| // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause |
| /* |
| * Copyright (C) 2012-2014, 2018-2024 Intel Corporation |
| * Copyright (C) 2013-2015 Intel Mobile Communications GmbH |
| * Copyright (C) 2015-2017 Intel Deutschland GmbH |
| */ |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include "iwl-trans.h" |
| #include "mvm.h" |
| #include "fw-api.h" |
| #include "time-sync.h" |
| |
| static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, |
| int queue, struct ieee80211_sta *sta) |
| { |
| struct iwl_mvm_sta *mvmsta; |
| struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); |
| struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); |
| struct iwl_mvm_key_pn *ptk_pn; |
| int res; |
| u8 tid, keyidx; |
| u8 pn[IEEE80211_CCMP_PN_LEN]; |
| u8 *extiv; |
| |
| /* do PN checking */ |
| |
| /* multicast and non-data only arrives on default queue */ |
| if (!ieee80211_is_data(hdr->frame_control) || |
| is_multicast_ether_addr(hdr->addr1)) |
| return 0; |
| |
| /* do not check PN for open AP */ |
| if (!(stats->flag & RX_FLAG_DECRYPTED)) |
| return 0; |
| |
| /* |
| * avoid checking for default queue - we don't want to replicate |
| * all the logic that's necessary for checking the PN on fragmented |
| * frames, leave that to mac80211 |
| */ |
| if (queue == 0) |
| return 0; |
| |
| /* if we are here - this for sure is either CCMP or GCMP */ |
| if (IS_ERR_OR_NULL(sta)) { |
| IWL_DEBUG_DROP(mvm, |
| "expected hw-decrypted unicast frame for station\n"); |
| return -1; |
| } |
| |
| mvmsta = iwl_mvm_sta_from_mac80211(sta); |
| |
| extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); |
| keyidx = extiv[3] >> 6; |
| |
| ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); |
| if (!ptk_pn) |
| return -1; |
| |
| if (ieee80211_is_data_qos(hdr->frame_control)) |
| tid = ieee80211_get_tid(hdr); |
| else |
| tid = 0; |
| |
| /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ |
| if (tid >= IWL_MAX_TID_COUNT) |
| return -1; |
| |
| /* load pn */ |
| pn[0] = extiv[7]; |
| pn[1] = extiv[6]; |
| pn[2] = extiv[5]; |
| pn[3] = extiv[4]; |
| pn[4] = extiv[1]; |
| pn[5] = extiv[0]; |
| |
| res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); |
| if (res < 0) |
| return -1; |
| if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) |
| return -1; |
| |
| memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); |
| stats->flag |= RX_FLAG_PN_VALIDATED; |
| |
| return 0; |
| } |
| |
| /* iwl_mvm_create_skb Adds the rxb to a new skb */ |
| static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, |
| struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, |
| struct iwl_rx_cmd_buffer *rxb) |
| { |
| struct iwl_rx_packet *pkt = rxb_addr(rxb); |
| struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; |
| unsigned int headlen, fraglen, pad_len = 0; |
| unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| u8 mic_crc_len = u8_get_bits(desc->mac_flags1, |
| IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; |
| |
| if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { |
| len -= 2; |
| pad_len = 2; |
| } |
| |
| /* |
| * For non monitor interface strip the bytes the RADA might not have |
| * removed (it might be disabled, e.g. for mgmt frames). As a monitor |
| * interface cannot exist with other interfaces, this removal is safe |
| * and sufficient, in monitor mode there's no decryption being done. |
| */ |
| if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) |
| len -= mic_crc_len; |
| |
| /* If frame is small enough to fit in skb->head, pull it completely. |
| * If not, only pull ieee80211_hdr (including crypto if present, and |
| * an additional 8 bytes for SNAP/ethertype, see below) so that |
| * splice() or TCP coalesce are more efficient. |
| * |
| * Since, in addition, ieee80211_data_to_8023() always pull in at |
| * least 8 bytes (possibly more for mesh) we can do the same here |
| * to save the cost of doing it later. That still doesn't pull in |
| * the actual IP header since the typical case has a SNAP header. |
| * If the latter changes (there are efforts in the standards group |
| * to do so) we should revisit this and ieee80211_data_to_8023(). |
| */ |
| headlen = (len <= skb_tailroom(skb)) ? len : |
| hdrlen + crypt_len + 8; |
| |
| /* The firmware may align the packet to DWORD. |
| * The padding is inserted after the IV. |
| * After copying the header + IV skip the padding if |
| * present before copying packet data. |
| */ |
| hdrlen += crypt_len; |
| |
| if (unlikely(headlen < hdrlen)) |
| return -EINVAL; |
| |
| /* Since data doesn't move data while putting data on skb and that is |
| * the only way we use, data + len is the next place that hdr would be put |
| */ |
| skb_set_mac_header(skb, skb->len); |
| skb_put_data(skb, hdr, hdrlen); |
| skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); |
| |
| /* |
| * If we did CHECKSUM_COMPLETE, the hardware only does it right for |
| * certain cases and starts the checksum after the SNAP. Check if |
| * this is the case - it's easier to just bail out to CHECKSUM_NONE |
| * in the cases the hardware didn't handle, since it's rare to see |
| * such packets, even though the hardware did calculate the checksum |
| * in this case, just starting after the MAC header instead. |
| * |
| * Starting from Bz hardware, it calculates starting directly after |
| * the MAC header, so that matches mac80211's expectation. |
| */ |
| if (skb->ip_summed == CHECKSUM_COMPLETE) { |
| struct { |
| u8 hdr[6]; |
| __be16 type; |
| } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); |
| |
| if (unlikely(headlen - hdrlen < sizeof(*shdr) || |
| !ether_addr_equal(shdr->hdr, rfc1042_header) || |
| (shdr->type != htons(ETH_P_IP) && |
| shdr->type != htons(ETH_P_ARP) && |
| shdr->type != htons(ETH_P_IPV6) && |
| shdr->type != htons(ETH_P_8021Q) && |
| shdr->type != htons(ETH_P_PAE) && |
| shdr->type != htons(ETH_P_TDLS)))) |
| skb->ip_summed = CHECKSUM_NONE; |
| else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ) |
| /* mac80211 assumes full CSUM including SNAP header */ |
| skb_postpush_rcsum(skb, shdr, sizeof(*shdr)); |
| } |
| |
| fraglen = len - headlen; |
| |
| if (fraglen) { |
| int offset = (u8 *)hdr + headlen + pad_len - |
| (u8 *)rxb_addr(rxb) + rxb_offset(rxb); |
| |
| skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, |
| fraglen, rxb->truesize); |
| } |
| |
| return 0; |
| } |
| |
| /* put a TLV on the skb and return data pointer |
| * |
| * Also pad to 4 the len and zero out all data part |
| */ |
| static void * |
| iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len) |
| { |
| struct ieee80211_radiotap_tlv *tlv; |
| |
| tlv = skb_put(skb, sizeof(*tlv)); |
| tlv->type = cpu_to_le16(type); |
| tlv->len = cpu_to_le16(len); |
| return skb_put_zero(skb, ALIGN(len, 4)); |
| } |
| |
| static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, |
| struct sk_buff *skb) |
| { |
| struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); |
| struct ieee80211_radiotap_vendor_content *radiotap; |
| const u16 vendor_data_len = sizeof(mvm->cur_aid); |
| |
| if (!mvm->cur_aid) |
| return; |
| |
| radiotap = iwl_mvm_radiotap_put_tlv(skb, |
| IEEE80211_RADIOTAP_VENDOR_NAMESPACE, |
| sizeof(*radiotap) + vendor_data_len); |
| |
| /* Intel OUI */ |
| radiotap->oui[0] = 0xf6; |
| radiotap->oui[1] = 0x54; |
| radiotap->oui[2] = 0x25; |
| /* radiotap sniffer config sub-namespace */ |
| radiotap->oui_subtype = 1; |
| radiotap->vendor_type = 0; |
| |
| /* fill the data now */ |
| memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); |
| |
| rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; |
| } |
| |
| /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ |
| static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, |
| struct napi_struct *napi, |
| struct sk_buff *skb, int queue, |
| struct ieee80211_sta *sta) |
| { |
| if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) { |
| kfree_skb(skb); |
| return; |
| } |
| |
| ieee80211_rx_napi(mvm->hw, sta, skb, napi); |
| } |
| |
| static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, |
| struct ieee80211_rx_status *rx_status, |
| u32 rate_n_flags, int energy_a, |
| int energy_b) |
| { |
| int max_energy; |
| u32 rate_flags = rate_n_flags; |
| |
| energy_a = energy_a ? -energy_a : S8_MIN; |
| energy_b = energy_b ? -energy_b : S8_MIN; |
| max_energy = max(energy_a, energy_b); |
| |
| IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", |
| energy_a, energy_b, max_energy); |
| |
| rx_status->signal = max_energy; |
| rx_status->chains = |
| (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; |
| rx_status->chain_signal[0] = energy_a; |
| rx_status->chain_signal[1] = energy_b; |
| } |
| |
| static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, |
| struct ieee80211_hdr *hdr, |
| struct iwl_rx_mpdu_desc *desc, |
| u32 status, |
| struct ieee80211_rx_status *stats) |
| { |
| struct wireless_dev *wdev; |
| struct iwl_mvm_sta *mvmsta; |
| struct iwl_mvm_vif *mvmvif; |
| u8 keyid; |
| struct ieee80211_key_conf *key; |
| u32 len = le16_to_cpu(desc->mpdu_len); |
| const u8 *frame = (void *)hdr; |
| |
| if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) |
| return 0; |
| |
| /* |
| * For non-beacon, we don't really care. But beacons may |
| * be filtered out, and we thus need the firmware's replay |
| * detection, otherwise beacons the firmware previously |
| * filtered could be replayed, or something like that, and |
| * it can filter a lot - though usually only if nothing has |
| * changed. |
| */ |
| if (!ieee80211_is_beacon(hdr->frame_control)) |
| return 0; |
| |
| if (!sta) |
| return -1; |
| |
| mvmsta = iwl_mvm_sta_from_mac80211(sta); |
| mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); |
| |
| /* key mismatch - will also report !MIC_OK but we shouldn't count it */ |
