| // SPDX-License-Identifier: GPL-2.0 OR MIT |
| /* |
| * Copyright 2014-2022 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| #include <linux/errno.h> |
| #include <linux/acpi.h> |
| #include <linux/hash.h> |
| #include <linux/cpufreq.h> |
| #include <linux/log2.h> |
| #include <linux/dmi.h> |
| #include <linux/atomic.h> |
| #include <linux/crc16.h> |
| |
| #include "kfd_priv.h" |
| #include "kfd_crat.h" |
| #include "kfd_topology.h" |
| #include "kfd_device_queue_manager.h" |
| #include "kfd_svm.h" |
| #include "kfd_debug.h" |
| #include "amdgpu_amdkfd.h" |
| #include "amdgpu_ras.h" |
| #include "amdgpu.h" |
| |
| /* topology_device_list - Master list of all topology devices */ |
| static struct list_head topology_device_list; |
| static struct kfd_system_properties sys_props; |
| |
| static DECLARE_RWSEM(topology_lock); |
| static uint32_t topology_crat_proximity_domain; |
| |
| struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock( |
| uint32_t proximity_domain) |
| { |
| struct kfd_topology_device *top_dev; |
| struct kfd_topology_device *device = NULL; |
| |
| list_for_each_entry(top_dev, &topology_device_list, list) |
| if (top_dev->proximity_domain == proximity_domain) { |
| device = top_dev; |
| break; |
| } |
| |
| return device; |
| } |
| |
| struct kfd_topology_device *kfd_topology_device_by_proximity_domain( |
| uint32_t proximity_domain) |
| { |
| struct kfd_topology_device *device = NULL; |
| |
| down_read(&topology_lock); |
| |
| device = kfd_topology_device_by_proximity_domain_no_lock( |
| proximity_domain); |
| up_read(&topology_lock); |
| |
| return device; |
| } |
| |
| struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id) |
| { |
| struct kfd_topology_device *top_dev = NULL; |
| struct kfd_topology_device *ret = NULL; |
| |
| down_read(&topology_lock); |
| |
| list_for_each_entry(top_dev, &topology_device_list, list) |
| if (top_dev->gpu_id == gpu_id) { |
| ret = top_dev; |
| break; |
| } |
| |
| up_read(&topology_lock); |
| |
| return ret; |
| } |
| |
| struct kfd_node *kfd_device_by_id(uint32_t gpu_id) |
| { |
| struct kfd_topology_device *top_dev; |
| |
| top_dev = kfd_topology_device_by_id(gpu_id); |
| if (!top_dev) |
| return NULL; |
| |
| return top_dev->gpu; |
| } |
| |
| struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev) |
| { |
| struct kfd_topology_device *top_dev; |
| struct kfd_node *device = NULL; |
| |
| down_read(&topology_lock); |
| |
| list_for_each_entry(top_dev, &topology_device_list, list) |
| if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) { |
| device = top_dev->gpu; |
| break; |
| } |
| |
| up_read(&topology_lock); |
| |
| return device; |
| } |
| |
| /* Called with write topology_lock acquired */ |
| static void kfd_release_topology_device(struct kfd_topology_device *dev) |
| { |
| struct kfd_mem_properties *mem; |
| struct kfd_cache_properties *cache; |
| struct kfd_iolink_properties *iolink; |
| struct kfd_iolink_properties *p2plink; |
| struct kfd_perf_properties *perf; |
| |
| list_del(&dev->list); |
| |
| while (dev->mem_props.next != &dev->mem_props) { |
| mem = container_of(dev->mem_props.next, |
| struct kfd_mem_properties, list); |
| list_del(&mem->list); |
| kfree(mem); |
| } |
| |
| while (dev->cache_props.next != &dev->cache_props) { |
| cache = container_of(dev->cache_props.next, |
| struct kfd_cache_properties, list); |
| list_del(&cache->list); |
| kfree(cache); |
| } |
| |
| while (dev->io_link_props.next != &dev->io_link_props) { |
| iolink = container_of(dev->io_link_props.next, |
| struct kfd_iolink_properties, list); |
| list_del(&iolink->list); |
| kfree(iolink); |
| } |
| |
| while (dev->p2p_link_props.next != &dev->p2p_link_props) { |
| p2plink = container_of(dev->p2p_link_props.next, |
| struct kfd_iolink_properties, list); |
| list_del(&p2plink->list); |
| kfree(p2plink); |
| } |
| |
| while (dev->perf_props.next != &dev->perf_props) { |
| perf = container_of(dev->perf_props.next, |
| struct kfd_perf_properties, list); |
| list_del(&perf->list); |
| kfree(perf); |
| } |
| |
| kfree(dev); |
| } |
| |
| void kfd_release_topology_device_list(struct list_head *device_list) |
| { |
| struct kfd_topology_device *dev; |
| |
| while (!list_empty(device_list)) { |
| dev = list_first_entry(device_list, |
| struct kfd_topology_device, list); |
| kfd_release_topology_device(dev); |
| } |
| } |
| |
| static void kfd_release_live_view(void) |
| { |
| kfd_release_topology_device_list(&topology_device_list); |
| memset(&sys_props, 0, sizeof(sys_props)); |
| } |
| |
| struct kfd_topology_device *kfd_create_topology_device( |
| struct list_head *device_list) |
| { |
| struct kfd_topology_device *dev; |
| |
| dev = kfd_alloc_struct(dev); |
| if (!dev) { |
| pr_err("No memory to allocate a topology device"); |
| return NULL; |
| } |
| |
| INIT_LIST_HEAD(&dev->mem_props); |
| INIT_LIST_HEAD(&dev->cache_props); |
| INIT_LIST_HEAD(&dev->io_link_props); |
| INIT_LIST_HEAD(&dev->p2p_link_props); |
| INIT_LIST_HEAD(&dev->perf_props); |
| |
| list_add_tail(&dev->list, device_list); |
| |
| return dev; |
| } |
| |
| |
| #define sysfs_show_gen_prop(buffer, offs, fmt, ...) \ |
| (offs += snprintf(buffer+offs, PAGE_SIZE-offs, \ |
| fmt, __VA_ARGS__)) |
| #define sysfs_show_32bit_prop(buffer, offs, name, value) \ |
| sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value) |
| #define sysfs_show_64bit_prop(buffer, offs, name, value) \ |
| sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value) |
| #define sysfs_show_32bit_val(buffer, offs, value) \ |
| sysfs_show_gen_prop(buffer, offs, "%u\n", value) |
| #define sysfs_show_str_val(buffer, offs, value) \ |
| sysfs_show_gen_prop(buffer, offs, "%s\n", value) |
| |
| static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr, |
| char *buffer) |
| { |
| int offs = 0; |
| |
| /* Making sure that the buffer is an empty string */ |
| buffer[0] = 0; |
| |
| if (attr == &sys_props.attr_genid) { |
| sysfs_show_32bit_val(buffer, offs, |
| sys_props.generation_count); |
| } else if (attr == &sys_props.attr_props) { |
| sysfs_show_64bit_prop(buffer, offs, "platform_oem", |
| sys_props.platform_oem); |
| sysfs_show_64bit_prop(buffer, offs, "platform_id", |
| sys_props.platform_id); |
| sysfs_show_64bit_prop(buffer, offs, "platform_rev", |
| sys_props.platform_rev); |
| } else { |
| offs = -EINVAL; |
| } |
| |
| return offs; |
| } |
| |
| static void kfd_topology_kobj_release(struct kobject *kobj) |
| { |
| kfree(kobj); |
| } |
| |
| static const struct sysfs_ops sysprops_ops = { |
| .show = sysprops_show, |
| }; |
| |
| static const struct kobj_type sysprops_type = { |
| .release = kfd_topology_kobj_release, |
| .sysfs_ops = &sysprops_ops, |
| }; |
| |
| static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr, |
| char *buffer) |
| { |
| int offs = 0; |
| struct kfd_iolink_properties *iolink; |
| |
| /* Making sure that the buffer is an empty string */ |
| buffer[0] = 0; |
| |
| iolink = container_of(attr, struct kfd_iolink_properties, attr); |
| if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu)) |
| return -EPERM; |
| sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type); |
| sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj); |
| sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min); |
| sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from); |
| sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to); |
| sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight); |
| sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency); |
| sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency); |
| sysfs_show_32bit_prop(buffer, offs, "min_bandwidth", |
| iolink->min_bandwidth); |
| sysfs_show_32bit_prop(buffer, offs, "max_bandwidth", |
| iolink->max_bandwidth); |
| sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size", |
| iolink->rec_transfer_size); |
| sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags); |
| |
| return offs; |
| } |
| |
| static const struct sysfs_ops iolink_ops = { |
| .show = iolink_show, |
| }; |
| |
| static const struct kobj_type iolink_type = { |
| .release = kfd_topology_kobj_release, |
| .sysfs_ops = &iolink_ops, |
| }; |
| |
| static ssize_t mem_show(struct kobject *kobj, struct attribute *attr, |
| char *buffer) |
| { |
| int offs = 0; |
| struct kfd_mem_properties *mem; |
| |
| /* Making sure that the buffer is an empty string */ |
| buffer[0] = 0; |
| |
| mem = container_of(attr, struct kfd_mem_properties, attr); |
| if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu)) |
| return -EPERM; |
| sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type); |
| sysfs_show_64bit_prop(buffer, offs, "size_in_bytes", |
| mem->size_in_bytes); |
| sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags); |
| sysfs_show_32bit_prop(buffer, offs, "width", mem->width); |
| sysfs_show_32bit_prop(buffer, offs, "mem_clk_max", |
