| /* SPDX-License-Identifier: GPL-2.0-or-later */ |
| /* internal.h: mm/ internal definitions |
| * |
| * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| */ |
| #ifndef __MM_INTERNAL_H |
| #define __MM_INTERNAL_H |
| |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/pagemap.h> |
| #include <linux/rmap.h> |
| #include <linux/tracepoint-defs.h> |
| |
| struct folio_batch; |
| |
| /* |
| * The set of flags that only affect watermark checking and reclaim |
| * behaviour. This is used by the MM to obey the caller constraints |
| * about IO, FS and watermark checking while ignoring placement |
| * hints such as HIGHMEM usage. |
| */ |
| #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ |
| __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ |
| __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ |
| __GFP_NOLOCKDEP) |
| |
| /* The GFP flags allowed during early boot */ |
| #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) |
| |
| /* Control allocation cpuset and node placement constraints */ |
| #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) |
| |
| /* Do not use these with a slab allocator */ |
| #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) |
| |
| /* |
| * Different from WARN_ON_ONCE(), no warning will be issued |
| * when we specify __GFP_NOWARN. |
| */ |
| #define WARN_ON_ONCE_GFP(cond, gfp) ({ \ |
| static bool __section(".data.once") __warned; \ |
| int __ret_warn_once = !!(cond); \ |
| \ |
| if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \ |
| __warned = true; \ |
| WARN_ON(1); \ |
| } \ |
| unlikely(__ret_warn_once); \ |
| }) |
| |
| void page_writeback_init(void); |
| |
| /* |
| * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages, |
| * its nr_pages_mapped would be 0x400000: choose the COMPOUND_MAPPED bit |
| * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently |
| * leaves nr_pages_mapped at 0, but avoid surprise if it participates later. |
| */ |
| #define COMPOUND_MAPPED 0x800000 |
| #define FOLIO_PAGES_MAPPED (COMPOUND_MAPPED - 1) |
| |
| /* |
| * How many individual pages have an elevated _mapcount. Excludes |
| * the folio's entire_mapcount. |
| */ |
| static inline int folio_nr_pages_mapped(struct folio *folio) |
| { |
| return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED; |
| } |
| |
| static inline void *folio_raw_mapping(struct folio *folio) |
| { |
| unsigned long mapping = (unsigned long)folio->mapping; |
| |
| return (void *)(mapping & ~PAGE_MAPPING_FLAGS); |
| } |
| |
| void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, |
| int nr_throttled); |
| static inline void acct_reclaim_writeback(struct folio *folio) |
| { |
| pg_data_t *pgdat = folio_pgdat(folio); |
| int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled); |
| |
| if (nr_throttled) |
| __acct_reclaim_writeback(pgdat, folio, nr_throttled); |
| } |
| |
| static inline void wake_throttle_isolated(pg_data_t *pgdat) |
| { |
| wait_queue_head_t *wqh; |
| |
| wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; |
| if (waitqueue_active(wqh)) |
| wake_up(wqh); |
| } |
| |
| vm_fault_t do_swap_page(struct vm_fault *vmf); |
| void folio_rotate_reclaimable(struct folio *folio); |
| bool __folio_end_writeback(struct folio *folio); |
| void deactivate_file_folio(struct folio *folio); |
| void folio_activate(struct folio *folio); |
| |
| void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt, |
| struct vm_area_struct *start_vma, unsigned long floor, |
| unsigned long ceiling, bool mm_wr_locked); |
| void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); |
| |
| struct zap_details; |
| void unmap_page_range(struct mmu_gather *tlb, |
| struct vm_area_struct *vma, |
| unsigned long addr, unsigned long end, |
| struct zap_details *details); |
| |
| void page_cache_ra_order(struct readahead_control *, struct file_ra_state *, |
| unsigned int order); |
| void force_page_cache_ra(struct readahead_control *, unsigned long nr); |
| static inline void force_page_cache_readahead(struct address_space *mapping, |
| struct file *file, pgoff_t index, unsigned long nr_to_read) |
| { |
| DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); |
| force_page_cache_ra(&ractl, nr_to_read); |
| } |
| |
| unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, |
| pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); |
| unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, |
| pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); |
| void filemap_free_folio(struct address_space *mapping, struct folio *folio); |
| int truncate_inode_folio(struct address_space *mapping, struct folio *folio); |
| bool truncate_inode_partial_folio(struct folio *folio, loff_t start, |
