| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef __LINUX_COMPILER_H |
| #define __LINUX_COMPILER_H |
| |
| #include <linux/compiler_types.h> |
| |
| #ifndef __ASSEMBLY__ |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code |
| * to disable branch tracing on a per file basis. |
| */ |
| void ftrace_likely_update(struct ftrace_likely_data *f, int val, |
| int expect, int is_constant); |
| #if defined(CONFIG_TRACE_BRANCH_PROFILING) \ |
| && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__) |
| #define likely_notrace(x) __builtin_expect(!!(x), 1) |
| #define unlikely_notrace(x) __builtin_expect(!!(x), 0) |
| |
| #define __branch_check__(x, expect, is_constant) ({ \ |
| long ______r; \ |
| static struct ftrace_likely_data \ |
| __aligned(4) \ |
| __section("_ftrace_annotated_branch") \ |
| ______f = { \ |
| .data.func = __func__, \ |
| .data.file = __FILE__, \ |
| .data.line = __LINE__, \ |
| }; \ |
| ______r = __builtin_expect(!!(x), expect); \ |
| ftrace_likely_update(&______f, ______r, \ |
| expect, is_constant); \ |
| ______r; \ |
| }) |
| |
| /* |
| * Using __builtin_constant_p(x) to ignore cases where the return |
| * value is always the same. This idea is taken from a similar patch |
| * written by Daniel Walker. |
| */ |
| # ifndef likely |
| # define likely(x) (__branch_check__(x, 1, __builtin_constant_p(x))) |
| # endif |
| # ifndef unlikely |
| # define unlikely(x) (__branch_check__(x, 0, __builtin_constant_p(x))) |
| # endif |
| |
| #ifdef CONFIG_PROFILE_ALL_BRANCHES |
| /* |
| * "Define 'is'", Bill Clinton |
| * "Define 'if'", Steven Rostedt |
| */ |
| #define if(cond, ...) if ( __trace_if_var( !!(cond , ## __VA_ARGS__) ) ) |
| |
| #define __trace_if_var(cond) (__builtin_constant_p(cond) ? (cond) : __trace_if_value(cond)) |
| |
| #define __trace_if_value(cond) ({ \ |
| static struct ftrace_branch_data \ |
| __aligned(4) \ |
| __section("_ftrace_branch") \ |
| __if_trace = { \ |
| .func = __func__, \ |
| .file = __FILE__, \ |
| .line = __LINE__, \ |
| }; \ |
| (cond) ? \ |
| (__if_trace.miss_hit[1]++,1) : \ |
| (__if_trace.miss_hit[0]++,0); \ |
| }) |
| |
| #endif /* CONFIG_PROFILE_ALL_BRANCHES */ |
| |
| #else |
| # define likely(x) __builtin_expect(!!(x), 1) |
| # define unlikely(x) __builtin_expect(!!(x), 0) |
| # define likely_notrace(x) likely(x) |
| # define unlikely_notrace(x) unlikely(x) |
| #endif |
| |
| /* Optimization barrier */ |
| #ifndef barrier |
| /* The "volatile" is due to gcc bugs */ |
| # define barrier() __asm__ __volatile__("": : :"memory") |
| #endif |
| |
| #ifndef barrier_data |
| /* |
| * This version is i.e. to prevent dead stores elimination on @ptr |
| * where gcc and llvm may behave differently when otherwise using |
| * normal barrier(): while gcc behavior gets along with a normal |
| * barrier(), llvm needs an explicit input variable to be assumed |
| * clobbered. The issue is as follows: while the inline asm might |
| * access any memory it wants, the compiler could have fit all of |
| * @ptr into memory registers instead, and since @ptr never escaped |
| * from that, it proved that the inline asm wasn't touching any of |
| * it. This version works well with both compilers, i.e. we're telling |
| * the compiler that the inline asm absolutely may see the contents |
| * of @ptr. See also: https://llvm.org/bugs/show_bug.cgi?id=15495 |
| */ |
| # define barrier_data(ptr) __asm__ __volatile__("": :"r"(ptr) :"memory") |
| #endif |
| |
| /* workaround for GCC PR82365 if needed */ |
| #ifndef barrier_before_unreachable |
| # define barrier_before_unreachable() do { } while (0) |
| #endif |
| |
| /* Unreachable code */ |
| #ifdef CONFIG_OBJTOOL |
| /* |
| * These macros help objtool understand GCC code flow for unreachable code. |
| * The __COUNTER__ based labels are a hack to make each instance of the macros |
| * unique, to convince GCC not to merge duplicate inline asm statements. |
| */ |
| #define __stringify_label(n) #n |
| |
