force ? 0 : err;
}
/**
* xe_gt_sriov_pf_config_push - Reprovision VF's configuration.
* @gt: the &xe_gt
* @vfid: the VF identifier (can't be PF)
* @refresh: explicit refresh
*
* This function can only be called on PF.
*
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_push(struct xe_gt *gt, unsigned int vfid, bool refresh)
{
int err = 0;
xe_gt_assert(gt, vfid);
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
if (refresh)
err = pf_send_vf_cfg_reset(gt, vfid);
if (!err)
err = pf_push_full_vf_config(gt, vfid);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
if (unlikely(err)) {
xe_gt_sriov_notice(gt, "Failed to %s VF%u configuration (%pe)\n",
refresh ? "refresh" : "push", vfid, ERR_PTR(err));
}
return err;
}
static int pf_validate_vf_config(struct xe_gt *gt, unsigned int vfid)
{
struct xe_gt *primary_gt = gt_to_tile(gt)->primary_gt;
struct xe_device *xe = gt_to_xe(gt);
bool valid_ggtt, valid_ctxs, valid_dbs;
bool valid_any, valid_all;
valid_ggtt = pf_get_vf_config_ggtt(primary_gt, vfid);
valid_ctxs = pf_get_vf_config_ctxs(gt, vfid);
valid_dbs = pf_get_vf_config_dbs(gt, vfid);
/* note that GuC doorbells are optional */
valid_any = valid_ggtt || valid_ctxs || valid_dbs;
valid_all = valid_ggtt && valid_ctxs;
if (IS_DGFX(xe)) {
bool valid_lmem = pf_get_vf_config_ggtt(primary_gt, vfid);
valid_any = valid_any || valid_lmem;
valid_all = valid_all && valid_lmem;
}
return valid_all ? 1 : valid_any ? -ENOKEY : -ENODATA;
}
/**
* xe_gt_sriov_pf_config_is_empty - Check VF's configuration.
* @gt: the &xe_gt
* @vfid: the VF identifier (can't be PF)
*
* This function can only be called on PF.
*
* Return: true if VF mandatory configuration (GGTT, LMEM, ...) is empty.
*/
bool xe_gt_sriov_pf_config_is_empty(struct xe_gt *gt, unsigned int vfid)
{
bool empty;
xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
xe_gt_assert(gt, vfid);
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
empty = pf_validate_vf_config(gt, vfid) == -ENODATA;
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return empty;
}
/**
* xe_gt_sriov_pf_config_restart - Restart SR-IOV configurations after a GT reset.
* @gt: the &xe_gt
*
* Any prior configurations pushed to GuC are lost when the GT is reset.
* Push again all non-empty VF configurations to the GuC.
*
* This function can only be called on PF.
*/
void xe_gt_sriov_pf_config_restart(struct xe_gt *gt)
{
unsigned int n, total_vfs = xe_sriov_pf_get_totalvfs(gt_to_xe(gt));
unsigned int fail = 0, skip = 0;
for (n = 1; n <= total_vfs; n++) {
if (xe_gt_sriov_pf_config_is_empty(gt, n))
skip++;
else if (xe_gt_sriov_pf_config_push(gt, n, false))
fail++;
}
if (fail)
xe_gt_sriov_notice(gt, "Failed to push %u of %u VF%s configurations\n",
fail, total_vfs - skip, str_plural(total_vfs));
if (fail != total_vfs)
xe_gt_sriov_dbg(gt, "pushed %u skip %u of %u VF%s configurations\n",
total_vfs - skip - fail, skip, total_vfs, str_plural(total_vfs));
}
/**
* xe_gt_sriov_pf_config_print_ggtt - Print GGTT configurations.
* @gt: the &xe_gt
* @p: the &drm_printer
*
* Print GGTT configuration data for all VFs.
* VFs without provisioned GGTT are ignored.
*
* This function can only be called on PF.
*/
int xe_gt_sriov_pf_config_print_ggtt(struct xe_gt *gt, struct drm_printer *p)
{
unsigned int n, total_vfs = xe_sriov_pf_get_totalvfs(gt_to_xe(gt));
const struct xe_gt_sriov_config *config;
char buf[10];
for (n = 1; n <= total_vfs; n++) {
config = &gt->sriov.pf.vfs[n].config;
if (!drm_mm_node_allocated(&config->ggtt_region))
continue;
string_get_size(config->ggtt_region.size, 1, STRING_UNITS_2, buf, sizeof(buf));
drm_printf(p, "VF%u:\t%#0llx-%#llx\t(%s)\n",
n, config->ggtt_region.start,
config->ggtt_region.start + config->ggtt_region.size - 1, buf);
}
return 0;
}
/**
* xe_gt_sriov_pf_config_print_ctxs - Print GuC context IDs configurations.