| loff_t end); |
| long invalidate_inode_page(struct page *page); |
| unsigned long invalidate_mapping_pagevec(struct address_space *mapping, |
| pgoff_t start, pgoff_t end, unsigned long *nr_pagevec); |
| |
| /** |
| * folio_evictable - Test whether a folio is evictable. |
| * @folio: The folio to test. |
| * |
| * Test whether @folio is evictable -- i.e., should be placed on |
| * active/inactive lists vs unevictable list. |
| * |
| * Reasons folio might not be evictable: |
| * 1. folio's mapping marked unevictable |
| * 2. One of the pages in the folio is part of an mlocked VMA |
| */ |
| static inline bool folio_evictable(struct folio *folio) |
| { |
| bool ret; |
| |
| /* Prevent address_space of inode and swap cache from being freed */ |
| rcu_read_lock(); |
| ret = !mapping_unevictable(folio_mapping(folio)) && |
| !folio_test_mlocked(folio); |
| rcu_read_unlock(); |
| return ret; |
| } |
| |
| /* |
| * Turn a non-refcounted page (->_refcount == 0) into refcounted with |
| * a count of one. |
| */ |
| static inline void set_page_refcounted(struct page *page) |
| { |
| VM_BUG_ON_PAGE(PageTail(page), page); |
| VM_BUG_ON_PAGE(page_ref_count(page), page); |
| set_page_count(page, 1); |
| } |
| |
| extern unsigned long highest_memmap_pfn; |
| |
| /* |
| * Maximum number of reclaim retries without progress before the OOM |
| * killer is consider the only way forward. |
| */ |
| #define MAX_RECLAIM_RETRIES 16 |
| |
| /* |
| * in mm/early_ioremap.c |
| */ |
| pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr, |
| unsigned long size, pgprot_t prot); |
| |
| /* |
| * in mm/vmscan.c: |
| */ |
| bool isolate_lru_page(struct page *page); |
| bool folio_isolate_lru(struct folio *folio); |
| void putback_lru_page(struct page *page); |
| void folio_putback_lru(struct folio *folio); |
| extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); |
| |
| /* |
| * in mm/rmap.c: |
| */ |
| pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); |
| |
| /* |
| * in mm/page_alloc.c |
| */ |
| #define K(x) ((x) << (PAGE_SHIFT-10)) |
| |
| extern char * const zone_names[MAX_NR_ZONES]; |
| |
| /* perform sanity checks on struct pages being allocated or freed */ |
| DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); |
| |
| extern int min_free_kbytes; |
| |
| void setup_per_zone_wmarks(void); |
| void calculate_min_free_kbytes(void); |
| int __meminit init_per_zone_wmark_min(void); |
| void page_alloc_sysctl_init(void); |
| |
| /* |
| * Structure for holding the mostly immutable allocation parameters passed |
| * between functions involved in allocations, including the alloc_pages* |
| * family of functions. |
| * |
| * nodemask, migratetype and highest_zoneidx are initialized only once in |
| * __alloc_pages() and then never change. |
| * |
| * zonelist, preferred_zone and highest_zoneidx are set first in |
| * __alloc_pages() for the fast path, and might be later changed |
| * in __alloc_pages_slowpath(). All other functions pass the whole structure |
| * by a const pointer. |
| */ |
| struct alloc_context { |
| struct zonelist *zonelist; |
| nodemask_t *nodemask; |
| struct zoneref *preferred_zoneref; |
| int migratetype; |
| |
| /* |
| * highest_zoneidx represents highest usable zone index of |
| * the allocation request. Due to the nature of the zone, |
| * memory on lower zone than the highest_zoneidx will be |
| * protected by lowmem_reserve[highest_zoneidx]. |
| * |
| * highest_zoneidx is also used by reclaim/compaction to limit |
| * the target zone since higher zone than this index cannot be |
| * usable for this allocation request. |
| */ |
| enum zone_type highest_zoneidx; |
| bool spread_dirty_pages; |
| }; |
| |
| /* |
| * This function returns the order of a free page in the buddy system. In |
| * general, page_zone(page)->lock must be held by the caller to prevent the |
| * page from being allocated in parallel and returning garbage as the order. |
| * If a caller does not hold page_zone(page)->lock, it must guarantee that the |
| * page cannot be allocated or merged in parallel. Alternatively, it must |
| * handle invalid values gracefully, and use buddy_order_unsafe() below. |
| */ |
| static inline unsigned int buddy_order(struct page *page) |
| { |
| /* PageBuddy() must be checked by the caller */ |
| return page_private(page); |
| } |
| |
| /* |
| * Like buddy_order(), but for callers who cannot afford to hold the zone lock. |
| * PageBuddy() should be checked first by the caller to minimize race window, |
| * and invalid values must be handled gracefully. |
| * |
| * READ_ONCE is used so that if the caller assigns the result into a local |
| * variable and e.g. tests it for valid range before using, the compiler cannot |