| if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) |
| goto report; |
| |
| /* good cases */ |
| if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && |
| !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) { |
| stats->flag |= RX_FLAG_DECRYPTED; |
| return 0; |
| } |
| |
| /* |
| * both keys will have the same cipher and MIC length, use |
| * whichever one is available |
| */ |
| key = rcu_dereference(mvmvif->bcn_prot.keys[0]); |
| if (!key) { |
| key = rcu_dereference(mvmvif->bcn_prot.keys[1]); |
| if (!key) |
| goto report; |
| } |
| |
| if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) |
| goto report; |
| |
| /* get the real key ID */ |
| keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; |
| /* and if that's the other key, look it up */ |
| if (keyid != key->keyidx) { |
| /* |
| * shouldn't happen since firmware checked, but be safe |
| * in case the MIC length is wrong too, for example |
| */ |
| if (keyid != 6 && keyid != 7) |
| return -1; |
| key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); |
| if (!key) |
| goto report; |
| } |
| |
| /* Report status to mac80211 */ |
| if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) |
| ieee80211_key_mic_failure(key); |
| else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) |
| ieee80211_key_replay(key); |
| report: |
| wdev = ieee80211_vif_to_wdev(mvmsta->vif); |
| if (wdev->netdev) |
| cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, len); |
| |
| return -1; |
| } |
| |
| static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, |
| struct ieee80211_hdr *hdr, |
| struct ieee80211_rx_status *stats, u16 phy_info, |
| struct iwl_rx_mpdu_desc *desc, |
| u32 pkt_flags, int queue, u8 *crypt_len) |
| { |
| u32 status = le32_to_cpu(desc->status); |
| |
| /* |
| * Drop UNKNOWN frames in aggregation, unless in monitor mode |
| * (where we don't have the keys). |
| * We limit this to aggregation because in TKIP this is a valid |
| * scenario, since we may not have the (correct) TTAK (phase 1 |
| * key) in the firmware. |
| */ |
| if (phy_info & IWL_RX_MPDU_PHY_AMPDU && |
| (status & IWL_RX_MPDU_STATUS_SEC_MASK) == |
| IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) { |
| IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n"); |
| return -1; |
| } |
| |
| if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && |
| !ieee80211_has_protected(hdr->frame_control))) |
| return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats); |
| |
| if (!ieee80211_has_protected(hdr->frame_control) || |
| (status & IWL_RX_MPDU_STATUS_SEC_MASK) == |
| IWL_RX_MPDU_STATUS_SEC_NONE) |
| return 0; |
| |
| /* TODO: handle packets encrypted with unknown alg */ |
| |
| switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { |
| case IWL_RX_MPDU_STATUS_SEC_CCM: |
| case IWL_RX_MPDU_STATUS_SEC_GCM: |
| BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); |
| /* alg is CCM: check MIC only */ |
| if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) { |
| IWL_DEBUG_DROP(mvm, |
| "Dropping packet, bad MIC (CCM/GCM)\n"); |
| return -1; |
| } |
| |
| stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED; |
| *crypt_len = IEEE80211_CCMP_HDR_LEN; |
| return 0; |
| case IWL_RX_MPDU_STATUS_SEC_TKIP: |
| /* Don't drop the frame and decrypt it in SW */ |
| if (!fw_has_api(&mvm->fw->ucode_capa, |
| IWL_UCODE_TLV_API_DEPRECATE_TTAK) && |
| !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) |
| return 0; |
| |
| if (mvm->trans->trans_cfg->gen2 && |
| !(status & RX_MPDU_RES_STATUS_MIC_OK)) |
| stats->flag |= RX_FLAG_MMIC_ERROR; |
| |
| *crypt_len = IEEE80211_TKIP_IV_LEN; |
| fallthrough; |
| case IWL_RX_MPDU_STATUS_SEC_WEP: |
| if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) |
| return -1; |
| |
| stats->flag |= RX_FLAG_DECRYPTED; |
| if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == |
| IWL_RX_MPDU_STATUS_SEC_WEP) |
| *crypt_len = IEEE80211_WEP_IV_LEN; |
| |
| if (pkt_flags & FH_RSCSR_RADA_EN) { |
| stats->flag |= RX_FLAG_ICV_STRIPPED; |
| if (mvm->trans->trans_cfg->gen2) |
| stats->flag |= RX_FLAG_MMIC_STRIPPED; |
| } |
| |
| return 0; |
| case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: |
| if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) |
| return -1; |
| stats->flag |= RX_FLAG_DECRYPTED; |
| return 0; |
| case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: |
| break; |
| default: |
| /* |
| * Sometimes we can get frames that were not decrypted |
| * because the firmware didn't have the keys yet. This can |
| * happen after connection where we can get multicast frames |
| * before the GTK is installed. |
| * Silently drop those frames. |
| * Also drop un-decrypted frames in monitor mode. |
| */ |
| if (!is_multicast_ether_addr(hdr->addr1) && |
| !mvm->monitor_on && net_ratelimit()) |
| IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status); |
| } |
| |
| return 0; |
| } |
| |
| static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, |
| struct ieee80211_sta *sta, |
| struct sk_buff *skb, |
| struct iwl_rx_packet *pkt) |
| { |
| struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; |
| |
| if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { |
| if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { |
| u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); |
| |
| skb->ip_summed = CHECKSUM_COMPLETE; |
| skb->csum = csum_unfold(~(__force __sum16)hwsum); |
| } |
| } else { |
| struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); |
| struct iwl_mvm_vif *mvmvif; |
| u16 flags = le16_to_cpu(desc->l3l4_flags); |
| u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> |
| IWL_RX_L3_PROTO_POS); |
| |
| mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); |
| |
| if (mvmvif->features & NETIF_F_RXCSUM && |
| flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && |
| (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || |
| l3_prot == IWL_RX_L3_TYPE_IPV6 || |
| l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } |
| } |
| |
| /* |
| * returns true if a packet is a duplicate or invalid tid and should be dropped. |
| * Updates AMSDU PN tracking info |
| */ |
| static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, |
| struct ieee80211_rx_status *rx_status, |
| struct ieee80211_hdr *hdr, |
| struct iwl_rx_mpdu_desc *desc) |
| { |
| struct iwl_mvm_sta *mvm_sta; |
| struct iwl_mvm_rxq_dup_data *dup_data; |
| u8 tid, sub_frame_idx; |
| |
| if (WARN_ON(IS_ERR_OR_NULL(sta))) |
| return false; |
| |
| mvm_sta = iwl_mvm_sta_from_mac80211(sta); |
| |
| if (WARN_ON_ONCE(!mvm_sta->dup_data)) |
| return false; |
| |
| dup_data = &mvm_sta->dup_data[queue]; |
| |
| /* |
| * Drop duplicate 802.11 retransmissions |
| * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") |
| */ |
| if (ieee80211_is_ctl(hdr->frame_control) || |
| ieee80211_is_any_nullfunc(hdr->frame_control) || |
| is_multicast_ether_addr(hdr->addr1)) |
| return false; |
| |
| if (ieee80211_is_data_qos(hdr->frame_control)) { |
| /* frame has qos control */ |
| tid = ieee80211_get_tid(hdr); |
| if (tid >= IWL_MAX_TID_COUNT) |
| return true; |
| } else { |
| tid = IWL_MAX_TID_COUNT; |
| } |
| |
| /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ |
| sub_frame_idx = desc->amsdu_info & |
| IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; |
| |
| if (unlikely(ieee80211_has_retry(hdr->frame_control) && |
| dup_data->last_seq[tid] == hdr->seq_ctrl && |
| dup_data->last_sub_frame[tid] >= sub_frame_idx)) |
| return true; |
| |
| /* Allow same PN as the first subframe for following sub frames */ |
| if (dup_data->last_seq[tid] == hdr->seq_ctrl && |
| sub_frame_idx > dup_data->last_sub_frame[tid] && |
| desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) |
| rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; |
| |
| dup_data->last_seq[tid] = hdr->seq_ctrl; |
| dup_data->last_sub_frame[tid] = sub_frame_idx; |
| |
| rx_status->flag |= RX_FLAG_DUP_VALIDATED; |
| |
| return false; |
| } |
| |
| static void iwl_mvm_release_frames(struct iwl_mvm *mvm, |
| struct ieee80211_sta *sta, |
| struct napi_struct *napi, |
| struct iwl_mvm_baid_data *baid_data, |
| struct iwl_mvm_reorder_buffer *reorder_buf, |
| u16 nssn) |
| { |
| struct iwl_mvm_reorder_buf_entry *entries = |
| &baid_data->entries[reorder_buf->queue * |
| baid_data->entries_per_queue]; |
| u16 ssn = reorder_buf->head_sn; |
| |
| lockdep_assert_held(&reorder_buf->lock); |
| |
| while (ieee80211_sn_less(ssn, nssn)) { |
| int index = ssn % baid_data->buf_size; |
| struct sk_buff_head *skb_list = &entries[index].frames; |
| struct sk_buff *skb; |
| |
| ssn = ieee80211_sn_inc(ssn); |
| |
| /* |
| * Empty the list. Will have more than one frame for A-MSDU. |
| * Empty list is valid as well since nssn indicates frames were |
| * received. |
| */ |
| while ((skb = __skb_dequeue(skb_list))) { |
| iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, |
| reorder_buf->queue, |
| sta); |
| reorder_buf->num_stored--; |
| } |
| } |
| reorder_buf->head_sn = nssn; |
| } |
| |
| static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, |
| struct iwl_mvm_delba_data *data) |
| { |
| struct iwl_mvm_baid_data *ba_data; |
| struct ieee80211_sta *sta; |
| struct iwl_mvm_reorder_buffer *reorder_buf; |
| u8 baid = data->baid; |
| u32 sta_id; |
| |
| if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) |
| return; |
| |
| rcu_read_lock(); |
| |
| ba_data = rcu_dereference(mvm->baid_map[baid]); |
| if (WARN_ON_ONCE(!ba_data)) |
| goto out; |
| |
| /* pick any STA ID to find the pointer */ |
| sta_id = ffs(ba_data->sta_mask) - 1; |
| sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); |
| if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) |
| goto out; |
| |
| reorder_buf = &ba_data->reorder_buf[queue]; |
| |