| mem->mem_clk_max); |
| |
| return offs; |
| } |
| |
| static const struct sysfs_ops mem_ops = { |
| .show = mem_show, |
| }; |
| |
| static const struct kobj_type mem_type = { |
| .release = kfd_topology_kobj_release, |
| .sysfs_ops = &mem_ops, |
| }; |
| |
| static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr, |
| char *buffer) |
| { |
| int offs = 0; |
| uint32_t i, j; |
| struct kfd_cache_properties *cache; |
| |
| /* Making sure that the buffer is an empty string */ |
| buffer[0] = 0; |
| cache = container_of(attr, struct kfd_cache_properties, attr); |
| if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu)) |
| return -EPERM; |
| sysfs_show_32bit_prop(buffer, offs, "processor_id_low", |
| cache->processor_id_low); |
| sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level); |
| sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size); |
| sysfs_show_32bit_prop(buffer, offs, "cache_line_size", |
| cache->cacheline_size); |
| sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag", |
| cache->cachelines_per_tag); |
| sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc); |
| sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency); |
| sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type); |
| |
| offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map "); |
| for (i = 0; i < cache->sibling_map_size; i++) |
| for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++) |
| /* Check each bit */ |
| offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,", |
| (cache->sibling_map[i] >> j) & 1); |
| |
| /* Replace the last "," with end of line */ |
| buffer[offs-1] = '\n'; |
| return offs; |
| } |
| |
| static const struct sysfs_ops cache_ops = { |
| .show = kfd_cache_show, |
| }; |
| |
| static const struct kobj_type cache_type = { |
| .release = kfd_topology_kobj_release, |
| .sysfs_ops = &cache_ops, |
| }; |
| |
| /****** Sysfs of Performance Counters ******/ |
| |
| struct kfd_perf_attr { |
| struct kobj_attribute attr; |
| uint32_t data; |
| }; |
| |
| static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs, |
| char *buf) |
| { |
| int offs = 0; |
| struct kfd_perf_attr *attr; |
| |
| buf[0] = 0; |
| attr = container_of(attrs, struct kfd_perf_attr, attr); |
| if (!attr->data) /* invalid data for PMC */ |
| return 0; |
| else |
| return sysfs_show_32bit_val(buf, offs, attr->data); |
| } |
| |
| #define KFD_PERF_DESC(_name, _data) \ |
| { \ |
| .attr = __ATTR(_name, 0444, perf_show, NULL), \ |
| .data = _data, \ |
| } |
| |
| static struct kfd_perf_attr perf_attr_iommu[] = { |
| KFD_PERF_DESC(max_concurrent, 0), |
| KFD_PERF_DESC(num_counters, 0), |
| KFD_PERF_DESC(counter_ids, 0), |
| }; |
| /****************************************/ |
| |
| static ssize_t node_show(struct kobject *kobj, struct attribute *attr, |
| char *buffer) |
| { |
| int offs = 0; |
| struct kfd_topology_device *dev; |
| uint32_t log_max_watch_addr; |
| |
| /* Making sure that the buffer is an empty string */ |
| buffer[0] = 0; |
| |
| if (strcmp(attr->name, "gpu_id") == 0) { |
| dev = container_of(attr, struct kfd_topology_device, |
| attr_gpuid); |
| if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu)) |
| return -EPERM; |
| return sysfs_show_32bit_val(buffer, offs, dev->gpu_id); |
| } |
| |
| if (strcmp(attr->name, "name") == 0) { |
| dev = container_of(attr, struct kfd_topology_device, |
| attr_name); |
| |
| if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu)) |
| return -EPERM; |
| return sysfs_show_str_val(buffer, offs, dev->node_props.name); |
| } |
| |
| dev = container_of(attr, struct kfd_topology_device, |
| attr_props); |
| if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu)) |
| return -EPERM; |
| sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count", |
| dev->node_props.cpu_cores_count); |
| sysfs_show_32bit_prop(buffer, offs, "simd_count", |
| dev->gpu ? dev->node_props.simd_count : 0); |
| sysfs_show_32bit_prop(buffer, offs, "mem_banks_count", |
| dev->node_props.mem_banks_count); |
| sysfs_show_32bit_prop(buffer, offs, "caches_count", |
| dev->node_props.caches_count); |
| sysfs_show_32bit_prop(buffer, offs, "io_links_count", |
| dev->node_props.io_links_count); |
| sysfs_show_32bit_prop(buffer, offs, "p2p_links_count", |
| dev->node_props.p2p_links_count); |
| sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base", |
| dev->node_props.cpu_core_id_base); |
| sysfs_show_32bit_prop(buffer, offs, "simd_id_base", |
| dev->node_props.simd_id_base); |
| sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd", |
| dev->node_props.max_waves_per_simd); |
| sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb", |
| dev->node_props.lds_size_in_kb); |
| sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb", |
| dev->node_props.gds_size_in_kb); |
| sysfs_show_32bit_prop(buffer, offs, "num_gws", |
| dev->node_props.num_gws); |
| sysfs_show_32bit_prop(buffer, offs, "wave_front_size", |
| dev->node_props.wave_front_size); |
| sysfs_show_32bit_prop(buffer, offs, "array_count", |
| dev->gpu ? (dev->node_props.array_count * |
| NUM_XCC(dev->gpu->xcc_mask)) : 0); |
| sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine", |
| dev->node_props.simd_arrays_per_engine); |
| sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array", |
| dev->node_props.cu_per_simd_array); |
| sysfs_show_32bit_prop(buffer, offs, "simd_per_cu", |
| dev->node_props.simd_per_cu); |
| sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu", |
| dev->node_props.max_slots_scratch_cu); |
| sysfs_show_32bit_prop(buffer, offs, "gfx_target_version", |
| dev->node_props.gfx_target_version); |
| sysfs_show_32bit_prop(buffer, offs, "vendor_id", |
| dev->node_props.vendor_id); |
| sysfs_show_32bit_prop(buffer, offs, "device_id", |
| dev->node_props.device_id); |
| sysfs_show_32bit_prop(buffer, offs, "location_id", |
| dev->node_props.location_id); |
| sysfs_show_32bit_prop(buffer, offs, "domain", |
| dev->node_props.domain); |
| sysfs_show_32bit_prop(buffer, offs, "drm_render_minor", |
| dev->node_props.drm_render_minor); |
| sysfs_show_64bit_prop(buffer, offs, "hive_id", |
| dev->node_props.hive_id); |
| sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines", |
| dev->node_props.num_sdma_engines); |
| sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines", |
| dev->node_props.num_sdma_xgmi_engines); |
| sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine", |
| dev->node_props.num_sdma_queues_per_engine); |
| sysfs_show_32bit_prop(buffer, offs, "num_cp_queues", |
| dev->node_props.num_cp_queues); |
| |
| if (dev->gpu) { |
| log_max_watch_addr = |
| __ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points); |
| |
| if (log_max_watch_addr) { |
| dev->node_props.capability |= |
| HSA_CAP_WATCH_POINTS_SUPPORTED; |
| |
| dev->node_props.capability |= |
| ((log_max_watch_addr << |
| HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) & |
| HSA_CAP_WATCH_POINTS_TOTALBITS_MASK); |
| } |
| |
| if (dev->gpu->adev->asic_type == CHIP_TONGA) |
| dev->node_props.capability |= |
| HSA_CAP_AQL_QUEUE_DOUBLE_MAP; |
| |
| sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute", |
| dev->node_props.max_engine_clk_fcompute); |
| |
| sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL); |
| |
| sysfs_show_32bit_prop(buffer, offs, "fw_version", |
| dev->gpu->kfd->mec_fw_version); |
| sysfs_show_32bit_prop(buffer, offs, "capability", |
| dev->node_props.capability); |
| sysfs_show_64bit_prop(buffer, offs, "debug_prop", |
| dev->node_props.debug_prop); |
| sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version", |
| dev->gpu->kfd->sdma_fw_version); |
| sysfs_show_64bit_prop(buffer, offs, "unique_id", |
| dev->gpu->adev->unique_id); |
| sysfs_show_32bit_prop(buffer, offs, "num_xcc", |
| NUM_XCC(dev->gpu->xcc_mask)); |
| } |
| |
| return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute", |
| cpufreq_quick_get_max(0)/1000); |
| } |
| |
| static const struct sysfs_ops node_ops = { |
| .show = node_show, |
| }; |
| |
| static const struct kobj_type node_type = { |
| .release = kfd_topology_kobj_release, |
| .sysfs_ops = &node_ops, |
| }; |
| |
| static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr) |
| { |
| sysfs_remove_file(kobj, attr); |
| kobject_del(kobj); |
| kobject_put(kobj); |
| } |
| |
| static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev) |
| { |
| struct kfd_iolink_properties *p2plink; |
| struct kfd_iolink_properties *iolink; |
| struct kfd_cache_properties *cache; |
| struct kfd_mem_properties *mem; |
| struct kfd_perf_properties *perf; |
| |
| if (dev->kobj_iolink) { |
| list_for_each_entry(iolink, &dev->io_link_props, list) |
| if (iolink->kobj) { |
| kfd_remove_sysfs_file(iolink->kobj, |
| &iolink->attr); |
| iolink->kobj = NULL; |
| } |
| kobject_del(dev->kobj_iolink); |
| kobject_put(dev->kobj_iolink); |