| * decide to remove the variable and inline the page_private(page) multiple |
| * times, potentially observing different values in the tests and the actual |
| * use of the result. |
| */ |
| #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) |
| |
| /* |
| * This function checks whether a page is free && is the buddy |
| * we can coalesce a page and its buddy if |
| * (a) the buddy is not in a hole (check before calling!) && |
| * (b) the buddy is in the buddy system && |
| * (c) a page and its buddy have the same order && |
| * (d) a page and its buddy are in the same zone. |
| * |
| * For recording whether a page is in the buddy system, we set PageBuddy. |
| * Setting, clearing, and testing PageBuddy is serialized by zone->lock. |
| * |
| * For recording page's order, we use page_private(page). |
| */ |
| static inline bool page_is_buddy(struct page *page, struct page *buddy, |
| unsigned int order) |
| { |
| if (!page_is_guard(buddy) && !PageBuddy(buddy)) |
| return false; |
| |
| if (buddy_order(buddy) != order) |
| return false; |
| |
| /* |
| * zone check is done late to avoid uselessly calculating |
| * zone/node ids for pages that could never merge. |
| */ |
| if (page_zone_id(page) != page_zone_id(buddy)) |
| return false; |
| |
| VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); |
| |
| return true; |
| } |
| |
| /* |
| * Locate the struct page for both the matching buddy in our |
| * pair (buddy1) and the combined O(n+1) page they form (page). |
| * |
| * 1) Any buddy B1 will have an order O twin B2 which satisfies |
| * the following equation: |
| * B2 = B1 ^ (1 << O) |
| * For example, if the starting buddy (buddy2) is #8 its order |
| * 1 buddy is #10: |
| * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 |
| * |
| * 2) Any buddy B will have an order O+1 parent P which |
| * satisfies the following equation: |
| * P = B & ~(1 << O) |
| * |
| * Assumption: *_mem_map is contiguous at least up to MAX_ORDER |
| */ |
| static inline unsigned long |
| __find_buddy_pfn(unsigned long page_pfn, unsigned int order) |
| { |
| return page_pfn ^ (1 << order); |
| } |
| |
| /* |
| * Find the buddy of @page and validate it. |
| * @page: The input page |
| * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the |
| * function is used in the performance-critical __free_one_page(). |
| * @order: The order of the page |
| * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to |
| * page_to_pfn(). |
| * |
| * The found buddy can be a non PageBuddy, out of @page's zone, or its order is |
| * not the same as @page. The validation is necessary before use it. |
| * |
| * Return: the found buddy page or NULL if not found. |
| */ |
| static inline struct page *find_buddy_page_pfn(struct page *page, |
| unsigned long pfn, unsigned int order, unsigned long *buddy_pfn) |
| { |
| unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order); |
| struct page *buddy; |
| |
| buddy = page + (__buddy_pfn - pfn); |
| if (buddy_pfn) |
| *buddy_pfn = __buddy_pfn; |
| |
| if (page_is_buddy(page, buddy, order)) |
| return buddy; |
| return NULL; |
| } |
| |
| extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, |
| unsigned long end_pfn, struct zone *zone); |
| |
| static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, |
| unsigned long end_pfn, struct zone *zone) |
| { |
| if (zone->contiguous) |
| return pfn_to_page(start_pfn); |
| |
| return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); |
| } |
| |
| void set_zone_contiguous(struct zone *zone); |
| |
| static inline void clear_zone_contiguous(struct zone *zone) |
| { |
| zone->contiguous = false; |
| } |
| |
| extern int __isolate_free_page(struct page *page, unsigned int order); |
| extern void __putback_isolated_page(struct page *page, unsigned int order, |
| int mt); |
| extern void memblock_free_pages(struct page *page, unsigned long pfn, |
| unsigned int order); |
| extern void __free_pages_core(struct page *page, unsigned int order); |
| |
| static inline void prep_compound_head(struct page *page, unsigned int order) |
| { |
| struct folio *folio = (struct folio *)page; |
| |
| set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); |
| set_compound_order(page, order); |
| atomic_set(&folio->_entire_mapcount, -1); |
| atomic_set(&folio->_nr_pages_mapped, 0); |
| atomic_set(&folio->_pincount, 0); |
| } |
| |
| static inline void prep_compound_tail(struct page *head, int tail_idx) |
| { |
| struct page *p = head + tail_idx; |
| |
| p->mapping = TAIL_MAPPING; |
| set_compound_head(p, head); |
| set_page_private(p, 0); |
| } |
| |
| extern void prep_compound_page(struct page *page, unsigned int order); |