| /* release all frames that are in the reorder buffer to the stack */ |
| spin_lock_bh(&reorder_buf->lock); |
| iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, |
| ieee80211_sn_add(reorder_buf->head_sn, |
| ba_data->buf_size)); |
| spin_unlock_bh(&reorder_buf->lock); |
| |
| out: |
| rcu_read_unlock(); |
| } |
| |
| static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, |
| struct napi_struct *napi, |
| u8 baid, u16 nssn, int queue) |
| { |
| struct ieee80211_sta *sta; |
| struct iwl_mvm_reorder_buffer *reorder_buf; |
| struct iwl_mvm_baid_data *ba_data; |
| u32 sta_id; |
| |
| IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", |
| baid, nssn); |
| |
| if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || |
| baid >= ARRAY_SIZE(mvm->baid_map))) |
| return; |
| |
| rcu_read_lock(); |
| |
| ba_data = rcu_dereference(mvm->baid_map[baid]); |
| if (WARN(!ba_data, "BAID %d not found in map\n", baid)) |
| goto out; |
| |
| /* pick any STA ID to find the pointer */ |
| sta_id = ffs(ba_data->sta_mask) - 1; |
| sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); |
| if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) |
| goto out; |
| |
| reorder_buf = &ba_data->reorder_buf[queue]; |
| |
| spin_lock_bh(&reorder_buf->lock); |
| iwl_mvm_release_frames(mvm, sta, napi, ba_data, |
| reorder_buf, nssn); |
| spin_unlock_bh(&reorder_buf->lock); |
| |
| out: |
| rcu_read_unlock(); |
| } |
| |
| void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, |
| struct iwl_rx_cmd_buffer *rxb, int queue) |
| { |
| struct iwl_rx_packet *pkt = rxb_addr(rxb); |
| struct iwl_rxq_sync_notification *notif; |
| struct iwl_mvm_internal_rxq_notif *internal_notif; |
| u32 len = iwl_rx_packet_payload_len(pkt); |
| |
| notif = (void *)pkt->data; |
| internal_notif = (void *)notif->payload; |
| |
| if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), |
| "invalid notification size %d (%d)", |
| len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) |
| return; |
| len -= sizeof(*notif) + sizeof(*internal_notif); |
| |
| if (WARN_ONCE(internal_notif->sync && |
| mvm->queue_sync_cookie != internal_notif->cookie, |
| "Received expired RX queue sync message (cookie %d but wanted %d, queue %d)\n", |
| internal_notif->cookie, mvm->queue_sync_cookie, queue)) |
| return; |
| |
| switch (internal_notif->type) { |
| case IWL_MVM_RXQ_EMPTY: |
| WARN_ONCE(len, "invalid empty notification size %d", len); |
| break; |
| case IWL_MVM_RXQ_NOTIF_DEL_BA: |
| if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), |
| "invalid delba notification size %d (%d)", |
| len, (int)sizeof(struct iwl_mvm_delba_data))) |
| break; |
| iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); |
| break; |
| default: |
| WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); |
| } |
| |
| if (internal_notif->sync) { |
| WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), |
| "queue sync: queue %d responded a second time!\n", |
| queue); |
| if (READ_ONCE(mvm->queue_sync_state) == 0) |
| wake_up(&mvm->rx_sync_waitq); |
| } |
| } |
| |
| /* |
| * Returns true if the MPDU was buffered\dropped, false if it should be passed |
| * to upper layer. |
| */ |
| static bool iwl_mvm_reorder(struct iwl_mvm *mvm, |
| struct napi_struct *napi, |
| int queue, |
| struct ieee80211_sta *sta, |
| struct sk_buff *skb, |
| struct iwl_rx_mpdu_desc *desc) |
| { |
| struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); |
| struct iwl_mvm_baid_data *baid_data; |
| struct iwl_mvm_reorder_buffer *buffer; |
| u32 reorder = le32_to_cpu(desc->reorder_data); |
| bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; |
| bool last_subframe = |
| desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; |
| u8 tid = ieee80211_get_tid(hdr); |
| u8 sub_frame_idx = desc->amsdu_info & |
| IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; |
| struct iwl_mvm_reorder_buf_entry *entries; |
| u32 sta_mask; |
| int index; |
| u16 nssn, sn; |
| u8 baid; |
| |
| baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> |
| IWL_RX_MPDU_REORDER_BAID_SHIFT; |
| |
| if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000) |
| return false; |
| |
| /* |
| * This also covers the case of receiving a Block Ack Request |
| * outside a BA session; we'll pass it to mac80211 and that |
| * then sends a delBA action frame. |
| * This also covers pure monitor mode, in which case we won't |
| * have any BA sessions. |
| */ |
| if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) |
| return false; |
| |
| /* no sta yet */ |
| if (WARN_ONCE(IS_ERR_OR_NULL(sta), |
| "Got valid BAID without a valid station assigned\n")) |
| return false; |
| |
| /* not a data packet or a bar */ |
| if (!ieee80211_is_back_req(hdr->frame_control) && |
| (!ieee80211_is_data_qos(hdr->frame_control) || |
| is_multicast_ether_addr(hdr->addr1))) |
| return false; |
| |
| if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) |
| return false; |
| |
| baid_data = rcu_dereference(mvm->baid_map[baid]); |
| if (!baid_data) { |
| IWL_DEBUG_RX(mvm, |
| "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", |
| baid, reorder); |
| return false; |
| } |
| |
| rcu_read_lock(); |
| sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1); |
| rcu_read_unlock(); |
| |
| if (IWL_FW_CHECK(mvm, |
| tid != baid_data->tid || |
| !(sta_mask & baid_data->sta_mask), |
| "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n", |
| baid, baid_data->sta_mask, baid_data->tid, |
| sta_mask, tid)) |
| return false; |
| |
| nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; |
| sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> |
| IWL_RX_MPDU_REORDER_SN_SHIFT; |
| |
| buffer = &baid_data->reorder_buf[queue]; |
| entries = &baid_data->entries[queue * baid_data->entries_per_queue]; |
| |
| spin_lock_bh(&buffer->lock); |
| |
| if (!buffer->valid) { |
| if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { |
| spin_unlock_bh(&buffer->lock); |
| return false; |
| } |
| buffer->valid = true; |
| } |
| |
| /* drop any duplicated packets */ |
| if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_DUPLICATE)) |
| goto drop; |
| |
| /* drop any oudated packets */ |
| if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) |
| goto drop; |
| |
| /* release immediately if allowed by nssn and no stored frames */ |
| if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { |
| if (!amsdu || last_subframe) |
| buffer->head_sn = nssn; |
| /* No need to update AMSDU last SN - we are moving the head */ |
| spin_unlock_bh(&buffer->lock); |
| return false; |
| } |
| |
| /* |
| * release immediately if there are no stored frames, and the sn is |
| * equal to the head. |
| * This can happen due to reorder timer, where NSSN is behind head_sn. |
| * When we released everything, and we got the next frame in the |
| * sequence, according to the NSSN we can't release immediately, |
| * while technically there is no hole and we can move forward. |
| */ |
| if (!buffer->num_stored && sn == buffer->head_sn) { |
| if (!amsdu || last_subframe) |
| buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); |
| |
| /* No need to update AMSDU last SN - we are moving the head */ |
| spin_unlock_bh(&buffer->lock); |
| return false; |
| } |
| |
| /* put in reorder buffer */ |
| index = sn % baid_data->buf_size; |
| __skb_queue_tail(&entries[index].frames, skb); |
| buffer->num_stored++; |
| |
| if (amsdu) { |
| buffer->last_amsdu = sn; |
| buffer->last_sub_index = sub_frame_idx; |
| } |
| |
| /* |
| * We cannot trust NSSN for AMSDU sub-frames that are not the last. |
| * The reason is that NSSN advances on the first sub-frame, and may |
| * cause the reorder buffer to advance before all the sub-frames arrive. |
| * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with |
| * SN 1. NSSN for first sub frame will be 3 with the result of driver |
| * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is |
| * already ahead and it will be dropped. |
| * If the last sub-frame is not on this queue - we will get frame |
| * release notification with up to date NSSN. |
| */ |
| if (!amsdu || last_subframe) |
| iwl_mvm_release_frames(mvm, sta, napi, baid_data, |
| buffer, nssn); |
| |
| spin_unlock_bh(&buffer->lock); |
| return true; |
| |
| drop: |
| kfree_skb(skb); |
| spin_unlock_bh(&buffer->lock); |
| return true; |
| } |
| |
| static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, |
| u32 reorder_data, u8 baid) |
| { |
| unsigned long now = jiffies; |
| unsigned long timeout; |
| struct iwl_mvm_baid_data *data; |
| |
| rcu_read_lock(); |
| |
| data = rcu_dereference(mvm->baid_map[baid]); |
| if (!data) { |
| IWL_DEBUG_RX(mvm, |
| "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", |
| baid, reorder_data); |
| goto out; |
| } |
| |
| if (!data->timeout) |
| goto out; |
| |
| timeout = data->timeout; |
| /* |
| * Do not update last rx all the time to avoid cache bouncing |
| * between the rx queues. |
| * Update it every timeout. Worst case is the session will |
| * expire after ~ 2 * timeout, which doesn't matter that much. |
| */ |
| if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) |
| /* Update is atomic */ |
| data->last_rx = now; |
| |
| out: |
| rcu_read_unlock(); |
| } |
| |
| static void iwl_mvm_flip_address(u8 *addr) |
| { |
| int i; |
| u8 mac_addr[ETH_ALEN]; |
| |
| for (i = 0; i < ETH_ALEN; i++) |
| mac_addr[i] = addr[ETH_ALEN - i - 1]; |
| ether_addr_copy(addr, mac_addr); |
| } |
| |
| struct iwl_mvm_rx_phy_data { |
| enum iwl_rx_phy_info_type info_type; |
| __le32 d0, d1, d2, d3, eht_d4, d5; |
| __le16 d4; |
| bool with_data; |
| bool first_subframe; |
| __le32 rx_vec[4]; |
| |
| u32 rate_n_flags; |
| u32 gp2_on_air_rise; |
| u16 phy_info; |
| u8 energy_a, energy_b; |
| u8 channel; |
| }; |
| |
| static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, |