| dev->kobj_iolink = NULL; |
| } |
| |
| if (dev->kobj_p2plink) { |
| list_for_each_entry(p2plink, &dev->p2p_link_props, list) |
| if (p2plink->kobj) { |
| kfd_remove_sysfs_file(p2plink->kobj, |
| &p2plink->attr); |
| p2plink->kobj = NULL; |
| } |
| kobject_del(dev->kobj_p2plink); |
| kobject_put(dev->kobj_p2plink); |
| dev->kobj_p2plink = NULL; |
| } |
| |
| if (dev->kobj_cache) { |
| list_for_each_entry(cache, &dev->cache_props, list) |
| if (cache->kobj) { |
| kfd_remove_sysfs_file(cache->kobj, |
| &cache->attr); |
| cache->kobj = NULL; |
| } |
| kobject_del(dev->kobj_cache); |
| kobject_put(dev->kobj_cache); |
| dev->kobj_cache = NULL; |
| } |
| |
| if (dev->kobj_mem) { |
| list_for_each_entry(mem, &dev->mem_props, list) |
| if (mem->kobj) { |
| kfd_remove_sysfs_file(mem->kobj, &mem->attr); |
| mem->kobj = NULL; |
| } |
| kobject_del(dev->kobj_mem); |
| kobject_put(dev->kobj_mem); |
| dev->kobj_mem = NULL; |
| } |
| |
| if (dev->kobj_perf) { |
| list_for_each_entry(perf, &dev->perf_props, list) { |
| kfree(perf->attr_group); |
| perf->attr_group = NULL; |
| } |
| kobject_del(dev->kobj_perf); |
| kobject_put(dev->kobj_perf); |
| dev->kobj_perf = NULL; |
| } |
| |
| if (dev->kobj_node) { |
| sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid); |
| sysfs_remove_file(dev->kobj_node, &dev->attr_name); |
| sysfs_remove_file(dev->kobj_node, &dev->attr_props); |
| kobject_del(dev->kobj_node); |
| kobject_put(dev->kobj_node); |
| dev->kobj_node = NULL; |
| } |
| } |
| |
| static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev, |
| uint32_t id) |
| { |
| struct kfd_iolink_properties *p2plink; |
| struct kfd_iolink_properties *iolink; |
| struct kfd_cache_properties *cache; |
| struct kfd_mem_properties *mem; |
| struct kfd_perf_properties *perf; |
| int ret; |
| uint32_t i, num_attrs; |
| struct attribute **attrs; |
| |
| if (WARN_ON(dev->kobj_node)) |
| return -EEXIST; |
| |
| /* |
| * Creating the sysfs folders |
| */ |
| dev->kobj_node = kfd_alloc_struct(dev->kobj_node); |
| if (!dev->kobj_node) |
| return -ENOMEM; |
| |
| ret = kobject_init_and_add(dev->kobj_node, &node_type, |
| sys_props.kobj_nodes, "%d", id); |
| if (ret < 0) { |
| kobject_put(dev->kobj_node); |
| return ret; |
| } |
| |
| dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node); |
| if (!dev->kobj_mem) |
| return -ENOMEM; |
| |
| dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node); |
| if (!dev->kobj_cache) |
| return -ENOMEM; |
| |
| dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node); |
| if (!dev->kobj_iolink) |
| return -ENOMEM; |
| |
| dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node); |
| if (!dev->kobj_p2plink) |
| return -ENOMEM; |
| |
| dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node); |
| if (!dev->kobj_perf) |
| return -ENOMEM; |
| |
| /* |
| * Creating sysfs files for node properties |
| */ |
| dev->attr_gpuid.name = "gpu_id"; |
| dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE; |
| sysfs_attr_init(&dev->attr_gpuid); |
| dev->attr_name.name = "name"; |
| dev->attr_name.mode = KFD_SYSFS_FILE_MODE; |
| sysfs_attr_init(&dev->attr_name); |
| dev->attr_props.name = "properties"; |
| dev->attr_props.mode = KFD_SYSFS_FILE_MODE; |
| sysfs_attr_init(&dev->attr_props); |
| ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid); |
| if (ret < 0) |
| return ret; |
| ret = sysfs_create_file(dev->kobj_node, &dev->attr_name); |
| if (ret < 0) |
| return ret; |
| ret = sysfs_create_file(dev->kobj_node, &dev->attr_props); |
| if (ret < 0) |
| return ret; |
| |
| i = 0; |
| list_for_each_entry(mem, &dev->mem_props, list) { |
| mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); |
| if (!mem->kobj) |
| return -ENOMEM; |
| ret = kobject_init_and_add(mem->kobj, &mem_type, |
| dev->kobj_mem, "%d", i); |
| if (ret < 0) { |
| kobject_put(mem->kobj); |
| return ret; |
| } |
| |
| mem->attr.name = "properties"; |
| mem->attr.mode = KFD_SYSFS_FILE_MODE; |
| sysfs_attr_init(&mem->attr); |
| ret = sysfs_create_file(mem->kobj, &mem->attr); |
| if (ret < 0) |
| return ret; |
| i++; |
| } |
| |
| i = 0; |
| list_for_each_entry(cache, &dev->cache_props, list) { |
| cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); |
| if (!cache->kobj) |
| return -ENOMEM; |
| ret = kobject_init_and_add(cache->kobj, &cache_type, |
| dev->kobj_cache, "%d", i); |
| if (ret < 0) { |
| kobject_put(cache->kobj); |
| return ret; |
| } |
| |
| cache->attr.name = "properties"; |
| cache->attr.mode = KFD_SYSFS_FILE_MODE; |
| sysfs_attr_init(&cache->attr); |
| ret = sysfs_create_file(cache->kobj, &cache->attr); |
| if (ret < 0) |
| return ret; |
| i++; |
| } |
| |
| i = 0; |
| list_for_each_entry(iolink, &dev->io_link_props, list) { |
| iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); |
| if (!iolink->kobj) |
| return -ENOMEM; |
| ret = kobject_init_and_add(iolink->kobj, &iolink_type, |
| dev->kobj_iolink, "%d", i); |
| if (ret < 0) { |
| kobject_put(iolink->kobj); |
| return ret; |
| } |
| |
| iolink->attr.name = "properties"; |
| iolink->attr.mode = KFD_SYSFS_FILE_MODE; |
| sysfs_attr_init(&iolink->attr); |
| ret = sysfs_create_file(iolink->kobj, &iolink->attr); |
| if (ret < 0) |
| return ret; |
| i++; |
| } |
| |
| i = 0; |
| list_for_each_entry(p2plink, &dev->p2p_link_props, list) { |
| p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); |
| if (!p2plink->kobj) |
| return -ENOMEM; |
| ret = kobject_init_and_add(p2plink->kobj, &iolink_type, |
| dev->kobj_p2plink, "%d", i); |
| if (ret < 0) { |
| kobject_put(p2plink->kobj); |
| return ret; |
| } |
| |
| p2plink->attr.name = "properties"; |
| p2plink->attr.mode = KFD_SYSFS_FILE_MODE; |
| sysfs_attr_init(&p2plink->attr); |
| ret = sysfs_create_file(p2plink->kobj, &p2plink->attr); |
| if (ret < 0) |
| return ret; |
| i++; |
| } |
| |
| /* All hardware blocks have the same number of attributes. */ |
| num_attrs = ARRAY_SIZE(perf_attr_iommu); |
| list_for_each_entry(perf, &dev->perf_props, list) { |
| perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr) |
| * num_attrs + sizeof(struct attribute_group), |
| GFP_KERNEL); |
| if (!perf->attr_group) |
| return -ENOMEM; |
| |
| attrs = (struct attribute **)(perf->attr_group + 1); |
| if (!strcmp(perf->block_name, "iommu")) { |
| /* Information of IOMMU's num_counters and counter_ids is shown |
| * under /sys/bus/event_source/devices/amd_iommu. We don't |
| * duplicate here. |
| */ |
| perf_attr_iommu[0].data = perf->max_concurrent; |
| for (i = 0; i < num_attrs; i++) |
| attrs[i] = &perf_attr_iommu[i].attr.attr; |
| } |
| perf->attr_group->name = perf->block_name; |
| perf->attr_group->attrs = attrs; |
| ret = sysfs_create_group(dev->kobj_perf, perf->attr_group); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* Called with write topology lock acquired */ |
| static int kfd_build_sysfs_node_tree(void) |
| { |
| struct kfd_topology_device *dev; |
| int ret; |
| uint32_t i = 0; |
| |
| list_for_each_entry(dev, &topology_device_list, list) { |
| ret = kfd_build_sysfs_node_entry(dev, i); |
| if (ret < 0) |
| return ret; |
| i++; |
| } |
| |
| return 0; |
| } |
| |
| /* Called with write topology lock acquired */ |
| static void kfd_remove_sysfs_node_tree(void) |
| { |
| struct kfd_topology_device *dev; |
| |
| list_for_each_entry(dev, &topology_device_list, list) |
| kfd_remove_sysfs_node_entry(dev); |
| } |
| |
| static int kfd_topology_update_sysfs(void) |
| { |
| int ret; |
| |
| if (!sys_props.kobj_topology) { |
| sys_props.kobj_topology = |
| kfd_alloc_struct(sys_props.kobj_topology); |
| if (!sys_props.kobj_topology) |
| return -ENOMEM; |
| |
| ret = kobject_init_and_add(sys_props.kobj_topology, |
| &sysprops_type, &kfd_device->kobj, |
| "topology"); |
| if (ret < 0) { |
| kobject_put(sys_props.kobj_topology); |
| return ret; |
| } |
| |
| sys_props.kobj_nodes = kobject_create_and_add("nodes", |
| sys_props.kobj_topology); |
| if (!sys_props.kobj_nodes) |
| return -ENOMEM; |
| |
| sys_props.attr_genid.name = "generation_id"; |
| sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE; |
| sysfs_attr_init(&sys_props.attr_genid); |
| ret = sysfs_create_file(sys_props.kobj_topology, |
| &sys_props.attr_genid); |
| if (ret < 0) |
| return ret; |
| |
| sys_props.attr_props.name = "system_properties"; |
| sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE; |
| sysfs_attr_init(&sys_props.attr_props); |
| ret = sysfs_create_file(sys_props.kobj_topology, |
| &sys_props.attr_props); |
| if (ret < 0) |
| return ret; |
| } |
| |
| kfd_remove_sysfs_node_tree(); |
| |
| return kfd_build_sysfs_node_tree(); |
| } |
| |
| static void kfd_topology_release_sysfs(void) |
| { |
| kfd_remove_sysfs_node_tree(); |
| if (sys_props.kobj_topology) { |
| sysfs_remove_file(sys_props.kobj_topology, |
| &sys_props.attr_genid); |
| sysfs_remove_file(sys_props.kobj_topology, |
| &sys_props.attr_props); |
| if (sys_props.kobj_nodes) { |