| |
| extern void post_alloc_hook(struct page *page, unsigned int order, |
| gfp_t gfp_flags); |
| extern int user_min_free_kbytes; |
| |
| extern void free_unref_page(struct page *page, unsigned int order); |
| extern void free_unref_page_list(struct list_head *list); |
| |
| extern void zone_pcp_reset(struct zone *zone); |
| extern void zone_pcp_disable(struct zone *zone); |
| extern void zone_pcp_enable(struct zone *zone); |
| extern void zone_pcp_init(struct zone *zone); |
| |
| extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, |
| phys_addr_t min_addr, |
| int nid, bool exact_nid); |
| |
| void memmap_init_range(unsigned long, int, unsigned long, unsigned long, |
| unsigned long, enum meminit_context, struct vmem_altmap *, int); |
| |
| |
| int split_free_page(struct page *free_page, |
| unsigned int order, unsigned long split_pfn_offset); |
| |
| /* |
| * This will have no effect, other than possibly generating a warning, if the |
| * caller passes in a non-large folio. |
| */ |
| static inline void folio_set_order(struct folio *folio, unsigned int order) |
| { |
| if (WARN_ON_ONCE(!folio_test_large(folio))) |
| return; |
| |
| folio->_folio_order = order; |
| #ifdef CONFIG_64BIT |
| /* |
| * When hugetlb dissolves a folio, we need to clear the tail |
| * page, rather than setting nr_pages to 1. |
| */ |
| folio->_folio_nr_pages = order ? 1U << order : 0; |
| #endif |
| } |
| |
| #if defined CONFIG_COMPACTION || defined CONFIG_CMA |
| |
| /* |
| * in mm/compaction.c |
| */ |
| /* |
| * compact_control is used to track pages being migrated and the free pages |
| * they are being migrated to during memory compaction. The free_pfn starts |
| * at the end of a zone and migrate_pfn begins at the start. Movable pages |
| * are moved to the end of a zone during a compaction run and the run |
| * completes when free_pfn <= migrate_pfn |
| */ |
| struct compact_control { |
| struct list_head freepages; /* List of free pages to migrate to */ |
| struct list_head migratepages; /* List of pages being migrated */ |
| unsigned int nr_freepages; /* Number of isolated free pages */ |
| unsigned int nr_migratepages; /* Number of pages to migrate */ |
| unsigned long free_pfn; /* isolate_freepages search base */ |
| /* |
| * Acts as an in/out parameter to page isolation for migration. |
| * isolate_migratepages uses it as a search base. |
| * isolate_migratepages_block will update the value to the next pfn |
| * after the last isolated one. |
| */ |
| unsigned long migrate_pfn; |
| unsigned long fast_start_pfn; /* a pfn to start linear scan from */ |
| struct zone *zone; |
| unsigned long total_migrate_scanned; |
| unsigned long total_free_scanned; |
| unsigned short fast_search_fail;/* failures to use free list searches */ |
| short search_order; /* order to start a fast search at */ |
| const gfp_t gfp_mask; /* gfp mask of a direct compactor */ |
| int order; /* order a direct compactor needs */ |
| int migratetype; /* migratetype of direct compactor */ |
| const unsigned int alloc_flags; /* alloc flags of a direct compactor */ |
| const int highest_zoneidx; /* zone index of a direct compactor */ |
| enum migrate_mode mode; /* Async or sync migration mode */ |
| bool ignore_skip_hint; /* Scan blocks even if marked skip */ |
| bool no_set_skip_hint; /* Don't mark blocks for skipping */ |
| bool ignore_block_suitable; /* Scan blocks considered unsuitable */ |
| bool direct_compaction; /* False from kcompactd or /proc/... */ |
| bool proactive_compaction; /* kcompactd proactive compaction */ |
| bool whole_zone; /* Whole zone should/has been scanned */ |
| bool contended; /* Signal lock contention */ |
| bool finish_pageblock; /* Scan the remainder of a pageblock. Used |
| * when there are potentially transient |
| * isolation or migration failures to |
| * ensure forward progress. |
| */ |
| bool alloc_contig; /* alloc_contig_range allocation */ |
| }; |
| |
| /* |
| * Used in direct compaction when a page should be taken from the freelists |
| * immediately when one is created during the free path. |
| */ |
| struct capture_control { |
| struct compact_control *cc; |
| struct page *page; |
| }; |
| |
| unsigned long |
| isolate_freepages_range(struct compact_control *cc, |
| unsigned long start_pfn, unsigned long end_pfn); |
| int |
| isolate_migratepages_range(struct compact_control *cc, |
| unsigned long low_pfn, unsigned long end_pfn); |
| |
| int __alloc_contig_migrate_range(struct compact_control *cc, |
| unsigned long start, unsigned long end); |
| |
| /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ |
| void init_cma_reserved_pageblock(struct page *page); |
| |
| #endif /* CONFIG_COMPACTION || CONFIG_CMA */ |