| struct iwl_mvm_rx_phy_data *phy_data, |
| struct ieee80211_radiotap_he_mu *he_mu) |
| { |
| u32 phy_data2 = le32_to_cpu(phy_data->d2); |
| u32 phy_data3 = le32_to_cpu(phy_data->d3); |
| u16 phy_data4 = le16_to_cpu(phy_data->d4); |
| u32 rate_n_flags = phy_data->rate_n_flags; |
| |
| if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { |
| he_mu->flags1 |= |
| cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); |
| |
| he_mu->flags1 |= |
| le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, |
| phy_data4), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); |
| |
| he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, |
| phy_data2); |
| he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, |
| phy_data3); |
| he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, |
| phy_data2); |
| he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, |
| phy_data3); |
| } |
| |
| if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && |
| (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) { |
| he_mu->flags1 |= |
| cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); |
| |
| he_mu->flags2 |= |
| le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, |
| phy_data4), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); |
| |
| he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, |
| phy_data2); |
| he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, |
| phy_data3); |
| he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, |
| phy_data2); |
| he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, |
| phy_data3); |
| } |
| } |
| |
| static void |
| iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, |
| struct ieee80211_radiotap_he *he, |
| struct ieee80211_radiotap_he_mu *he_mu, |
| struct ieee80211_rx_status *rx_status) |
| { |
| /* |
| * Unfortunately, we have to leave the mac80211 data |
| * incorrect for the case that we receive an HE-MU |
| * transmission and *don't* have the HE phy data (due |
| * to the bits being used for TSF). This shouldn't |
| * happen though as management frames where we need |
| * the TSF/timers are not be transmitted in HE-MU. |
| */ |
| u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); |
| u32 rate_n_flags = phy_data->rate_n_flags; |
| u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1; |
| u8 offs = 0; |
| |
| rx_status->bw = RATE_INFO_BW_HE_RU; |
| |
| he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); |
| |
| switch (ru) { |
| case 0 ... 36: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; |
| offs = ru; |
| break; |
| case 37 ... 52: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; |
| offs = ru - 37; |
| break; |
| case 53 ... 60: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; |
| offs = ru - 53; |
| break; |
| case 61 ... 64: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; |
| offs = ru - 61; |
| break; |
| case 65 ... 66: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; |
| offs = ru - 65; |
| break; |
| case 67: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; |
| break; |
| case 68: |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; |
| break; |
| } |
| he->data2 |= le16_encode_bits(offs, |
| IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); |
| he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); |
| if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) |
| he->data2 |= |
| cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); |
| |
| #define CHECK_BW(bw) \ |
| BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ |
| RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ |
| BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ |
| RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) |
| CHECK_BW(20); |
| CHECK_BW(40); |
| CHECK_BW(80); |
| CHECK_BW(160); |
| |
| if (he_mu) |
| he_mu->flags2 |= |
| le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, |
| rate_n_flags), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); |
| else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1) |
| he->data6 |= |
| cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | |
| le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, |
| rate_n_flags), |
| IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); |
| } |
| |
| static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, |
| struct iwl_mvm_rx_phy_data *phy_data, |
| struct ieee80211_radiotap_he *he, |
| struct ieee80211_radiotap_he_mu *he_mu, |
| struct ieee80211_rx_status *rx_status, |
| int queue) |
| { |
| switch (phy_data->info_type) { |
| case IWL_RX_PHY_INFO_TYPE_NONE: |
| case IWL_RX_PHY_INFO_TYPE_CCK: |
| case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: |
| case IWL_RX_PHY_INFO_TYPE_HT: |
| case IWL_RX_PHY_INFO_TYPE_VHT_SU: |
| case IWL_RX_PHY_INFO_TYPE_VHT_MU: |
| case IWL_RX_PHY_INFO_TYPE_EHT_MU: |
| case IWL_RX_PHY_INFO_TYPE_EHT_TB: |
| case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: |
| case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: |
| return; |
| case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: |
| he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); |
| he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, |
| IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), |
| IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); |
| he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, |
| IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), |
| IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); |
| he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, |
| IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), |
| IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); |
| he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, |
| IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), |
| IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); |
| fallthrough; |
| case IWL_RX_PHY_INFO_TYPE_HE_SU: |
| case IWL_RX_PHY_INFO_TYPE_HE_MU: |
| case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: |
| case IWL_RX_PHY_INFO_TYPE_HE_TB: |
| /* HE common */ |
| he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); |
| he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); |
| he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, |
| IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), |
| IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); |
| if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && |
| phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { |
| he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); |
| he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, |
| IWL_RX_PHY_DATA0_HE_UPLINK), |
| IEEE80211_RADIOTAP_HE_DATA3_UL_DL); |
| } |
| he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, |
| IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), |
| IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); |
| he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, |
| IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), |
| IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); |
| he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, |
| IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), |
| IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); |
| he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, |
| IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), |
| IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); |
| he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, |
| IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), |
| IEEE80211_RADIOTAP_HE_DATA6_TXOP); |
| he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, |
| IWL_RX_PHY_DATA0_HE_DOPPLER), |
| IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); |
| break; |
| } |
| |
| switch (phy_data->info_type) { |
| case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: |
| case IWL_RX_PHY_INFO_TYPE_HE_MU: |
| case IWL_RX_PHY_INFO_TYPE_HE_SU: |
| he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); |
| he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, |
| IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), |
| IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); |
| break; |
| default: |
| /* nothing here */ |
| break; |
| } |
| |
| switch (phy_data->info_type) { |
| case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: |
| he_mu->flags1 |= |
| le16_encode_bits(le16_get_bits(phy_data->d4, |
| IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); |
| he_mu->flags1 |= |
| le16_encode_bits(le16_get_bits(phy_data->d4, |
| IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); |
| he_mu->flags2 |= |
| le16_encode_bits(le16_get_bits(phy_data->d4, |
| IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); |
| iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu); |
| fallthrough; |
| case IWL_RX_PHY_INFO_TYPE_HE_MU: |
| he_mu->flags2 |= |
| le16_encode_bits(le32_get_bits(phy_data->d1, |
| IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); |
| he_mu->flags2 |= |
| le16_encode_bits(le32_get_bits(phy_data->d1, |
| IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), |
| IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); |
| fallthrough; |
| case IWL_RX_PHY_INFO_TYPE_HE_TB: |
| case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: |
| iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status); |
| break; |
| case IWL_RX_PHY_INFO_TYPE_HE_SU: |
| he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); |
| he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, |
| IWL_RX_PHY_DATA0_HE_BEAM_CHNG), |
| IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); |
| break; |
| default: |
| /* nothing */ |
| break; |
| } |
| } |
| |
| #define LE32_DEC_ENC(value, dec_bits, enc_bits) \ |
| le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits) |
| |