| kobject_del(sys_props.kobj_nodes); |
| kobject_put(sys_props.kobj_nodes); |
| sys_props.kobj_nodes = NULL; |
| } |
| kobject_del(sys_props.kobj_topology); |
| kobject_put(sys_props.kobj_topology); |
| sys_props.kobj_topology = NULL; |
| } |
| } |
| |
| /* Called with write topology_lock acquired */ |
| static void kfd_topology_update_device_list(struct list_head *temp_list, |
| struct list_head *master_list) |
| { |
| while (!list_empty(temp_list)) { |
| list_move_tail(temp_list->next, master_list); |
| sys_props.num_devices++; |
| } |
| } |
| |
| static void kfd_debug_print_topology(void) |
| { |
| struct kfd_topology_device *dev; |
| |
| down_read(&topology_lock); |
| |
| dev = list_last_entry(&topology_device_list, |
| struct kfd_topology_device, list); |
| if (dev) { |
| if (dev->node_props.cpu_cores_count && |
| dev->node_props.simd_count) { |
| pr_info("Topology: Add APU node [0x%0x:0x%0x]\n", |
| dev->node_props.device_id, |
| dev->node_props.vendor_id); |
| } else if (dev->node_props.cpu_cores_count) |
| pr_info("Topology: Add CPU node\n"); |
| else if (dev->node_props.simd_count) |
| pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n", |
| dev->node_props.device_id, |
| dev->node_props.vendor_id); |
| } |
| up_read(&topology_lock); |
| } |
| |
| /* Helper function for intializing platform_xx members of |
| * kfd_system_properties. Uses OEM info from the last CPU/APU node. |
| */ |
| static void kfd_update_system_properties(void) |
| { |
| struct kfd_topology_device *dev; |
| |
| down_read(&topology_lock); |
| dev = list_last_entry(&topology_device_list, |
| struct kfd_topology_device, list); |
| if (dev) { |
| sys_props.platform_id = dev->oem_id64; |
| sys_props.platform_oem = *((uint64_t *)dev->oem_table_id); |
| sys_props.platform_rev = dev->oem_revision; |
| } |
| up_read(&topology_lock); |
| } |
| |
| static void find_system_memory(const struct dmi_header *dm, |
| void *private) |
| { |
| struct kfd_mem_properties *mem; |
| u16 mem_width, mem_clock; |
| struct kfd_topology_device *kdev = |
| (struct kfd_topology_device *)private; |
| const u8 *dmi_data = (const u8 *)(dm + 1); |
| |
| if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) { |
| mem_width = (u16)(*(const u16 *)(dmi_data + 0x6)); |
| mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11)); |
| list_for_each_entry(mem, &kdev->mem_props, list) { |
| if (mem_width != 0xFFFF && mem_width != 0) |
| mem->width = mem_width; |
| if (mem_clock != 0) |
| mem->mem_clk_max = mem_clock; |
| } |
| } |
| } |
| |
| /* kfd_add_non_crat_information - Add information that is not currently |
| * defined in CRAT but is necessary for KFD topology |
| * @dev - topology device to which addition info is added |
| */ |
| static void kfd_add_non_crat_information(struct kfd_topology_device *kdev) |
| { |
| /* Check if CPU only node. */ |
| if (!kdev->gpu) { |
| /* Add system memory information */ |
| dmi_walk(find_system_memory, kdev); |
| } |
| /* TODO: For GPU node, rearrange code from kfd_topology_add_device */ |
| } |
| |
| int kfd_topology_init(void) |
| { |
| void *crat_image = NULL; |
| size_t image_size = 0; |
| int ret; |
| struct list_head temp_topology_device_list; |
| int cpu_only_node = 0; |
| struct kfd_topology_device *kdev; |
| int proximity_domain; |
| |
| /* topology_device_list - Master list of all topology devices |
| * temp_topology_device_list - temporary list created while parsing CRAT |
| * or VCRAT. Once parsing is complete the contents of list is moved to |
| * topology_device_list |
| */ |
| |
| /* Initialize the head for the both the lists */ |
| INIT_LIST_HEAD(&topology_device_list); |
| INIT_LIST_HEAD(&temp_topology_device_list); |
| init_rwsem(&topology_lock); |
| |
| memset(&sys_props, 0, sizeof(sys_props)); |
| |
| /* Proximity domains in ACPI CRAT tables start counting at |
| * 0. The same should be true for virtual CRAT tables created |
| * at this stage. GPUs added later in kfd_topology_add_device |
| * use a counter. |
| */ |
| proximity_domain = 0; |
| |
| ret = kfd_create_crat_image_virtual(&crat_image, &image_size, |
| COMPUTE_UNIT_CPU, NULL, |
| proximity_domain); |
| cpu_only_node = 1; |
| if (ret) { |
| pr_err("Error creating VCRAT table for CPU\n"); |
| return ret; |
| } |
| |
| ret = kfd_parse_crat_table(crat_image, |
| &temp_topology_device_list, |
| proximity_domain); |
| if (ret) { |
| pr_err("Error parsing VCRAT table for CPU\n"); |
| goto err; |
| } |
| |
| kdev = list_first_entry(&temp_topology_device_list, |
| struct kfd_topology_device, list); |
| |
| down_write(&topology_lock); |
| kfd_topology_update_device_list(&temp_topology_device_list, |
| &topology_device_list); |
| topology_crat_proximity_domain = sys_props.num_devices-1; |
| ret = kfd_topology_update_sysfs(); |
| up_write(&topology_lock); |
| |
| if (!ret) { |
| sys_props.generation_count++; |
| kfd_update_system_properties(); |
| kfd_debug_print_topology(); |
| } else |
| pr_err("Failed to update topology in sysfs ret=%d\n", ret); |
| |
| /* For nodes with GPU, this information gets added |
| * when GPU is detected (kfd_topology_add_device). |
| */ |
| if (cpu_only_node) { |
| /* Add additional information to CPU only node created above */ |
| down_write(&topology_lock); |
| kdev = list_first_entry(&topology_device_list, |
| struct kfd_topology_device, list); |
| up_write(&topology_lock); |
| kfd_add_non_crat_information(kdev); |
| } |
| |
| err: |
| kfd_destroy_crat_image(crat_image); |
| return ret; |
| } |
| |
| void kfd_topology_shutdown(void) |
| { |
| down_write(&topology_lock); |
| kfd_topology_release_sysfs(); |
| kfd_release_live_view(); |
| up_write(&topology_lock); |
| } |
| |
| static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu) |
| { |
| uint32_t gpu_id; |
| uint32_t buf[8]; |
| uint64_t local_mem_size; |
| struct kfd_topology_device *dev; |
| bool is_unique; |
| uint8_t *crc_buf; |
| |
| if (!gpu) |
| return 0; |
| |
| crc_buf = (uint8_t *)&buf; |
| local_mem_size = gpu->local_mem_info.local_mem_size_private + |
| gpu->local_mem_info.local_mem_size_public; |
| buf[0] = gpu->adev->pdev->devfn; |
| buf[1] = gpu->adev->pdev->subsystem_vendor | |
| (gpu->adev->pdev->subsystem_device << 16); |
| buf[2] = pci_domain_nr(gpu->adev->pdev->bus); |
| buf[3] = gpu->adev->pdev->device; |
| buf[4] = gpu->adev->pdev->bus->number; |
| buf[5] = lower_32_bits(local_mem_size); |
| buf[6] = upper_32_bits(local_mem_size); |
| buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16); |
| |
| gpu_id = crc16(0, crc_buf, sizeof(buf)) & |
| ((1 << KFD_GPU_ID_HASH_WIDTH) - 1); |
| |
| /* There is a very small possibility when generating a |
| * 16 (KFD_GPU_ID_HASH_WIDTH) bit value from 8 word buffer |
| * that the value could be 0 or non-unique. So, check if |
| * it is unique and non-zero. If not unique increment till |
| * unique one is found. In case of overflow, restart from 1 |
| */ |
| |
| down_read(&topology_lock); |
| do { |
| is_unique = true; |
| if (!gpu_id) |
| gpu_id = 1; |
| list_for_each_entry(dev, &topology_device_list, list) { |
| if (dev->gpu && dev->gpu_id == gpu_id) { |
| is_unique = false; |
| break; |
| } |
| } |
| if (unlikely(!is_unique)) |
| gpu_id = (gpu_id + 1) & |
| ((1 << KFD_GPU_ID_HASH_WIDTH) - 1); |
| } while (!is_unique); |
| up_read(&topology_lock); |
| |
| return gpu_id; |
| } |
| /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If |
| * the GPU device is not already present in the topology device |
| * list then return NULL. This means a new topology device has to |
| * be created for this GPU. |
| */ |
| static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu) |
| { |
| struct kfd_topology_device *dev; |
| struct kfd_topology_device *out_dev = NULL; |
| struct kfd_mem_properties *mem; |
| struct kfd_cache_properties *cache; |
| struct kfd_iolink_properties *iolink; |
| struct kfd_iolink_properties *p2plink; |
| |
| list_for_each_entry(dev, &topology_device_list, list) { |
| /* Discrete GPUs need their own topology device list |
| * entries. Don't assign them to CPU/APU nodes. |
| */ |
| if (dev->node_props.cpu_cores_count) |
| continue; |
| |
| if (!dev->gpu && (dev->node_props.simd_count > 0)) { |
| dev->gpu = gpu; |
| out_dev = dev; |
| |
| list_for_each_entry(mem, &dev->mem_props, list) |
| mem->gpu = dev->gpu; |
| list_for_each_entry(cache, &dev->cache_props, list) |
| cache->gpu = dev->gpu; |
| list_for_each_entry(iolink, &dev->io_link_props, list) |
| iolink->gpu = dev->gpu; |
| list_for_each_entry(p2plink, &dev->p2p_link_props, list) |
| p2plink->gpu = dev->gpu; |
| break; |
| } |
| } |
| return out_dev; |
| } |
| |
| static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival) |
| { |
| /* |
| * TODO: Generate an event for thunk about the arrival/removal |
| * of the GPU |
| */ |
| } |
| |
| /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info, |