| |
| int find_suitable_fallback(struct free_area *area, unsigned int order, |
| int migratetype, bool only_stealable, bool *can_steal); |
| |
| static inline bool free_area_empty(struct free_area *area, int migratetype) |
| { |
| return list_empty(&area->free_list[migratetype]); |
| } |
| |
| /* |
| * These three helpers classifies VMAs for virtual memory accounting. |
| */ |
| |
| /* |
| * Executable code area - executable, not writable, not stack |
| */ |
| static inline bool is_exec_mapping(vm_flags_t flags) |
| { |
| return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; |
| } |
| |
| /* |
| * Stack area - automatically grows in one direction |
| * |
| * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: |
| * do_mmap() forbids all other combinations. |
| */ |
| static inline bool is_stack_mapping(vm_flags_t flags) |
| { |
| return (flags & VM_STACK) == VM_STACK; |
| } |
| |
| /* |
| * Data area - private, writable, not stack |
| */ |
| static inline bool is_data_mapping(vm_flags_t flags) |
| { |
| return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; |
| } |
| |
| /* mm/util.c */ |
| struct anon_vma *folio_anon_vma(struct folio *folio); |
| |
| #ifdef CONFIG_MMU |
| void unmap_mapping_folio(struct folio *folio); |
| extern long populate_vma_page_range(struct vm_area_struct *vma, |
| unsigned long start, unsigned long end, int *locked); |
| extern long faultin_vma_page_range(struct vm_area_struct *vma, |
| unsigned long start, unsigned long end, |
| bool write, int *locked); |
| extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, |
| unsigned long bytes); |
| /* |
| * mlock_vma_folio() and munlock_vma_folio(): |
| * should be called with vma's mmap_lock held for read or write, |
| * under page table lock for the pte/pmd being added or removed. |
| * |
| * mlock is usually called at the end of page_add_*_rmap(), munlock at |
| * the end of page_remove_rmap(); but new anon folios are managed by |
| * folio_add_lru_vma() calling mlock_new_folio(). |
| * |
| * @compound is used to include pmd mappings of THPs, but filter out |
| * pte mappings of THPs, which cannot be consistently counted: a pte |
| * mapping of the THP head cannot be distinguished by the page alone. |
| */ |
| void mlock_folio(struct folio *folio); |
| static inline void mlock_vma_folio(struct folio *folio, |
| struct vm_area_struct *vma, bool compound) |
| { |
| /* |
| * The VM_SPECIAL check here serves two purposes. |
| * 1) VM_IO check prevents migration from double-counting during mlock. |
| * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED |
| * is never left set on a VM_SPECIAL vma, there is an interval while |
| * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may |
| * still be set while VM_SPECIAL bits are added: so ignore it then. |
| */ |
| if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) && |
| (compound || !folio_test_large(folio))) |
| mlock_folio(folio); |
| } |
| |
| void munlock_folio(struct folio *folio); |
| static inline void munlock_vma_folio(struct folio *folio, |
| struct vm_area_struct *vma, bool compound) |
| { |
| if (unlikely(vma->vm_flags & VM_LOCKED) && |
| (compound || !folio_test_large(folio))) |
| munlock_folio(folio); |
| } |
| |
| void mlock_new_folio(struct folio *folio); |
| bool need_mlock_drain(int cpu); |
| void mlock_drain_local(void); |
| void mlock_drain_remote(int cpu); |
| |
| extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); |
| |
| /* |
| * Return the start of user virtual address at the specific offset within |
| * a vma. |
| */ |
| static inline unsigned long |
| vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages, |
| struct vm_area_struct *vma) |
| { |
| unsigned long address; |
| |
| if (pgoff >= vma->vm_pgoff) { |
| address = vma->vm_start + |
| ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
| /* Check for address beyond vma (or wrapped through 0?) */ |
| if (address < vma->vm_start || address >= vma->vm_end) |
| address = -EFAULT; |
| } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) { |
| /* Test above avoids possibility of wrap to 0 on 32-bit */ |
| address = vma->vm_start; |
| } else { |
| address = -EFAULT; |
| } |
| return address; |
| } |
| |
| /* |
| * Return the start of user virtual address of a page within a vma. |
| * Returns -EFAULT if all of the page is outside the range of vma. |
| * If page is a compound head, the entire compound page is considered. |
| */ |
| static inline unsigned long |
| vma_address(struct page *page, struct vm_area_struct *vma) |
| { |
| VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ |
| return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma); |
| } |