| #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \ |
| typeof(enc_bits) _enc_bits = enc_bits; \ |
| typeof(usig) _usig = usig; \ |
| (_usig)->mask |= cpu_to_le32(_enc_bits); \ |
| (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \ |
| } while (0) |
| |
| #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ |
| eht->data[(rt_data)] |= \ |
| (cpu_to_le32 \ |
| (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \ |
| LE32_DEC_ENC(data ## fw_data, \ |
| IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \ |
| IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru)) |
| |
| #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ |
| __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) |
| |
| #define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1 |
| #define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2 |
| #define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2 |
| #define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2 |
| #define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3 |
| #define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3 |
| #define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3 |
| #define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4 |
| |
| #define IWL_RX_RU_DATA_A1 2 |
| #define IWL_RX_RU_DATA_A2 2 |
| #define IWL_RX_RU_DATA_B1 2 |
| #define IWL_RX_RU_DATA_B2 4 |
| #define IWL_RX_RU_DATA_C1 3 |
| #define IWL_RX_RU_DATA_C2 3 |
| #define IWL_RX_RU_DATA_D1 4 |
| #define IWL_RX_RU_DATA_D2 4 |
| |
| #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \ |
| _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \ |
| rt_ru, \ |
| IWL_RX_RU_DATA_ ## fw_ru, \ |
| fw_ru) |
| |
| static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm, |
| struct iwl_mvm_rx_phy_data *phy_data, |
| struct ieee80211_rx_status *rx_status, |
| struct ieee80211_radiotap_eht *eht, |
| struct ieee80211_radiotap_eht_usig *usig) |
| { |
| if (phy_data->with_data) { |
| __le32 data1 = phy_data->d1; |
| __le32 data2 = phy_data->d2; |
| __le32 data3 = phy_data->d3; |
| __le32 data4 = phy_data->eht_d4; |
| __le32 data5 = phy_data->d5; |
| u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK; |
| |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, |
| IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, |
| IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4, |
| IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); |
| IWL_MVM_ENC_USIG_VALUE_MASK |
| (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); |
| |
| eht->user_info[0] |= |
| cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) | |
| LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR, |
| IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID); |
| |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M); |
| eht->data[7] |= LE32_DEC_ENC |
| (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA, |
| IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS); |
| |
| /* |
| * Hardware labels the content channels/RU allocation values |
| * as follows: |
| * Content Channel 1 Content Channel 2 |
| * 20 MHz: A1 |
| * 40 MHz: A1 B1 |
| * 80 MHz: A1 C1 B1 D1 |
| * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2 |
| * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4 |
| * |
| * However firmware can only give us A1-D2, so the higher |
| * frequencies are missing. |
| */ |
| |
| switch (phy_bw) { |
| case RATE_MCS_CHAN_WIDTH_320: |
| /* additional values are missing in RX metadata */ |
| case RATE_MCS_CHAN_WIDTH_160: |
| /* content channel 1 */ |
| IWL_MVM_ENC_EHT_RU(1_2_1, A2); |
| IWL_MVM_ENC_EHT_RU(1_2_2, C2); |
| /* content channel 2 */ |
| IWL_MVM_ENC_EHT_RU(2_2_1, B2); |
| IWL_MVM_ENC_EHT_RU(2_2_2, D2); |
| fallthrough; |
| case RATE_MCS_CHAN_WIDTH_80: |
| /* content channel 1 */ |
| IWL_MVM_ENC_EHT_RU(1_1_2, C1); |
| /* content channel 2 */ |
| IWL_MVM_ENC_EHT_RU(2_1_2, D1); |
| fallthrough; |
| case RATE_MCS_CHAN_WIDTH_40: |
| /* content channel 2 */ |
| IWL_MVM_ENC_EHT_RU(2_1_1, B1); |
| fallthrough; |
| case RATE_MCS_CHAN_WIDTH_20: |
| IWL_MVM_ENC_EHT_RU(1_1_1, A1); |
| break; |
| } |
| } else { |
| __le32 usig_a1 = phy_data->rx_vec[0]; |
| __le32 usig_a2 = phy_data->rx_vec[1]; |
| |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, |
| IWL_RX_USIG_A1_DISREGARD, |
| IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD); |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, |
| IWL_RX_USIG_A1_VALIDATE, |
| IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE); |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_PPDU_TYPE, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE); |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_PUNC_CHANNEL, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE); |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_SIG_MCS, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); |
| IWL_MVM_ENC_USIG_VALUE_MASK |
| (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_CRC_OK, |
| IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC); |
| } |
| } |
| |
| static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm, |
| struct iwl_mvm_rx_phy_data *phy_data, |
| struct ieee80211_rx_status *rx_status, |
| struct ieee80211_radiotap_eht *eht, |
| struct ieee80211_radiotap_eht_usig *usig) |
| { |
| if (phy_data->with_data) { |
| __le32 data5 = phy_data->d5; |
| |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, |
| IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, |
| IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, |
| IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1, |
| IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); |
| |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, |
| IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2, |
| IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); |
| } else { |
| __le32 usig_a1 = phy_data->rx_vec[0]; |
| __le32 usig_a2 = phy_data->rx_vec[1]; |
| |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, |
| IWL_RX_USIG_A1_DISREGARD, |
| IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD); |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_PPDU_TYPE, |
| IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, |
| IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE); |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1, |
| IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2, |
| IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD, |
| IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD); |
| IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, |
| IWL_RX_USIG_A2_EHT_CRC_OK, |
| IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC); |
| } |
| } |
| |
| static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm, |
| struct ieee80211_rx_status *rx_status, |
| struct ieee80211_radiotap_eht *eht) |
| { |
| u32 ru = le32_get_bits(eht->data[8], |
| IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); |
| enum nl80211_eht_ru_alloc nl_ru; |
| |
| /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields |
| * in an EHT variant User Info field |
| */ |
| |
| switch (ru) { |
| case 0 ... 36: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26; |
| break; |
| case 37 ... 52: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52; |
| break; |
| case 53 ... 60: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106; |
| break; |
| case 61 ... 64: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242; |
| break; |
| case 65 ... 66: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484; |
| break; |
| case 67: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996; |
| break; |
| case 68: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996; |
| break; |
| case 69: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996; |
| break; |
| case 70 ... 81: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26; |
| break; |
| case 82 ... 89: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26; |
| break; |
| case 90 ... 93: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242; |
| break; |
| case 94 ... 95: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484; |
| break; |
| case 96 ... 99: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242; |
| break; |
| case 100 ... 103: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484; |
| break; |
| case 104: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996; |
| break; |
| case 105 ... 106: |
| nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484; |
| break; |
| default: |
| return; |
| } |
| |
| rx_status->bw = RATE_INFO_BW_EHT_RU; |
| rx_status->eht.ru = nl_ru; |
| } |
| |
| static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm, |
| struct iwl_mvm_rx_phy_data *phy_data, |
| struct ieee80211_rx_status *rx_status, |
| struct ieee80211_radiotap_eht *eht, |
| struct ieee80211_radiotap_eht_usig *usig) |
| |
| { |
| __le32 data0 = phy_data->d0; |
| __le32 data1 = phy_data->d1; |
| __le32 usig_a1 = phy_data->rx_vec[0]; |
| u8 info_type = phy_data->info_type; |
| |
| /* Not in EHT range */ |
| if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU || |
| info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT) |
| return; |
| |
| usig->common |= cpu_to_le32 |
| (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN | |
| IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN); |
| if (phy_data->with_data) { |
| usig->common |= LE32_DEC_ENC(data0, |
| IWL_RX_PHY_DATA0_EHT_UPLINK, |
| IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); |
| usig->common |= LE32_DEC_ENC(data0, |
| IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK, |
| IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); |
| } else { |
| usig->common |= LE32_DEC_ENC(usig_a1, |
| IWL_RX_USIG_A1_UL_FLAG, |
| IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); |