| * patch this after CRAT parsing. |
| */ |
| static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev) |
| { |
| struct kfd_mem_properties *mem; |
| struct kfd_local_mem_info local_mem_info; |
| |
| if (!dev) |
| return; |
| |
| /* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with |
| * single bank of VRAM local memory. |
| * for dGPUs - VCRAT reports only one bank of Local Memory |
| * for APUs - If CRAT from ACPI reports more than one bank, then |
| * all the banks will report the same mem_clk_max information |
| */ |
| amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info, |
| dev->gpu->xcp); |
| |
| list_for_each_entry(mem, &dev->mem_props, list) |
| mem->mem_clk_max = local_mem_info.mem_clk_max; |
| } |
| |
| static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev, |
| struct kfd_topology_device *target_gpu_dev, |
| struct kfd_iolink_properties *link) |
| { |
| /* xgmi always supports atomics between links. */ |
| if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI) |
| return; |
| |
| /* check pcie support to set cpu(dev) flags for target_gpu_dev link. */ |
| if (target_gpu_dev) { |
| uint32_t cap; |
| |
| pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev, |
| PCI_EXP_DEVCAP2, &cap); |
| |
| if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 | |
| PCI_EXP_DEVCAP2_ATOMIC_COMP64))) |
| link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT | |
| CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT; |
| /* set gpu (dev) flags. */ |
| } else { |
| if (!dev->gpu->kfd->pci_atomic_requested || |
| dev->gpu->adev->asic_type == CHIP_HAWAII) |
| link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT | |
| CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT; |
| } |
| } |
| |
| static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev, |
| struct kfd_iolink_properties *outbound_link, |
| struct kfd_iolink_properties *inbound_link) |
| { |
| /* CPU -> GPU with PCIe */ |
| if (!to_dev->gpu && |
| inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) |
| inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT; |
| |
| if (to_dev->gpu) { |
| /* GPU <-> GPU with PCIe and |
| * Vega20 with XGMI |
| */ |
| if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS || |
| (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI && |
| KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) { |
| outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT; |
| inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT; |
| } |
| } |
| } |
| |
| static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev) |
| { |
| struct kfd_iolink_properties *link, *inbound_link; |
| struct kfd_topology_device *peer_dev; |
| |
| if (!dev || !dev->gpu) |
| return; |
| |
| /* GPU only creates direct links so apply flags setting to all */ |
| list_for_each_entry(link, &dev->io_link_props, list) { |
| link->flags = CRAT_IOLINK_FLAGS_ENABLED; |
| kfd_set_iolink_no_atomics(dev, NULL, link); |
| peer_dev = kfd_topology_device_by_proximity_domain( |
| link->node_to); |
| |
| if (!peer_dev) |
| continue; |
| |
| /* Include the CPU peer in GPU hive if connected over xGMI. */ |
| if (!peer_dev->gpu && |
| link->iolink_type == CRAT_IOLINK_TYPE_XGMI) { |
| /* |
| * If the GPU is not part of a GPU hive, use its pci |
| * device location as the hive ID to bind with the CPU. |
| */ |
| if (!dev->node_props.hive_id) |
| dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev); |
| peer_dev->node_props.hive_id = dev->node_props.hive_id; |
| } |
| |
| list_for_each_entry(inbound_link, &peer_dev->io_link_props, |
| list) { |
| if (inbound_link->node_to != link->node_from) |
| continue; |
| |
| inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED; |
| kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link); |
| kfd_set_iolink_non_coherent(peer_dev, link, inbound_link); |
| } |
| } |
| |
| /* Create indirect links so apply flags setting to all */ |
| list_for_each_entry(link, &dev->p2p_link_props, list) { |
| link->flags = CRAT_IOLINK_FLAGS_ENABLED; |
| kfd_set_iolink_no_atomics(dev, NULL, link); |
| peer_dev = kfd_topology_device_by_proximity_domain( |
| link->node_to); |
| |
| if (!peer_dev) |
| continue; |
| |
| list_for_each_entry(inbound_link, &peer_dev->p2p_link_props, |
| list) { |
| if (inbound_link->node_to != link->node_from) |
| continue; |
| |
| inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED; |
| kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link); |
| kfd_set_iolink_non_coherent(peer_dev, link, inbound_link); |
| } |
| } |
| } |
| |
| static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev, |
| struct kfd_iolink_properties *p2plink) |
| { |
| int ret; |
| |
| p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL); |
| if (!p2plink->kobj) |
| return -ENOMEM; |
| |
| ret = kobject_init_and_add(p2plink->kobj, &iolink_type, |
| dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1); |
| if (ret < 0) { |
| kobject_put(p2plink->kobj); |
| return ret; |
| } |
| |
| p2plink->attr.name = "properties"; |
| p2plink->attr.mode = KFD_SYSFS_FILE_MODE; |
| sysfs_attr_init(&p2plink->attr); |
| ret = sysfs_create_file(p2plink->kobj, &p2plink->attr); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node) |
| { |
| struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link; |
| struct kfd_iolink_properties *props = NULL, *props2 = NULL; |
| struct kfd_topology_device *cpu_dev; |
| int ret = 0; |
| int i, num_cpu; |
| |
| num_cpu = 0; |
| list_for_each_entry(cpu_dev, &topology_device_list, list) { |
| if (cpu_dev->gpu) |
| break; |
| num_cpu++; |
| } |
| |
| if (list_empty(&kdev->io_link_props)) |
| return -ENODATA; |
| |
| gpu_link = list_first_entry(&kdev->io_link_props, |
| struct kfd_iolink_properties, list); |
| |
| for (i = 0; i < num_cpu; i++) { |
| /* CPU <--> GPU */ |
| if (gpu_link->node_to == i) |
| continue; |
| |
| /* find CPU <--> CPU links */ |
| cpu_link = NULL; |
| cpu_dev = kfd_topology_device_by_proximity_domain(i); |
| if (cpu_dev) { |
| list_for_each_entry(tmp_link, |
| &cpu_dev->io_link_props, list) { |
| if (tmp_link->node_to == gpu_link->node_to) { |
| cpu_link = tmp_link; |
| break; |
| } |
| } |
| } |
| |
| if (!cpu_link) |
| return -ENOMEM; |
| |
| /* CPU <--> CPU <--> GPU, GPU node*/ |
| props = kfd_alloc_struct(props); |
| if (!props) |
| return -ENOMEM; |
| |
| memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties)); |
| props->weight = gpu_link->weight + cpu_link->weight; |
| props->min_latency = gpu_link->min_latency + cpu_link->min_latency; |
| props->max_latency = gpu_link->max_latency + cpu_link->max_latency; |
| props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth); |
| props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth); |
| |
| props->node_from = gpu_node; |
| props->node_to = i; |
| kdev->node_props.p2p_links_count++; |
| list_add_tail(&props->list, &kdev->p2p_link_props); |
| ret = kfd_build_p2p_node_entry(kdev, props); |
| if (ret < 0) |
| return ret; |
| |
| /* for small Bar, no CPU --> GPU in-direct links */ |
| if (kfd_dev_is_large_bar(kdev->gpu)) { |
| /* CPU <--> CPU <--> GPU, CPU node*/ |
| props2 = kfd_alloc_struct(props2); |
| if (!props2) |
| return -ENOMEM; |
| |
| memcpy(props2, props, sizeof(struct kfd_iolink_properties)); |
| props2->node_from = i; |
| props2->node_to = gpu_node; |
| props2->kobj = NULL; |
| cpu_dev->node_props.p2p_links_count++; |
| list_add_tail(&props2->list, &cpu_dev->p2p_link_props); |
| ret = kfd_build_p2p_node_entry(cpu_dev, props2); |
| if (ret < 0) |
| return ret; |
| } |
| } |
| return ret; |
| } |
| |
| #if defined(CONFIG_HSA_AMD_P2P) |
| static int kfd_add_peer_prop(struct kfd_topology_device *kdev, |
| struct kfd_topology_device *peer, int from, int to) |
| { |
| struct kfd_iolink_properties *props = NULL; |
| struct kfd_iolink_properties *iolink1, *iolink2, *iolink3; |
| struct kfd_topology_device *cpu_dev; |
| int ret = 0; |
| |
| if (!amdgpu_device_is_peer_accessible( |
| kdev->gpu->adev, |
| peer->gpu->adev)) |
| return ret; |
| |
| if (list_empty(&kdev->io_link_props)) |
| return -ENODATA; |
| |
| iolink1 = list_first_entry(&kdev->io_link_props, |
| struct kfd_iolink_properties, list); |
| |
| if (list_empty(&peer->io_link_props)) |
| return -ENODATA; |
| |
| iolink2 = list_first_entry(&peer->io_link_props, |
| struct kfd_iolink_properties, list); |
| |
| props = kfd_alloc_struct(props); |
| if (!props) |
| return -ENOMEM; |
| |
| memcpy(props, iolink1, sizeof(struct kfd_iolink_properties)); |
| |
| props->weight = iolink1->weight + iolink2->weight; |
| props->min_latency = iolink1->min_latency + iolink2->min_latency; |
| props->max_latency = iolink1->max_latency + iolink2->max_latency; |
| props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth); |
| props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth); |
| |
| if (iolink1->node_to != iolink2->node_to) { |