| |
| /* |
| * Then at what user virtual address will none of the range be found in vma? |
| * Assumes that vma_address() already returned a good starting address. |
| */ |
| static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw) |
| { |
| struct vm_area_struct *vma = pvmw->vma; |
| pgoff_t pgoff; |
| unsigned long address; |
| |
| /* Common case, plus ->pgoff is invalid for KSM */ |
| if (pvmw->nr_pages == 1) |
| return pvmw->address + PAGE_SIZE; |
| |
| pgoff = pvmw->pgoff + pvmw->nr_pages; |
| address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
| /* Check for address beyond vma (or wrapped through 0?) */ |
| if (address < vma->vm_start || address > vma->vm_end) |
| address = vma->vm_end; |
| return address; |
| } |
| |
| static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, |
| struct file *fpin) |
| { |
| int flags = vmf->flags; |
| |
| if (fpin) |
| return fpin; |
| |
| /* |
| * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or |
| * anything, so we only pin the file and drop the mmap_lock if only |
| * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. |
| */ |
| if (fault_flag_allow_retry_first(flags) && |
| !(flags & FAULT_FLAG_RETRY_NOWAIT)) { |
| fpin = get_file(vmf->vma->vm_file); |
| mmap_read_unlock(vmf->vma->vm_mm); |
| } |
| return fpin; |
| } |
| #else /* !CONFIG_MMU */ |
| static inline void unmap_mapping_folio(struct folio *folio) { } |
| static inline void mlock_new_folio(struct folio *folio) { } |
| static inline bool need_mlock_drain(int cpu) { return false; } |
| static inline void mlock_drain_local(void) { } |
| static inline void mlock_drain_remote(int cpu) { } |
| static inline void vunmap_range_noflush(unsigned long start, unsigned long end) |
| { |
| } |
| #endif /* !CONFIG_MMU */ |
| |
| /* Memory initialisation debug and verification */ |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| DECLARE_STATIC_KEY_TRUE(deferred_pages); |
| |
| bool __init deferred_grow_zone(struct zone *zone, unsigned int order); |
| #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ |
| |
| enum mminit_level { |
| MMINIT_WARNING, |
| MMINIT_VERIFY, |
| MMINIT_TRACE |
| }; |
| |
| #ifdef CONFIG_DEBUG_MEMORY_INIT |
| |
| extern int mminit_loglevel; |
| |
| #define mminit_dprintk(level, prefix, fmt, arg...) \ |
| do { \ |
| if (level < mminit_loglevel) { \ |
| if (level <= MMINIT_WARNING) \ |
| pr_warn("mminit::" prefix " " fmt, ##arg); \ |
| else \ |
| printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ |
| } \ |
| } while (0) |
| |
| extern void mminit_verify_pageflags_layout(void); |
| extern void mminit_verify_zonelist(void); |
| #else |
| |
| static inline void mminit_dprintk(enum mminit_level level, |
| const char *prefix, const char *fmt, ...) |
| { |
| } |
| |
| static inline void mminit_verify_pageflags_layout(void) |
| { |
| } |
| |
| static inline void mminit_verify_zonelist(void) |
| { |
| } |
| #endif /* CONFIG_DEBUG_MEMORY_INIT */ |
| |
| #define NODE_RECLAIM_NOSCAN -2 |
| #define NODE_RECLAIM_FULL -1 |
| #define NODE_RECLAIM_SOME 0 |
| #define NODE_RECLAIM_SUCCESS 1 |
| |
| #ifdef CONFIG_NUMA |
| extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); |
| extern int find_next_best_node(int node, nodemask_t *used_node_mask); |
| #else |
| static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, |
| unsigned int order) |
| { |
| return NODE_RECLAIM_NOSCAN; |
| } |
| static inline int find_next_best_node(int node, nodemask_t *used_node_mask) |
| { |
| return NUMA_NO_NODE; |
| } |
| #endif |
| |
| /* |
| * mm/memory-failure.c |
| */ |
| extern int hwpoison_filter(struct page *p); |
| |
| extern u32 hwpoison_filter_dev_major; |
| extern u32 hwpoison_filter_dev_minor; |
| extern u64 hwpoison_filter_flags_mask; |
| extern u64 hwpoison_filter_flags_value; |
| extern u64 hwpoison_filter_memcg; |
| extern u32 hwpoison_filter_enable; |
| |
| extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, |
| unsigned long, unsigned long, |
| unsigned long, unsigned long); |
| |
| extern void set_pageblock_order(void); |
| unsigned long reclaim_pages(struct list_head *folio_list); |
| unsigned int reclaim_clean_pages_from_list(struct zone *zone, |
| struct list_head *folio_list); |
| /* The ALLOC_WMARK bits are used as an index to zone->watermark */ |
| #define ALLOC_WMARK_MIN WMARK_MIN |
| #define ALLOC_WMARK_LOW WMARK_LOW |
| #define ALLOC_WMARK_HIGH WMARK_HIGH |
| #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ |
| |
| /* Mask to get the watermark bits */ |
| #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) |
| |
| /* |
| * Only MMU archs have async oom victim reclaim - aka oom_reaper so we |
| * cannot assume a reduced access to memory reserves is sufficient for |