| usig->common |= LE32_DEC_ENC(usig_a1, |
| IWL_RX_USIG_A1_BSS_COLOR, |
| IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); |
| } |
| |
| if (fw_has_capa(&mvm->fw->ucode_capa, |
| IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) { |
| usig->common |= |
| cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED); |
| usig->common |= |
| LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE, |
| IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK); |
| } |
| |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE); |
| eht->data[0] |= LE32_DEC_ENC(data0, |
| IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK, |
| IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE); |
| |
| /* All RU allocating size/index is in TB format */ |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT); |
| eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160, |
| IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160); |
| eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0, |
| IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0); |
| eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7, |
| IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); |
| |
| iwl_mvm_decode_eht_ru(mvm, rx_status, eht); |
| |
| /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set |
| * which is on only in case of monitor mode so no need to check monitor |
| * mode |
| */ |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80); |
| eht->data[1] |= |
| le32_encode_bits(mvm->monitor_p80, |
| IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80); |
| |
| usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN); |
| if (phy_data->with_data) |
| usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK, |
| IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); |
| else |
| usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION, |
| IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); |
| |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM); |
| eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM, |
| IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM); |
| |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM); |
| eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK, |
| IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM); |
| |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM); |
| eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG, |
| IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM); |
| |
| /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */ |
| |
| if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK)) |
| usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC); |
| |
| usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN); |
| usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER, |
| IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER); |
| |
| /* |
| * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE, |
| * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS |
| */ |
| |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF); |
| eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM, |
| IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF); |
| |
| if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT || |
| info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB) |
| iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig); |
| |
| if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT || |
| info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU) |
| iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig); |
| } |
| |
| static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb, |
| struct iwl_mvm_rx_phy_data *phy_data, |
| int queue) |
| { |
| struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); |
| |
| struct ieee80211_radiotap_eht *eht; |
| struct ieee80211_radiotap_eht_usig *usig; |
| size_t eht_len = sizeof(*eht); |
| |
| u32 rate_n_flags = phy_data->rate_n_flags; |
| u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; |
| /* EHT and HE have the same valus for LTF */ |
| u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; |
| u16 phy_info = phy_data->phy_info; |
| u32 bw; |
| |
| /* u32 for 1 user_info */ |
| if (phy_data->with_data) |
| eht_len += sizeof(u32); |
| |
| eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len); |
| |
| usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG, |
| sizeof(*usig)); |
| rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; |
| usig->common |= |
| cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN); |
| |
| /* specific handling for 320MHz */ |
| bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags); |
| if (bw == RATE_MCS_CHAN_WIDTH_320_VAL) |
| bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT, |
| le32_to_cpu(phy_data->d0)); |
| |
| usig->common |= cpu_to_le32 |
| (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw)); |
| |
| /* report the AMPDU-EOF bit on single frames */ |
| if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { |
| rx_status->flag |= RX_FLAG_AMPDU_DETAILS; |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; |
| if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; |
| } |
| |
| /* update aggregation data for monitor sake on default queue */ |
| if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && |
| (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; |
| if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; |
| } |
| |
| if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) |
| iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig); |
| |
| #define CHECK_TYPE(F) \ |
| BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ |
| (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) |
| |
| CHECK_TYPE(SU); |
| CHECK_TYPE(EXT_SU); |
| CHECK_TYPE(MU); |
| CHECK_TYPE(TRIG); |
| |
| switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) { |
| case 0: |
| if (he_type == RATE_MCS_HE_TYPE_TRIG) { |
| rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; |
| } else { |
| rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; |
| } |
| break; |
| case 1: |
| rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; |
| break; |
| case 2: |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; |
| if (he_type == RATE_MCS_HE_TYPE_TRIG) |
| rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; |
| else |
| rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; |
| break; |
| case 3: |
| if (he_type != RATE_MCS_HE_TYPE_TRIG) { |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; |
| rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; |
| } |
| break; |
| default: |
| /* nothing here */ |
| break; |
| } |
| |
| if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) { |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI); |
| eht->data[0] |= cpu_to_le32 |
| (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF, |
| ltf) | |
| FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI, |
| rx_status->eht.gi)); |
| } |
| |
| |
| if (!phy_data->with_data) { |
| eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S | |
| IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S); |
| eht->data[7] |= |
| le32_encode_bits(le32_get_bits(phy_data->rx_vec[2], |
| RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK), |
| IEEE80211_RADIOTAP_EHT_DATA7_NSS_S); |
| if (rate_n_flags & RATE_MCS_BF_MSK) |
| eht->data[7] |= |
| cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S); |
| } else { |
| eht->user_info[0] |= |
| cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN | |
| IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN | |
| IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O | |
| IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O | |
| IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER); |
| |
| if (rate_n_flags & RATE_MCS_BF_MSK) |
| eht->user_info[0] |= |
| cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O); |
| |
| if (rate_n_flags & RATE_MCS_LDPC_MSK) |
| eht->user_info[0] |= |
| cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING); |
| |
| eht->user_info[0] |= cpu_to_le32 |
| (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS, |
| FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK, |
| rate_n_flags)) | |
| FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O, |
| FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags))); |
| } |
| } |
| |
| static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, |
| struct iwl_mvm_rx_phy_data *phy_data, |
| int queue) |
| { |
| struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); |
| struct ieee80211_radiotap_he *he = NULL; |
| struct ieee80211_radiotap_he_mu *he_mu = NULL; |
| u32 rate_n_flags = phy_data->rate_n_flags; |
| u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; |
| u8 ltf; |
| static const struct ieee80211_radiotap_he known = { |
| .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), |
| .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | |
| IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), |
| }; |
| static const struct ieee80211_radiotap_he_mu mu_known = { |
| .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | |
| IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), |
| .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | |
| IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), |
| }; |
| u16 phy_info = phy_data->phy_info; |
| |
| he = skb_put_data(skb, &known, sizeof(known)); |
| rx_status->flag |= RX_FLAG_RADIOTAP_HE; |
| |
| if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || |
| phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { |
| he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); |
| rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; |
| } |
| |
| /* report the AMPDU-EOF bit on single frames */ |