* @gt: the &xe_gt
* @p: the &drm_printer
*
* Print GuC context ID allocations across all VFs.
* VFs without GuC context IDs are skipped.
*
* This function can only be called on PF.
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_print_ctxs(struct xe_gt *gt, struct drm_printer *p)
{
unsigned int n, total_vfs = xe_sriov_pf_get_totalvfs(gt_to_xe(gt));
const struct xe_gt_sriov_config *config;
xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
for (n = 1; n <= total_vfs; n++) {
config = &gt->sriov.pf.vfs[n].config;
if (!config->num_ctxs)
continue;
drm_printf(p, "VF%u:\t%u-%u\t(%u)\n",
n,
config->begin_ctx,
config->begin_ctx + config->num_ctxs - 1,
config->num_ctxs);
}
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return 0;
}
/**
* xe_gt_sriov_pf_config_print_dbs - Print GuC doorbell ID configurations.
* @gt: the &xe_gt
* @p: the &drm_printer
*
* Print GuC doorbell IDs allocations across all VFs.
* VFs without GuC doorbell IDs are skipped.
*
* This function can only be called on PF.
* Return: 0 on success or a negative error code on failure.
*/
int xe_gt_sriov_pf_config_print_dbs(struct xe_gt *gt, struct drm_printer *p)
{
unsigned int n, total_vfs = xe_sriov_pf_get_totalvfs(gt_to_xe(gt));
const struct xe_gt_sriov_config *config;
xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
for (n = 1; n <= total_vfs; n++) {
config = &gt->sriov.pf.vfs[n].config;
if (!config->num_dbs)
continue;
drm_printf(p, "VF%u:\t%u-%u\t(%u)\n",
n,
config->begin_db,
config->begin_db + config->num_dbs - 1,
config->num_dbs);
}
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
return 0;
}
/**
* xe_gt_sriov_pf_config_print_available_ggtt - Print available GGTT ranges.
* @gt: the &xe_gt
* @p: the &drm_printer
*
* Print GGTT ranges that are available for the provisioning.
*
* This function can only be called on PF.
*/
int xe_gt_sriov_pf_config_print_available_ggtt(struct xe_gt *gt, struct drm_printer *p)
{
struct xe_ggtt *ggtt = gt_to_tile(gt)->mem.ggtt;
const struct drm_mm *mm = &ggtt->mm;
const struct drm_mm_node *entry;
u64 alignment = pf_get_ggtt_alignment(gt);
u64 hole_min_start = xe_wopcm_size(gt_to_xe(gt));
u64 hole_start, hole_end, hole_size;
u64 spare, avail, total = 0;
char buf[10];
xe_gt_assert(gt, IS_SRIOV_PF(gt_to_xe(gt)));
mutex_lock(xe_gt_sriov_pf_master_mutex(gt));
spare = pf_get_spare_ggtt(gt);
mutex_lock(&ggtt->lock);
drm_mm_for_each_hole(entry, mm, hole_start, hole_end) {
hole_start = max(hole_start, hole_min_start);
hole_start = ALIGN(hole_start, alignment);
hole_end = ALIGN_DOWN(hole_end, alignment);
if (hole_start >= hole_end)
continue;
hole_size = hole_end - hole_start;
total += hole_size;
string_get_size(hole_size, 1, STRING_UNITS_2, buf, sizeof(buf));
drm_printf(p, "range:\t%#llx-%#llx\t(%s)\n",
hole_start, hole_end - 1, buf);
}
mutex_unlock(&ggtt->lock);
mutex_unlock(xe_gt_sriov_pf_master_mutex(gt));
string_get_size(total, 1, STRING_UNITS_2, buf, sizeof(buf));
drm_printf(p, "total:\t%llu\t(%s)\n", total, buf);
string_get_size(spare, 1, STRING_UNITS_2, buf, sizeof(buf));
drm_printf(p, "spare:\t%llu\t(%s)\n", spare, buf);
avail = total > spare ? total - spare : 0;
string_get_size(avail, 1, STRING_UNITS_2, buf, sizeof(buf));
drm_printf(p, "avail:\t%llu\t(%s)\n", avail, buf);
return 0;
}