| * !MMU |
| */ |
| #ifdef CONFIG_MMU |
| #define ALLOC_OOM 0x08 |
| #else |
| #define ALLOC_OOM ALLOC_NO_WATERMARKS |
| #endif |
| |
| #define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access |
| * to 25% of the min watermark or |
| * 62.5% if __GFP_HIGH is set. |
| */ |
| #define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50% |
| * of the min watermark. |
| */ |
| #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ |
| #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ |
| #ifdef CONFIG_ZONE_DMA32 |
| #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ |
| #else |
| #define ALLOC_NOFRAGMENT 0x0 |
| #endif |
| #define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */ |
| #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ |
| |
| /* Flags that allow allocations below the min watermark. */ |
| #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM) |
| |
| enum ttu_flags; |
| struct tlbflush_unmap_batch; |
| |
| |
| /* |
| * only for MM internal work items which do not depend on |
| * any allocations or locks which might depend on allocations |
| */ |
| extern struct workqueue_struct *mm_percpu_wq; |
| |
| #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH |
| void try_to_unmap_flush(void); |
| void try_to_unmap_flush_dirty(void); |
| void flush_tlb_batched_pending(struct mm_struct *mm); |
| #else |
| static inline void try_to_unmap_flush(void) |
| { |
| } |
| static inline void try_to_unmap_flush_dirty(void) |
| { |
| } |
| static inline void flush_tlb_batched_pending(struct mm_struct *mm) |
| { |
| } |
| #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ |
| |
| extern const struct trace_print_flags pageflag_names[]; |
| extern const struct trace_print_flags pagetype_names[]; |
| extern const struct trace_print_flags vmaflag_names[]; |
| extern const struct trace_print_flags gfpflag_names[]; |
| |
| static inline bool is_migrate_highatomic(enum migratetype migratetype) |
| { |
| return migratetype == MIGRATE_HIGHATOMIC; |
| } |
| |
| static inline bool is_migrate_highatomic_page(struct page *page) |
| { |
| return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; |
| } |
| |
| void setup_zone_pageset(struct zone *zone); |
| |
| struct migration_target_control { |
| int nid; /* preferred node id */ |
| nodemask_t *nmask; |
| gfp_t gfp_mask; |
| }; |
| |
| /* |
| * mm/filemap.c |
| */ |
| size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, |
| struct folio *folio, loff_t fpos, size_t size); |
| |
| /* |
| * mm/vmalloc.c |
| */ |
| #ifdef CONFIG_MMU |
| void __init vmalloc_init(void); |
| int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, |
| pgprot_t prot, struct page **pages, unsigned int page_shift); |
| #else |
| static inline void vmalloc_init(void) |
| { |
| } |
| |
| static inline |
| int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, |
| pgprot_t prot, struct page **pages, unsigned int page_shift) |
| { |
| return -EINVAL; |
| } |
| #endif |
| |
| int __must_check __vmap_pages_range_noflush(unsigned long addr, |
| unsigned long end, pgprot_t prot, |
| struct page **pages, unsigned int page_shift); |
| |
| void vunmap_range_noflush(unsigned long start, unsigned long end); |
| |
| void __vunmap_range_noflush(unsigned long start, unsigned long end); |
| |
| int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, |
| unsigned long addr, int page_nid, int *flags); |
| |
| void free_zone_device_page(struct page *page); |
| int migrate_device_coherent_page(struct page *page); |
| |
| /* |
| * mm/gup.c |
| */ |
| struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags); |
| int __must_check try_grab_page(struct page *page, unsigned int flags); |
| |
| enum { |
| /* mark page accessed */ |
| FOLL_TOUCH = 1 << 16, |
| /* a retry, previous pass started an IO */ |
| FOLL_TRIED = 1 << 17, |
| /* we are working on non-current tsk/mm */ |
| FOLL_REMOTE = 1 << 18, |
| /* pages must be released via unpin_user_page */ |
| FOLL_PIN = 1 << 19, |
| /* gup_fast: prevent fall-back to slow gup */ |
| FOLL_FAST_ONLY = 1 << 20, |
| /* allow unlocking the mmap lock */ |
| FOLL_UNLOCKABLE = 1 << 21, |
| }; |
| |
| /* |
| * Indicates for which pages that are write-protected in the page table, |
| * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the |
| * GUP pin will remain consistent with the pages mapped into the page tables |
| * of the MM. |
| * |
| * Temporary unmapping of PageAnonExclusive() pages or clearing of |
| * PageAnonExclusive() has to protect against concurrent GUP: |
| * * Ordinary GUP: Using the PT lock |
| * * GUP-fast and fork(): mm->write_protect_seq |
| * * GUP-fast and KSM or temporary unmapping (swap, migration): see |