| if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { |
| rx_status->flag |= RX_FLAG_AMPDU_DETAILS; |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; |
| if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; |
| } |
| |
| if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) |
| iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, |
| queue); |
| |
| /* update aggregation data for monitor sake on default queue */ |
| if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && |
| (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; |
| if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) |
| rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; |
| } |
| |
| if (he_type == RATE_MCS_HE_TYPE_EXT_SU && |
| rate_n_flags & RATE_MCS_HE_106T_MSK) { |
| rx_status->bw = RATE_INFO_BW_HE_RU; |
| rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; |
| } |
| |
| /* actually data is filled in mac80211 */ |
| if (he_type == RATE_MCS_HE_TYPE_SU || |
| he_type == RATE_MCS_HE_TYPE_EXT_SU) |
| he->data1 |= |
| cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); |
| |
| #define CHECK_TYPE(F) \ |
| BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ |
| (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) |
| |
| CHECK_TYPE(SU); |
| CHECK_TYPE(EXT_SU); |
| CHECK_TYPE(MU); |
| CHECK_TYPE(TRIG); |
| |
| he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); |
| |
| if (rate_n_flags & RATE_MCS_BF_MSK) |
| he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); |
| |
| switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> |
| RATE_MCS_HE_GI_LTF_POS) { |
| case 0: |
| if (he_type == RATE_MCS_HE_TYPE_TRIG) |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; |
| else |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; |
| if (he_type == RATE_MCS_HE_TYPE_MU) |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; |
| else |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; |
| break; |
| case 1: |
| if (he_type == RATE_MCS_HE_TYPE_TRIG) |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; |
| else |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; |
| break; |
| case 2: |
| if (he_type == RATE_MCS_HE_TYPE_TRIG) { |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; |
| } else { |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; |
| } |
| break; |
| case 3: |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; |
| break; |
| case 4: |
| rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; |
| break; |
| default: |
| ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; |
| } |
| |
| he->data5 |= le16_encode_bits(ltf, |
| IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); |
| } |
| |
| static void iwl_mvm_decode_lsig(struct sk_buff *skb, |
| struct iwl_mvm_rx_phy_data *phy_data) |
| { |
| struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); |
| struct ieee80211_radiotap_lsig *lsig; |
| |
| switch (phy_data->info_type) { |
| case IWL_RX_PHY_INFO_TYPE_HT: |
| case IWL_RX_PHY_INFO_TYPE_VHT_SU: |
| case IWL_RX_PHY_INFO_TYPE_VHT_MU: |
| case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: |
| case IWL_RX_PHY_INFO_TYPE_HE_SU: |
| case IWL_RX_PHY_INFO_TYPE_HE_MU: |
| case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: |
| case IWL_RX_PHY_INFO_TYPE_HE_TB: |
| case IWL_RX_PHY_INFO_TYPE_EHT_MU: |
| case IWL_RX_PHY_INFO_TYPE_EHT_TB: |
| case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: |
| case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: |
| lsig = skb_put(skb, sizeof(*lsig)); |
| lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); |
| lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, |
| IWL_RX_PHY_DATA1_LSIG_LEN_MASK), |
| IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); |
| rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| struct iwl_rx_sta_csa { |
| bool all_sta_unblocked; |
| struct ieee80211_vif *vif; |
| }; |
| |
| static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) |
| { |
| struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); |
| struct iwl_rx_sta_csa *rx_sta_csa = data; |
| |
| if (mvmsta->vif != rx_sta_csa->vif) |
| return; |
| |
| if (mvmsta->disable_tx) |
| rx_sta_csa->all_sta_unblocked = false; |
| } |
| |
| /* |
| * Note: requires also rx_status->band to be prefilled, as well |
| * as phy_data (apart from phy_data->info_type) |
| */ |
| static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm, |
| struct sk_buff *skb, |
| struct iwl_mvm_rx_phy_data *phy_data, |
| int queue) |
| { |
| struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); |
| u32 rate_n_flags = phy_data->rate_n_flags; |
| u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK); |
| u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; |
| bool is_sgi; |
| |
| phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE; |
| |
| if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) |
| phy_data->info_type = |
| le32_get_bits(phy_data->d1, |
| IWL_RX_PHY_DATA1_INFO_TYPE_MASK); |
| |
| /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ |
| switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { |
| case RATE_MCS_CHAN_WIDTH_20: |
| break; |
| case RATE_MCS_CHAN_WIDTH_40: |
| rx_status->bw = RATE_INFO_BW_40; |
| break; |
| case RATE_MCS_CHAN_WIDTH_80: |
| rx_status->bw = RATE_INFO_BW_80; |
| break; |
| case RATE_MCS_CHAN_WIDTH_160: |
| rx_status->bw = RATE_INFO_BW_160; |
| break; |
| case RATE_MCS_CHAN_WIDTH_320: |
| rx_status->bw = RATE_INFO_BW_320; |
| break; |
| } |
| |
| /* must be before L-SIG data */ |
| if (format == RATE_MCS_HE_MSK) |
| iwl_mvm_rx_he(mvm, skb, phy_data, queue); |
| |
| iwl_mvm_decode_lsig(skb, phy_data); |
| |
| rx_status->device_timestamp = phy_data->gp2_on_air_rise; |
| |
| if (mvm->rx_ts_ptp && mvm->monitor_on) { |
| u64 adj_time = |
| iwl_mvm_ptp_get_adj_time(mvm, phy_data->gp2_on_air_rise * NSEC_PER_USEC); |
| |
| rx_status->mactime = div64_u64(adj_time, NSEC_PER_USEC); |
| rx_status->flag |= RX_FLAG_MACTIME_IS_RTAP_TS64; |
| rx_status->flag &= ~RX_FLAG_MACTIME; |
| } |
| |
| rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel, |
| rx_status->band); |
| iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, |
| phy_data->energy_a, phy_data->energy_b); |
| |
| /* using TLV format and must be after all fixed len fields */ |
| if (format == RATE_MCS_EHT_MSK) |
| iwl_mvm_rx_eht(mvm, skb, phy_data, queue); |
| |
| if (unlikely(mvm->monitor_on)) |
| iwl_mvm_add_rtap_sniffer_config(mvm, skb); |
| |
| is_sgi = format == RATE_MCS_HE_MSK ? |
| iwl_he_is_sgi(rate_n_flags) : |
| rate_n_flags & RATE_MCS_SGI_MSK; |
| |
| if (!(format == RATE_MCS_CCK_MSK) && is_sgi) |
| rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; |
| |
| if (rate_n_flags & RATE_MCS_LDPC_MSK) |
| rx_status->enc_flags |= RX_ENC_FLAG_LDPC; |
| |
| switch (format) { |
| case RATE_MCS_VHT_MSK: |
| rx_status->encoding = RX_ENC_VHT; |
| break; |
| case RATE_MCS_HE_MSK: |
| rx_status->encoding = RX_ENC_HE; |
| rx_status->he_dcm = |
| !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); |
| break; |
| case RATE_MCS_EHT_MSK: |
| rx_status->encoding = RX_ENC_EHT; |
| break; |
| } |
| |
| switch (format) { |
| case RATE_MCS_HT_MSK: |
| rx_status->encoding = RX_ENC_HT; |
| rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); |
| rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; |
| break; |
| case RATE_MCS_VHT_MSK: |
| case RATE_MCS_HE_MSK: |
| case RATE_MCS_EHT_MSK: |
| rx_status->nss = |
| u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1; |
| rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; |
| rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; |
| break; |
| default: { |
| int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, |
| rx_status->band); |
| |
| rx_status->rate_idx = rate; |
| |
| if ((rate < 0 || rate > 0xFF)) { |
| rx_status->rate_idx = 0; |
| if (net_ratelimit()) |
| IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n", |
| rate_n_flags, rx_status->band); |
| } |
| |
| break; |
| } |
| } |
| } |
| |
| void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, |
| struct iwl_rx_cmd_buffer *rxb, int queue) |
| { |
| struct ieee80211_rx_status *rx_status; |
| struct iwl_rx_packet *pkt = rxb_addr(rxb); |
| struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; |
| struct ieee80211_hdr *hdr; |
| u32 len; |
| u32 pkt_len = iwl_rx_packet_payload_len(pkt); |
| struct ieee80211_sta *sta = NULL; |
| struct sk_buff *skb; |
| u8 crypt_len = 0; |
| u8 sta_id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); |
| size_t desc_size; |
| struct iwl_mvm_rx_phy_data phy_data = {}; |
| u32 format; |
| |
| if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) |
| return; |
| |
| if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) |
| desc_size = sizeof(*desc); |
| else |
| desc_size = IWL_RX_DESC_SIZE_V1; |
| |
| if (unlikely(pkt_len < desc_size)) { |
| IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); |
| return; |
| } |
| |
| if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { |
| phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); |
| phy_data.channel = desc->v3.channel; |
| phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); |
| phy_data.energy_a = desc->v3.energy_a; |
| phy_data.energy_b = desc->v3.energy_b; |
| |
| phy_data.d0 = desc->v3.phy_data0; |
| phy_data.d1 = desc->v3.phy_data1; |
| phy_data.d2 = desc->v3.phy_data2; |
| phy_data.d3 = desc->v3.phy_data3; |
| phy_data.eht_d4 = desc->phy_eht_data4; |
| phy_data.d5 = desc->v3.phy_data5; |
| } else { |
| phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); |
| phy_data.channel = desc->v1.channel; |
| phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); |
| phy_data.energy_a = desc->v1.energy_a; |
| phy_data.energy_b = desc->v1.energy_b; |
| |
| phy_data.d0 = desc->v1.phy_data0; |