| #define __annotate_reachable(c) ({ \ |
| asm volatile(__stringify_label(c) ":\n\t" \ |
| ".pushsection .discard.reachable\n\t" \ |
| ".long " __stringify_label(c) "b - .\n\t" \ |
| ".popsection\n\t"); \ |
| }) |
| #define annotate_reachable() __annotate_reachable(__COUNTER__) |
| |
| #define __annotate_unreachable(c) ({ \ |
| asm volatile(__stringify_label(c) ":\n\t" \ |
| ".pushsection .discard.unreachable\n\t" \ |
| ".long " __stringify_label(c) "b - .\n\t" \ |
| ".popsection\n\t" : : "i" (c)); \ |
| }) |
| #define annotate_unreachable() __annotate_unreachable(__COUNTER__) |
| |
| /* Annotate a C jump table to allow objtool to follow the code flow */ |
| #define __annotate_jump_table __section(".rodata..c_jump_table") |
| |
| #else /* !CONFIG_OBJTOOL */ |
| #define annotate_reachable() |
| #define annotate_unreachable() |
| #define __annotate_jump_table |
| #endif /* CONFIG_OBJTOOL */ |
| |
| #ifndef unreachable |
| # define unreachable() do { \ |
| annotate_unreachable(); \ |
| __builtin_unreachable(); \ |
| } while (0) |
| #endif |
| |
| /* |
| * KENTRY - kernel entry point |
| * This can be used to annotate symbols (functions or data) that are used |
| * without their linker symbol being referenced explicitly. For example, |
| * interrupt vector handlers, or functions in the kernel image that are found |
| * programatically. |
| * |
| * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those |
| * are handled in their own way (with KEEP() in linker scripts). |
| * |
| * KENTRY can be avoided if the symbols in question are marked as KEEP() in the |
| * linker script. For example an architecture could KEEP() its entire |
| * boot/exception vector code rather than annotate each function and data. |
| */ |
| #ifndef KENTRY |
| # define KENTRY(sym) \ |
| extern typeof(sym) sym; \ |
| static const unsigned long __kentry_##sym \ |
| __used \ |
| __attribute__((__section__("___kentry+" #sym))) \ |
| = (unsigned long)&sym; |
| #endif |
| |
| #ifndef RELOC_HIDE |
| # define RELOC_HIDE(ptr, off) \ |
| ({ unsigned long __ptr; \ |
| __ptr = (unsigned long) (ptr); \ |
| (typeof(ptr)) (__ptr + (off)); }) |
| #endif |
| |
| #define absolute_pointer(val) RELOC_HIDE((void *)(val), 0) |
| |
| #ifndef OPTIMIZER_HIDE_VAR |
| /* Make the optimizer believe the variable can be manipulated arbitrarily. */ |
| #define OPTIMIZER_HIDE_VAR(var) \ |
| __asm__ ("" : "=r" (var) : "0" (var)) |
| #endif |
| |
| #define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __COUNTER__) |
| |
| /** |
| * data_race - mark an expression as containing intentional data races |
| * |
| * This data_race() macro is useful for situations in which data races |
| * should be forgiven. One example is diagnostic code that accesses |
| * shared variables but is not a part of the core synchronization design. |
| * For example, if accesses to a given variable are protected by a lock, |
| * except for diagnostic code, then the accesses under the lock should |
| * be plain C-language accesses and those in the diagnostic code should |
| * use data_race(). This way, KCSAN will complain if buggy lockless |
| * accesses to that variable are introduced, even if the buggy accesses |
| * are protected by READ_ONCE() or WRITE_ONCE(). |
| * |
| * This macro *does not* affect normal code generation, but is a hint |
| * to tooling that data races here are to be ignored. If the access must |
| * be atomic *and* KCSAN should ignore the access, use both data_race() |
| * and READ_ONCE(), for example, data_race(READ_ONCE(x)). |
| */ |
| #define data_race(expr) \ |
| ({ \ |
| __kcsan_disable_current(); \ |
| __auto_type __v = (expr); \ |
| __kcsan_enable_current(); \ |
| __v; \ |
| }) |
| |
| #endif /* __KERNEL__ */ |
| |
| /* |
| * Force the compiler to emit 'sym' as a symbol, so that we can reference |
| * it from inline assembler. Necessary in case 'sym' could be inlined |
| * otherwise, or eliminated entirely due to lack of references that are |