| /* CPU->CPU link*/ |
| cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to); |
| if (cpu_dev) { |
| list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) { |
| if (iolink3->node_to != iolink2->node_to) |
| continue; |
| |
| props->weight += iolink3->weight; |
| props->min_latency += iolink3->min_latency; |
| props->max_latency += iolink3->max_latency; |
| props->min_bandwidth = min(props->min_bandwidth, |
| iolink3->min_bandwidth); |
| props->max_bandwidth = min(props->max_bandwidth, |
| iolink3->max_bandwidth); |
| break; |
| } |
| } else { |
| WARN(1, "CPU node not found"); |
| } |
| } |
| |
| props->node_from = from; |
| props->node_to = to; |
| peer->node_props.p2p_links_count++; |
| list_add_tail(&props->list, &peer->p2p_link_props); |
| ret = kfd_build_p2p_node_entry(peer, props); |
| |
| return ret; |
| } |
| #endif |
| |
| static int kfd_dev_create_p2p_links(void) |
| { |
| struct kfd_topology_device *dev; |
| struct kfd_topology_device *new_dev; |
| #if defined(CONFIG_HSA_AMD_P2P) |
| uint32_t i; |
| #endif |
| uint32_t k; |
| int ret = 0; |
| |
| k = 0; |
| list_for_each_entry(dev, &topology_device_list, list) |
| k++; |
| if (k < 2) |
| return 0; |
| |
| new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list); |
| if (WARN_ON(!new_dev->gpu)) |
| return 0; |
| |
| k--; |
| |
| /* create in-direct links */ |
| ret = kfd_create_indirect_link_prop(new_dev, k); |
| if (ret < 0) |
| goto out; |
| |
| /* create p2p links */ |
| #if defined(CONFIG_HSA_AMD_P2P) |
| i = 0; |
| list_for_each_entry(dev, &topology_device_list, list) { |
| if (dev == new_dev) |
| break; |
| if (!dev->gpu || !dev->gpu->adev || |
| (dev->gpu->kfd->hive_id && |
| dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id)) |
| goto next; |
| |
| /* check if node(s) is/are peer accessible in one direction or bi-direction */ |
| ret = kfd_add_peer_prop(new_dev, dev, i, k); |
| if (ret < 0) |
| goto out; |
| |
| ret = kfd_add_peer_prop(dev, new_dev, k, i); |
| if (ret < 0) |
| goto out; |
| next: |
| i++; |
| } |
| #endif |
| |
| out: |
| return ret; |
| } |
| |
| /* Helper function. See kfd_fill_gpu_cache_info for parameter description */ |
| static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext, |
| struct kfd_gpu_cache_info *pcache_info, |
| int cu_bitmask, |
| int cache_type, unsigned int cu_processor_id, |
| int cu_block) |
| { |
| unsigned int cu_sibling_map_mask; |
| int first_active_cu; |
| struct kfd_cache_properties *pcache = NULL; |
| |
| cu_sibling_map_mask = cu_bitmask; |
| cu_sibling_map_mask >>= cu_block; |
| cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1); |
| first_active_cu = ffs(cu_sibling_map_mask); |
| |
| /* CU could be inactive. In case of shared cache find the first active |
| * CU. and incase of non-shared cache check if the CU is inactive. If |
| * inactive active skip it |
| */ |
| if (first_active_cu) { |
| pcache = kfd_alloc_struct(pcache); |
| if (!pcache) |
| return -ENOMEM; |
| |
| memset(pcache, 0, sizeof(struct kfd_cache_properties)); |
| pcache->processor_id_low = cu_processor_id + (first_active_cu - 1); |
| pcache->cache_level = pcache_info[cache_type].cache_level; |
| pcache->cache_size = pcache_info[cache_type].cache_size; |
| pcache->cacheline_size = pcache_info[cache_type].cache_line_size; |
| |
| if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE) |
| pcache->cache_type |= HSA_CACHE_TYPE_DATA; |
| if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE) |
| pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION; |
| if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE) |
| pcache->cache_type |= HSA_CACHE_TYPE_CPU; |
| if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE) |
| pcache->cache_type |= HSA_CACHE_TYPE_HSACU; |
| |
| /* Sibling map is w.r.t processor_id_low, so shift out |
| * inactive CU |
| */ |
| cu_sibling_map_mask = |
| cu_sibling_map_mask >> (first_active_cu - 1); |
| |
| pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF); |
| pcache->sibling_map[1] = |
| (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF); |
| pcache->sibling_map[2] = |
| (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF); |
| pcache->sibling_map[3] = |
| (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF); |
| |
| pcache->sibling_map_size = 4; |
| *props_ext = pcache; |
| |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* Helper function. See kfd_fill_gpu_cache_info for parameter description */ |
| static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext, |
| struct kfd_gpu_cache_info *pcache_info, |
| struct amdgpu_cu_info *cu_info, |
| struct amdgpu_gfx_config *gfx_info, |
| int cache_type, unsigned int cu_processor_id, |
| struct kfd_node *knode) |
| { |
| unsigned int cu_sibling_map_mask; |
| int first_active_cu; |
| int i, j, k, xcc, start, end; |
| int num_xcc = NUM_XCC(knode->xcc_mask); |
| struct kfd_cache_properties *pcache = NULL; |
| enum amdgpu_memory_partition mode; |
| struct amdgpu_device *adev = knode->adev; |
| |
| start = ffs(knode->xcc_mask) - 1; |
| end = start + num_xcc; |
| cu_sibling_map_mask = cu_info->bitmap[start][0][0]; |
| cu_sibling_map_mask &= |
| ((1 << pcache_info[cache_type].num_cu_shared) - 1); |
| first_active_cu = ffs(cu_sibling_map_mask); |
| |
| /* CU could be inactive. In case of shared cache find the first active |
| * CU. and incase of non-shared cache check if the CU is inactive. If |
| * inactive active skip it |
| */ |
| if (first_active_cu) { |
| pcache = kfd_alloc_struct(pcache); |
| if (!pcache) |
| return -ENOMEM; |
| |
| memset(pcache, 0, sizeof(struct kfd_cache_properties)); |
| pcache->processor_id_low = cu_processor_id |
| + (first_active_cu - 1); |
| pcache->cache_level = pcache_info[cache_type].cache_level; |
| pcache->cacheline_size = pcache_info[cache_type].cache_line_size; |
| |
| if (KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 3) || |
| KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 4)) |
| mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev); |
| else |
| mode = UNKNOWN_MEMORY_PARTITION_MODE; |
| |
| pcache->cache_size = pcache_info[cache_type].cache_size; |
| /* Partition mode only affects L3 cache size */ |
| if (mode && pcache->cache_level == 3) |
| pcache->cache_size /= mode; |
| |
| if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE) |
| pcache->cache_type |= HSA_CACHE_TYPE_DATA; |
| if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE) |
| pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION; |
| if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE) |
| pcache->cache_type |= HSA_CACHE_TYPE_CPU; |
| if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE) |
| pcache->cache_type |= HSA_CACHE_TYPE_HSACU; |
| |
| /* Sibling map is w.r.t processor_id_low, so shift out |
| * inactive CU |
| */ |
| cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1); |
| k = 0; |
| |
| for (xcc = start; xcc < end; xcc++) { |
| for (i = 0; i < gfx_info->max_shader_engines; i++) { |
| for (j = 0; j < gfx_info->max_sh_per_se; j++) { |
| pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF); |
| pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF); |
| pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF); |
| pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF); |
| k += 4; |
| |
| cu_sibling_map_mask = cu_info->bitmap[xcc][i % 4][j + i / 4]; |
| cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1); |
| } |
| } |
| } |
| pcache->sibling_map_size = k; |
| *props_ext = pcache; |
| return 0; |
| } |
| return 1; |
| } |
| |
| #define KFD_MAX_CACHE_TYPES 6 |
| |
| /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info |
| * tables |
| */ |
| static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev) |
| { |
| struct kfd_gpu_cache_info *pcache_info = NULL; |
| int i, j, k, xcc, start, end; |
| int ct = 0; |
| unsigned int cu_processor_id; |
| int ret; |
| unsigned int num_cu_shared; |
| struct amdgpu_cu_info *cu_info = &kdev->adev->gfx.cu_info; |
| struct amdgpu_gfx_config *gfx_info = &kdev->adev->gfx.config; |
| int gpu_processor_id; |
| struct kfd_cache_properties *props_ext; |
| int num_of_entries = 0; |
| int num_of_cache_types = 0; |
| struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES]; |
| |
| |
| gpu_processor_id = dev->node_props.simd_id_base; |
| |
| memset(cache_info, 0, sizeof(cache_info)); |
| pcache_info = cache_info; |
| num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info); |
| if (!num_of_cache_types) { |
| pr_warn("no cache info found\n"); |
| return; |
| } |
| |
| /* For each type of cache listed in the kfd_gpu_cache_info table, |
| * go through all available Compute Units. |
| * The [i,j,k] loop will |
| * if kfd_gpu_cache_info.num_cu_shared = 1 |
| * will parse through all available CU |
| * If (kfd_gpu_cache_info.num_cu_shared != 1) |
| * then it will consider only one CU from |