| * page_try_share_anon_rmap() |
| * |
| * Must be called with the (sub)page that's actually referenced via the |
| * page table entry, which might not necessarily be the head page for a |
| * PTE-mapped THP. |
| * |
| * If the vma is NULL, we're coming from the GUP-fast path and might have |
| * to fallback to the slow path just to lookup the vma. |
| */ |
| static inline bool gup_must_unshare(struct vm_area_struct *vma, |
| unsigned int flags, struct page *page) |
| { |
| /* |
| * FOLL_WRITE is implicitly handled correctly as the page table entry |
| * has to be writable -- and if it references (part of) an anonymous |
| * folio, that part is required to be marked exclusive. |
| */ |
| if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) |
| return false; |
| /* |
| * Note: PageAnon(page) is stable until the page is actually getting |
| * freed. |
| */ |
| if (!PageAnon(page)) { |
| /* |
| * We only care about R/O long-term pining: R/O short-term |
| * pinning does not have the semantics to observe successive |
| * changes through the process page tables. |
| */ |
| if (!(flags & FOLL_LONGTERM)) |
| return false; |
| |
| /* We really need the vma ... */ |
| if (!vma) |
| return true; |
| |
| /* |
| * ... because we only care about writable private ("COW") |
| * mappings where we have to break COW early. |
| */ |
| return is_cow_mapping(vma->vm_flags); |
| } |
| |
| /* Paired with a memory barrier in page_try_share_anon_rmap(). */ |
| if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) |
| smp_rmb(); |
| |
| /* |
| * Note that PageKsm() pages cannot be exclusive, and consequently, |
| * cannot get pinned. |
| */ |
| return !PageAnonExclusive(page); |
| } |
| |
| extern bool mirrored_kernelcore; |
| |
| static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma) |
| { |
| /* |
| * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty |
| * enablements, because when without soft-dirty being compiled in, |
| * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY) |
| * will be constantly true. |
| */ |
| if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) |
| return false; |
| |
| /* |
| * Soft-dirty is kind of special: its tracking is enabled when the |
| * vma flags not set. |
| */ |
| return !(vma->vm_flags & VM_SOFTDIRTY); |
| } |
| |
| /* |
| * VMA Iterator functions shared between nommu and mmap |
| */ |
| static inline int vma_iter_prealloc(struct vma_iterator *vmi) |
| { |
| return mas_preallocate(&vmi->mas, GFP_KERNEL); |
| } |
| |
| static inline void vma_iter_clear(struct vma_iterator *vmi, |
| unsigned long start, unsigned long end) |
| { |
| mas_set_range(&vmi->mas, start, end - 1); |
| mas_store_prealloc(&vmi->mas, NULL); |
| } |
| |
| static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi) |
| { |
| return mas_walk(&vmi->mas); |
| } |
| |
| /* Store a VMA with preallocated memory */ |
| static inline void vma_iter_store(struct vma_iterator *vmi, |
| struct vm_area_struct *vma) |
| { |
| |
| #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) |
| if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START && |
| vmi->mas.index > vma->vm_start)) { |
| pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n", |
| vmi->mas.index, vma->vm_start, vma->vm_start, |
| vma->vm_end, vmi->mas.index, vmi->mas.last); |
| } |
| if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START && |
| vmi->mas.last < vma->vm_start)) { |
| pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n", |
| vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end, |
| vmi->mas.index, vmi->mas.last); |
| } |
| #endif |
| |
| if (vmi->mas.node != MAS_START && |
| ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) |
| vma_iter_invalidate(vmi); |
| |
| vmi->mas.index = vma->vm_start; |
| vmi->mas.last = vma->vm_end - 1; |
| mas_store_prealloc(&vmi->mas, vma); |
| } |
| |
| static inline int vma_iter_store_gfp(struct vma_iterator *vmi, |
| struct vm_area_struct *vma, gfp_t gfp) |
| { |
| if (vmi->mas.node != MAS_START && |
| ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) |
| vma_iter_invalidate(vmi); |
| |
| vmi->mas.index = vma->vm_start; |
| vmi->mas.last = vma->vm_end - 1; |
| mas_store_gfp(&vmi->mas, vma, gfp); |
| if (unlikely(mas_is_err(&vmi->mas))) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /* |
| * VMA lock generalization |
| */ |
| struct vma_prepare { |
| struct vm_area_struct *vma; |
| struct vm_area_struct *adj_next; |
| struct file *file; |
| struct address_space *mapping; |
| struct anon_vma *anon_vma; |
| struct vm_area_struct *insert; |
| struct vm_area_struct *remove; |
| struct vm_area_struct *remove2; |
| }; |
| #endif /* __MM_INTERNAL_H */ |