| * visible to the compiler. |
| */ |
| #define ___ADDRESSABLE(sym, __attrs) \ |
| static void * __used __attrs \ |
| __UNIQUE_ID(__PASTE(__addressable_,sym)) = (void *)(uintptr_t)&sym; |
| #define __ADDRESSABLE(sym) \ |
| ___ADDRESSABLE(sym, __section(".discard.addressable")) |
| |
| /** |
| * offset_to_ptr - convert a relative memory offset to an absolute pointer |
| * @off: the address of the 32-bit offset value |
| */ |
| static inline void *offset_to_ptr(const int *off) |
| { |
| return (void *)((unsigned long)off + *off); |
| } |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| /* &a[0] degrades to a pointer: a different type from an array */ |
| #define __must_be_array(a) BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0])) |
| |
| /* |
| * This returns a constant expression while determining if an argument is |
| * a constant expression, most importantly without evaluating the argument. |
| * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de> |
| * |
| * Details: |
| * - sizeof() return an integer constant expression, and does not evaluate |
| * the value of its operand; it only examines the type of its operand. |
| * - The results of comparing two integer constant expressions is also |
| * an integer constant expression. |
| * - The first literal "8" isn't important. It could be any literal value. |
| * - The second literal "8" is to avoid warnings about unaligned pointers; |
| * this could otherwise just be "1". |
| * - (long)(x) is used to avoid warnings about 64-bit types on 32-bit |
| * architectures. |
| * - The C Standard defines "null pointer constant", "(void *)0", as |
| * distinct from other void pointers. |
| * - If (x) is an integer constant expression, then the "* 0l" resolves |
| * it into an integer constant expression of value 0. Since it is cast to |
| * "void *", this makes the second operand a null pointer constant. |
| * - If (x) is not an integer constant expression, then the second operand |
| * resolves to a void pointer (but not a null pointer constant: the value |
| * is not an integer constant 0). |
| * - The conditional operator's third operand, "(int *)8", is an object |
| * pointer (to type "int"). |
| * - The behavior (including the return type) of the conditional operator |
| * ("operand1 ? operand2 : operand3") depends on the kind of expressions |
| * given for the second and third operands. This is the central mechanism |
| * of the macro: |
| * - When one operand is a null pointer constant (i.e. when x is an integer |
| * constant expression) and the other is an object pointer (i.e. our |
| * third operand), the conditional operator returns the type of the |
| * object pointer operand (i.e. "int *"). Here, within the sizeof(), we |
| * would then get: |
| * sizeof(*((int *)(...)) == sizeof(int) == 4 |
| * - When one operand is a void pointer (i.e. when x is not an integer |
| * constant expression) and the other is an object pointer (i.e. our |
| * third operand), the conditional operator returns a "void *" type. |
| * Here, within the sizeof(), we would then get: |
| * sizeof(*((void *)(...)) == sizeof(void) == 1 |
| * - The equality comparison to "sizeof(int)" therefore depends on (x): |
| * sizeof(int) == sizeof(int) (x) was a constant expression |
| * sizeof(int) != sizeof(void) (x) was not a constant expression |
| */ |
| #define __is_constexpr(x) \ |
| (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8))) |
| |
| /* |
| * Whether 'type' is a signed type or an unsigned type. Supports scalar types, |
| * bool and also pointer types. |
| */ |
| #define is_signed_type(type) (((type)(-1)) < (__force type)1) |
| #define is_unsigned_type(type) (!is_signed_type(type)) |
| |
| /* |
| * This is needed in functions which generate the stack canary, see |
| * arch/x86/kernel/smpboot.c::start_secondary() for an example. |
| */ |
| #define prevent_tail_call_optimization() mb() |
| |
| #include <asm/rwonce.h> |
| |
| #endif /* __LINUX_COMPILER_H */ |