| * the shared unit |
| */ |
| start = ffs(kdev->xcc_mask) - 1; |
| end = start + NUM_XCC(kdev->xcc_mask); |
| |
| for (ct = 0; ct < num_of_cache_types; ct++) { |
| cu_processor_id = gpu_processor_id; |
| if (pcache_info[ct].cache_level == 1) { |
| for (xcc = start; xcc < end; xcc++) { |
| for (i = 0; i < gfx_info->max_shader_engines; i++) { |
| for (j = 0; j < gfx_info->max_sh_per_se; j++) { |
| for (k = 0; k < gfx_info->max_cu_per_sh; k += pcache_info[ct].num_cu_shared) { |
| |
| ret = fill_in_l1_pcache(&props_ext, pcache_info, |
| cu_info->bitmap[xcc][i % 4][j + i / 4], ct, |
| cu_processor_id, k); |
| |
| if (ret < 0) |
| break; |
| |
| if (!ret) { |
| num_of_entries++; |
| list_add_tail(&props_ext->list, &dev->cache_props); |
| } |
| |
| /* Move to next CU block */ |
| num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <= |
| gfx_info->max_cu_per_sh) ? |
| pcache_info[ct].num_cu_shared : |
| (gfx_info->max_cu_per_sh - k); |
| cu_processor_id += num_cu_shared; |
| } |
| } |
| } |
| } |
| } else { |
| ret = fill_in_l2_l3_pcache(&props_ext, pcache_info, |
| cu_info, gfx_info, ct, cu_processor_id, kdev); |
| |
| if (ret < 0) |
| break; |
| |
| if (!ret) { |
| num_of_entries++; |
| list_add_tail(&props_ext->list, &dev->cache_props); |
| } |
| } |
| } |
| dev->node_props.caches_count += num_of_entries; |
| pr_debug("Added [%d] GPU cache entries\n", num_of_entries); |
| } |
| |
| static int kfd_topology_add_device_locked(struct kfd_node *gpu, |
| struct kfd_topology_device **dev) |
| { |
| int proximity_domain = ++topology_crat_proximity_domain; |
| struct list_head temp_topology_device_list; |
| void *crat_image = NULL; |
| size_t image_size = 0; |
| int res; |
| |
| res = kfd_create_crat_image_virtual(&crat_image, &image_size, |
| COMPUTE_UNIT_GPU, gpu, |
| proximity_domain); |
| if (res) { |
| dev_err(gpu->adev->dev, "Error creating VCRAT\n"); |
| topology_crat_proximity_domain--; |
| goto err; |
| } |
| |
| INIT_LIST_HEAD(&temp_topology_device_list); |
| |
| res = kfd_parse_crat_table(crat_image, |
| &temp_topology_device_list, |
| proximity_domain); |
| if (res) { |
| dev_err(gpu->adev->dev, "Error parsing VCRAT\n"); |
| topology_crat_proximity_domain--; |
| goto err; |
| } |
| |
| kfd_topology_update_device_list(&temp_topology_device_list, |
| &topology_device_list); |
| |
| *dev = kfd_assign_gpu(gpu); |
| if (WARN_ON(!*dev)) { |
| res = -ENODEV; |
| goto err; |
| } |
| |
| /* Fill the cache affinity information here for the GPUs |
| * using VCRAT |
| */ |
| kfd_fill_cache_non_crat_info(*dev, gpu); |
| |
| /* Update the SYSFS tree, since we added another topology |
| * device |
| */ |
| res = kfd_topology_update_sysfs(); |
| if (!res) |
| sys_props.generation_count++; |
| else |
| dev_err(gpu->adev->dev, "Failed to update GPU to sysfs topology. res=%d\n", |
| res); |
| |
| err: |
| kfd_destroy_crat_image(crat_image); |
| return res; |
| } |
| |
| static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev) |
| { |
| bool firmware_supported = true; |
| |
| if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) && |
| KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) { |
| uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version & |
| AMDGPU_MES_API_VERSION_MASK) >> |
| AMDGPU_MES_API_VERSION_SHIFT; |
| uint32_t mes_rev = dev->gpu->adev->mes.sched_version & |
| AMDGPU_MES_VERSION_MASK; |
| |
| firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64); |
| goto out; |
| } |
| |
| /* |
| * Note: Any unlisted devices here are assumed to support exception handling. |
| * Add additional checks here as needed. |
| */ |
| switch (KFD_GC_VERSION(dev->gpu)) { |
| case IP_VERSION(9, 0, 1): |
| firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768; |
| break; |
| case IP_VERSION(9, 1, 0): |
| case IP_VERSION(9, 2, 1): |
| case IP_VERSION(9, 2, 2): |
| case IP_VERSION(9, 3, 0): |
| case IP_VERSION(9, 4, 0): |
| firmware_supported = dev->gpu->kfd->mec_fw_version >= 459; |
| break; |
| case IP_VERSION(9, 4, 1): |
| firmware_supported = dev->gpu->kfd->mec_fw_version >= 60; |
| break; |
| case IP_VERSION(9, 4, 2): |
| firmware_supported = dev->gpu->kfd->mec_fw_version >= 51; |
| break; |
| case IP_VERSION(10, 1, 10): |
| case IP_VERSION(10, 1, 2): |
| case IP_VERSION(10, 1, 1): |
| firmware_supported = dev->gpu->kfd->mec_fw_version >= 144; |
| break; |
| case IP_VERSION(10, 3, 0): |
| case IP_VERSION(10, 3, 2): |
| case IP_VERSION(10, 3, 1): |
| case IP_VERSION(10, 3, 4): |
| case IP_VERSION(10, 3, 5): |
| firmware_supported = dev->gpu->kfd->mec_fw_version >= 89; |
| break; |
| case IP_VERSION(10, 1, 3): |
| case IP_VERSION(10, 3, 3): |
| firmware_supported = false; |
| break; |
| default: |
| break; |
| } |
| |
| out: |
| if (firmware_supported) |
| dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED; |
| } |
| |
| static void kfd_topology_set_capabilities(struct kfd_topology_device *dev) |
| { |
| dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 << |
| HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & |
| HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); |
| |
| dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT | |
| HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED | |
| HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED; |
| |
| if (kfd_dbg_has_ttmps_always_setup(dev->gpu)) |
| dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID; |
| |
| if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) { |
| if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3) || |
| KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 4)) |
| dev->node_props.debug_prop |= |
| HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 | |
| HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3; |
| else |
| dev->node_props.debug_prop |= |
| HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 | |
| HSA_DBG_WATCH_ADDR_MASK_HI_BIT; |
| |
| if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2)) |
| dev->node_props.capability |= |
| HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED; |
| } else { |
| dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 | |
| HSA_DBG_WATCH_ADDR_MASK_HI_BIT; |
| |
| if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0)) |
| dev->node_props.capability |= |
| HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED; |
| |
| if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(12, 0, 0)) |
| dev->node_props.capability |= |
| HSA_CAP_TRAP_DEBUG_PRECISE_ALU_OPERATIONS_SUPPORTED; |
| } |
| |
| kfd_topology_set_dbg_firmware_support(dev); |
| } |
| |
| int kfd_topology_add_device(struct kfd_node *gpu) |
| { |
| uint32_t gpu_id; |
| struct kfd_topology_device *dev; |
| int res = 0; |
| int i; |
| const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type]; |
| struct amdgpu_gfx_config *gfx_info = &gpu->adev->gfx.config; |
| struct amdgpu_cu_info *cu_info = &gpu->adev->gfx.cu_info; |
| |
| if (gpu->xcp && !gpu->xcp->ddev) { |
| dev_warn(gpu->adev->dev, |
| "Won't add GPU to topology since it has no drm node assigned."); |
| return 0; |
| } else { |
| dev_dbg(gpu->adev->dev, "Adding new GPU to topology\n"); |
| } |
| |
| /* Check to see if this gpu device exists in the topology_device_list. |
| * If so, assign the gpu to that device, |
| * else create a Virtual CRAT for this gpu device and then parse that |
| * CRAT to create a new topology device. Once created assign the gpu to |
| * that topology device |
| */ |
| down_write(&topology_lock); |
| dev = kfd_assign_gpu(gpu); |
| if (!dev) |
| res = kfd_topology_add_device_locked(gpu, &dev); |
| up_write(&topology_lock); |
| if (res) |
| return res; |
| |
| gpu_id = kfd_generate_gpu_id(gpu); |
| dev->gpu_id = gpu_id; |
| gpu->id = gpu_id; |
| |
| kfd_dev_create_p2p_links(); |
| |
| /* TODO: Move the following lines to function |
| * kfd_add_non_crat_information |
| */ |
| |
| /* Fill-in additional information that is not available in CRAT but |
| * needed for the topology |
| */ |
| for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) { |
| dev->node_props.name[i] = __tolower(asic_name[i]); |
| if (asic_name[i] == '\0') |
| break; |
| } |
| dev->node_props.name[i] = '\0'; |
| |
| dev->node_props.simd_arrays_per_engine = |
| gfx_info->max_sh_per_se; |
| |
| dev->node_props.gfx_target_version = |
| gpu->kfd->device_info.gfx_target_version; |
| dev->node_props.vendor_id = gpu->adev->pdev->vendor; |
| dev->node_props.device_id = gpu->adev->pdev->device; |
| dev->node_props.capability |= |
| ((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) & |
| HSA_CAP_ASIC_REVISION_MASK); |
| |
| dev->node_props.location_id = pci_dev_id(gpu->adev->pdev); |
| if (KFD_GC_VERSION(dev->gpu->kfd) == IP_VERSION(9, 4, 3)) |
| dev->node_props.location_id |= dev->gpu->node_id; |
| |
| dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus); |
| dev->node_props.max_engine_clk_fcompute = |
| amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev); |
| dev->node_props.max_engine_clk_ccompute = |
| cpufreq_quick_get_max(0) / 1000; |
| |
| if (gpu->xcp) |
| dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index; |
| else |
| dev->node_props.drm_render_minor = |
| gpu->kfd->shared_resources.drm_render_minor; |
| |
| dev->node_props.hive_id = gpu->kfd->hive_id; |
| dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu); |
| dev->node_props.num_sdma_xgmi_engines = |
| kfd_get_num_xgmi_sdma_engines(gpu); |
| dev->node_props.num_sdma_queues_per_engine = |
| gpu->kfd->device_info.num_sdma_queues_per_engine - |
| gpu->kfd->device_info.num_reserved_sdma_queues_per_engine; |
| dev->node_props.num_gws = (dev->gpu->gws && |
| dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ? |
| dev->gpu->adev->gds.gws_size : 0; |
| dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm); |
| |
| kfd_fill_mem_clk_max_info(dev); |
| kfd_fill_iolink_non_crat_info(dev); |
| |
| switch (dev->gpu->adev->asic_type) { |
| case CHIP_KAVERI: |
| case CHIP_HAWAII: |
| case CHIP_TONGA: |
| dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 << |
| HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & |
| HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); |
| break; |
| case CHIP_CARRIZO: |
| case CHIP_FIJI: |
| case CHIP_POLARIS10: |
| case CHIP_POLARIS11: |
| case CHIP_POLARIS12: |
| case CHIP_VEGAM: |
| pr_debug("Adding doorbell packet type capability\n"); |
| dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 << |
| HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) & |
| HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK); |
| break; |
| default: |
| if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1)) |
| WARN(1, "Unexpected ASIC family %u", |
| dev->gpu->adev->asic_type); |
| else |
| kfd_topology_set_capabilities(dev); |
| } |
| |
| /* |
| * Overwrite ATS capability according to needs_iommu_device to fix |
| * potential missing corresponding bit in CRAT of BIOS. |
| */ |
| dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT; |
| |
| /* Fix errors in CZ CRAT. |
| * simd_count: Carrizo CRAT reports wrong simd_count, probably |
| * because it doesn't consider masked out CUs |
| * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd |
| */ |
| if (dev->gpu->adev->asic_type == CHIP_CARRIZO) { |
| dev->node_props.simd_count = |
| cu_info->simd_per_cu * cu_info->number; |
| dev->node_props.max_waves_per_simd = 10; |
| } |
| |
| /* kfd only concerns sram ecc on GFX and HBM ecc on UMC */ |
| dev->node_props.capability |= |
| ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ? |
| HSA_CAP_SRAM_EDCSUPPORTED : 0; |
| dev->node_props.capability |= |
| ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ? |
| HSA_CAP_MEM_EDCSUPPORTED : 0; |
| |
| if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1)) |
| dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ? |
| HSA_CAP_RASEVENTNOTIFY : 0; |
| |
| if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev)) |
| dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED; |
| |
| if (dev->gpu->adev->gmc.is_app_apu || |
| dev->gpu->adev->gmc.xgmi.connected_to_cpu) |
| dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS; |
| |
| kfd_debug_print_topology(); |
| |
| kfd_notify_gpu_change(gpu_id, 1); |
| |
| return 0; |
| } |
| |
| /** |
| * kfd_topology_update_io_links() - Update IO links after device removal. |
| * @proximity_domain: Proximity domain value of the dev being removed. |
| * |
| * The topology list currently is arranged in increasing order of |
| * proximity domain. |
| * |
| * Two things need to be done when a device is removed: |
| * 1. All the IO links to this device need to be removed. |
| * 2. All nodes after the current device node need to move |
| * up once this device node is removed from the topology |
| * list. As a result, the proximity domain values for |
| * all nodes after the node being deleted reduce by 1. |
| * This would also cause the proximity domain values for |
| * io links to be updated based on new proximity domain |
| * values. |
| * |
| * Context: The caller must hold write topology_lock. |
| */ |
| static void kfd_topology_update_io_links(int proximity_domain) |
| { |
| struct kfd_topology_device *dev; |
| struct kfd_iolink_properties *iolink, *p2plink, *tmp; |
| |
| list_for_each_entry(dev, &topology_device_list, list) { |
| if (dev->proximity_domain > proximity_domain) |
| dev->proximity_domain--; |
| |
| list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) { |
| /* |
| * If there is an io link to the dev being deleted |
| * then remove that IO link also. |
| */ |
| if (iolink->node_to == proximity_domain) { |
| list_del(&iolink->list); |
| dev->node_props.io_links_count--; |
| } else { |
| if (iolink->node_from > proximity_domain) |
| iolink->node_from--; |
| if (iolink->node_to > proximity_domain) |
| iolink->node_to--; |
| } |
| } |
| |
| list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) { |
| /* |
| * If there is a p2p link to the dev being deleted |
| * then remove that p2p link also. |
| */ |
| if (p2plink->node_to == proximity_domain) { |
| list_del(&p2plink->list); |
| dev->node_props.p2p_links_count--; |
| } else { |
| if (p2plink->node_from > proximity_domain) |
| p2plink->node_from--; |
| if (p2plink->node_to > proximity_domain) |
| p2plink->node_to--; |
| } |
| } |
| } |
| } |
| |
| int kfd_topology_remove_device(struct kfd_node *gpu) |
| { |
| struct kfd_topology_device *dev, *tmp; |
| uint32_t gpu_id; |
| int res = -ENODEV; |
| int i = 0; |
| |
| down_write(&topology_lock); |
| |
| list_for_each_entry_safe(dev, tmp, &topology_device_list, list) { |
| if (dev->gpu == gpu) { |
| gpu_id = dev->gpu_id; |
| kfd_remove_sysfs_node_entry(dev); |
| kfd_release_topology_device(dev); |
| sys_props.num_devices--; |
| kfd_topology_update_io_links(i); |
| topology_crat_proximity_domain = sys_props.num_devices-1; |
| sys_props.generation_count++; |
| res = 0; |
| if (kfd_topology_update_sysfs() < 0) |
| kfd_topology_release_sysfs(); |
| break; |
| } |
| i++; |
| } |
| |
| up_write(&topology_lock); |
| |
| if (!res) |
| kfd_notify_gpu_change(gpu_id, 0); |
| |
| return res; |
| } |
| |
| /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD |
| * topology. If GPU device is found @idx, then valid kfd_dev pointer is |
| * returned through @kdev |
| * Return - 0: On success (@kdev will be NULL for non GPU nodes) |
| * -1: If end of list |
| */ |
| int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev) |
| { |
| |
| struct kfd_topology_device *top_dev; |
| uint8_t device_idx = 0; |
| |
| *kdev = NULL; |
| down_read(&topology_lock); |
| |
| list_for_each_entry(top_dev, &topology_device_list, list) { |
| if (device_idx == idx) { |
| *kdev = top_dev->gpu; |
| up_read(&topology_lock); |
| return 0; |
| } |
| |
| device_idx++; |
| } |
| |
| up_read(&topology_lock); |
| |
| return -1; |
| |
| } |
| |
| static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask) |
| { |
| int first_cpu_of_numa_node; |
| |
| if (!cpumask || cpumask == cpu_none_mask) |
| return -1; |
| first_cpu_of_numa_node = cpumask_first(cpumask); |
| if (first_cpu_of_numa_node >= nr_cpu_ids) |
| return -1; |
| #ifdef CONFIG_X86_64 |
| return cpu_data(first_cpu_of_numa_node).topo.apicid; |
| #else |
| return first_cpu_of_numa_node; |
| #endif |
| } |
| |
| /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor |
| * of the given NUMA node (numa_node_id) |
| * Return -1 on failure |
| */ |
| int kfd_numa_node_to_apic_id(int numa_node_id) |
| { |
| if (numa_node_id == -1) { |
| pr_warn("Invalid NUMA Node. Use online CPU mask\n"); |
| return kfd_cpumask_to_apic_id(cpu_online_mask); |
| } |
| return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id)); |
| } |
| |
| #if defined(CONFIG_DEBUG_FS) |
| |
| int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data) |
| { |
| struct kfd_topology_device *dev; |
| unsigned int i = 0; |
| int r = 0; |
| |
| down_read(&topology_lock); |
| |
| list_for_each_entry(dev, &topology_device_list, list) { |
| if (!dev->gpu) { |
| i++; |
| continue; |
| } |
| |
| seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id); |
| r = dqm_debugfs_hqds(m, dev->gpu->dqm); |
| if (r) |
| break; |
| } |
| |
| up_read(&topology_lock); |
| |
| return r; |
| } |
| |
| int kfd_debugfs_rls_by_device(struct seq_file *m, void *data) |
| { |
| struct kfd_topology_device *dev; |
| unsigned int i = 0; |
| int r = 0; |
| |
| down_read(&topology_lock); |
| |
| list_for_each_entry(dev, &topology_device_list, list) { |
| if (!dev->gpu) { |
| i++; |
| continue; |
| } |
| |
| seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id); |
| r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr); |
| if (r) |
| break; |
| } |
| |
| up_read(&topology_lock); |
| |
| return r; |
| } |
| |
| #endif |