| phy_data.d1 = desc->v1.phy_data1; |
| phy_data.d2 = desc->v1.phy_data2; |
| phy_data.d3 = desc->v1.phy_data3; |
| } |
| |
| if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP, |
| REPLY_RX_MPDU_CMD, 0) < 4) { |
| phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); |
| IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n", |
| phy_data.rate_n_flags); |
| } |
| |
| format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; |
| |
| len = le16_to_cpu(desc->mpdu_len); |
| |
| if (unlikely(len + desc_size > pkt_len)) { |
| IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); |
| return; |
| } |
| |
| phy_data.with_data = true; |
| phy_data.phy_info = le16_to_cpu(desc->phy_info); |
| phy_data.d4 = desc->phy_data4; |
| |
| hdr = (void *)(pkt->data + desc_size); |
| /* Dont use dev_alloc_skb(), we'll have enough headroom once |
| * ieee80211_hdr pulled. |
| */ |
| skb = alloc_skb(128, GFP_ATOMIC); |
| if (!skb) { |
| IWL_ERR(mvm, "alloc_skb failed\n"); |
| return; |
| } |
| |
| if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { |
| /* |
| * If the device inserted padding it means that (it thought) |
| * the 802.11 header wasn't a multiple of 4 bytes long. In |
| * this case, reserve two bytes at the start of the SKB to |
| * align the payload properly in case we end up copying it. |
| */ |
| skb_reserve(skb, 2); |
| } |
| |
| rx_status = IEEE80211_SKB_RXCB(skb); |
| |
| /* |
| * Keep packets with CRC errors (and with overrun) for monitor mode |
| * (otherwise the firmware discards them) but mark them as bad. |
| */ |
| if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || |
| !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { |
| IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", |
| le32_to_cpu(desc->status)); |
| rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; |
| } |
| |
| /* set the preamble flag if appropriate */ |
| if (format == RATE_MCS_CCK_MSK && |
| phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) |
| rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; |
| |
| if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { |
| u64 tsf_on_air_rise; |
| |
| if (mvm->trans->trans_cfg->device_family >= |
| IWL_DEVICE_FAMILY_AX210) |
| tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); |
| else |
| tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); |
| |
| rx_status->mactime = tsf_on_air_rise; |
| /* TSF as indicated by the firmware is at INA time */ |
| rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; |
| } |
| |
| if (iwl_mvm_is_band_in_rx_supported(mvm)) { |
| u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); |
| |
| rx_status->band = iwl_mvm_nl80211_band_from_phy(band); |
| } else { |
| rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : |
| NL80211_BAND_2GHZ; |
| } |
| |
| /* update aggregation data for monitor sake on default queue */ |
| if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) { |
| bool toggle_bit; |
| |
| toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; |
| rx_status->flag |= RX_FLAG_AMPDU_DETAILS; |
| /* |
| * Toggle is switched whenever new aggregation starts. Make |
| * sure ampdu_reference is never 0 so we can later use it to |
| * see if the frame was really part of an A-MPDU or not. |
| */ |
| if (toggle_bit != mvm->ampdu_toggle) { |
| mvm->ampdu_ref++; |
| if (mvm->ampdu_ref == 0) |
| mvm->ampdu_ref++; |
| mvm->ampdu_toggle = toggle_bit; |
| phy_data.first_subframe = true; |
| } |
| rx_status->ampdu_reference = mvm->ampdu_ref; |
| } |
| |
| rcu_read_lock(); |
| |
| if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { |
| if (!WARN_ON_ONCE(sta_id >= mvm->fw->ucode_capa.num_stations)) { |
| struct ieee80211_link_sta *link_sta; |
| |
| sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); |
| if (IS_ERR(sta)) |
| sta = NULL; |
| link_sta = rcu_dereference(mvm->fw_id_to_link_sta[sta_id]); |
| |
| if (sta && sta->valid_links && link_sta) { |
| rx_status->link_valid = 1; |
| rx_status->link_id = link_sta->link_id; |
| } |
| } |
| } else if (!is_multicast_ether_addr(hdr->addr2)) { |
| /* |
| * This is fine since we prevent two stations with the same |
| * address from being added. |
| */ |
| sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); |
| } |
| |
| if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc, |
| le32_to_cpu(pkt->len_n_flags), queue, |
| &crypt_len)) { |
| kfree_skb(skb); |
| goto out; |
| } |
| |
| iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); |
| |
| if (sta) { |
| struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); |
| struct ieee80211_vif *tx_blocked_vif = |
| rcu_dereference(mvm->csa_tx_blocked_vif); |
| u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & |
| IWL_RX_MPDU_REORDER_BAID_MASK) >> |
| IWL_RX_MPDU_REORDER_BAID_SHIFT); |
| struct iwl_fw_dbg_trigger_tlv *trig; |
| struct ieee80211_vif *vif = mvmsta->vif; |
| |
| if (!mvm->tcm.paused && len >= sizeof(*hdr) && |
| !is_multicast_ether_addr(hdr->addr1) && |
| ieee80211_is_data(hdr->frame_control) && |
| time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) |
| schedule_delayed_work(&mvm->tcm.work, 0); |
| |
| /* |
| * We have tx blocked stations (with CS bit). If we heard |
| * frames from a blocked station on a new channel we can |
| * TX to it again. |
| */ |
| if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { |
| struct iwl_mvm_vif *mvmvif = |
| iwl_mvm_vif_from_mac80211(tx_blocked_vif); |
| struct iwl_rx_sta_csa rx_sta_csa = { |
| .all_sta_unblocked = true, |
| .vif = tx_blocked_vif, |
| }; |
| |
| if (mvmvif->csa_target_freq == rx_status->freq) |
| iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, |
| false); |
| ieee80211_iterate_stations_atomic(mvm->hw, |
| iwl_mvm_rx_get_sta_block_tx, |
| &rx_sta_csa); |
| |
| if (rx_sta_csa.all_sta_unblocked) { |
| RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); |
| /* Unblock BCAST / MCAST station */ |
| iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); |
| cancel_delayed_work(&mvm->cs_tx_unblock_dwork); |
| } |
| } |
| |
| rs_update_last_rssi(mvm, mvmsta, rx_status); |
| |
| trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, |
| ieee80211_vif_to_wdev(vif), |
| FW_DBG_TRIGGER_RSSI); |
| |
| if (trig && ieee80211_is_beacon(hdr->frame_control)) { |
| struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; |
| s32 rssi; |
| |
| rssi_trig = (void *)trig->data; |
| rssi = le32_to_cpu(rssi_trig->rssi); |
| |
| if (rx_status->signal < rssi) |
| iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, |
| NULL); |
| } |
| |
| if (ieee80211_is_data(hdr->frame_control)) |
| iwl_mvm_rx_csum(mvm, sta, skb, pkt); |
| |
| if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { |
| IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n", |
| le16_to_cpu(hdr->seq_ctrl)); |
| kfree_skb(skb); |
| goto out; |
| } |
| |
| /* |
| * Our hardware de-aggregates AMSDUs but copies the mac header |
| * as it to the de-aggregated MPDUs. We need to turn off the |
| * AMSDU bit in the QoS control ourselves. |
| * In addition, HW reverses addr3 and addr4 - reverse it back. |
| */ |
| if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && |
| !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { |
| u8 *qc = ieee80211_get_qos_ctl(hdr); |
| |
| *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; |
| |
| if (mvm->trans->trans_cfg->device_family == |
| IWL_DEVICE_FAMILY_9000) { |
| iwl_mvm_flip_address(hdr->addr3); |
| |
| if (ieee80211_has_a4(hdr->frame_control)) |
| iwl_mvm_flip_address(hdr->addr4); |
| } |
| } |
| if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { |
| u32 reorder_data = le32_to_cpu(desc->reorder_data); |
| |
| iwl_mvm_agg_rx_received(mvm, reorder_data, baid); |
| } |
| |
| if (ieee80211_is_data(hdr->frame_control)) { |
| u8 sub_frame_idx = desc->amsdu_info & |
| IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; |
| |
| /* 0 means not an A-MSDU, and 1 means a new A-MSDU */ |
| if (!sub_frame_idx || sub_frame_idx == 1) |
| iwl_mvm_count_mpdu(mvmsta, sta_id, 1, false, |
| queue); |
| } |
| } |
| |
| /* management stuff on default queue */ |
| if (!queue) { |
| if (unlikely((ieee80211_is_beacon(hdr->frame_control) || |
| ieee80211_is_probe_resp(hdr->frame_control)) && |
| mvm->sched_scan_pass_all == |
| SCHED_SCAN_PASS_ALL_ENABLED)) |
| mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; |
| |
| if (unlikely(ieee80211_is_beacon(hdr->frame_control) || |
| ieee80211_is_probe_resp(hdr->frame_control))) |
| rx_status->boottime_ns = ktime_get_boottime_ns(); |
| } |
| |
| if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { |
| kfree_skb(skb); |
| goto out; |
| } |
| |
| if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) && |
| likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) && |
| likely(!iwl_mvm_mei_filter_scan(mvm, skb))) { |
| if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000 && |
| (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && |
| !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME)) |
| rx_status->flag |= RX_FLAG_AMSDU_MORE; |
| |
| iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta); |
| } |
| out: |
| rcu_read_unlock(); |
| } |
| |
| void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, |
| struct iwl_rx_cmd_buffer *rxb, int queue) |
| { |
| struct ieee80211_rx_status *rx_status; |
| struct iwl_rx_packet *pkt = rxb_addr(rxb); |
| struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data; |
| u32 rssi; |
| struct ieee80211_sta *sta = NULL; |
| struct sk_buff *skb; |
| struct iwl_mvm_rx_phy_data phy_data; |
| u32 format; |
| |
| if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) |
| return; |
| |
| if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data))) |
| return; |
| |
| rssi = le32_to_cpu(desc->rssi); |
| phy_data.d0 = desc->phy_info[0]; |
| phy_data.d1 = desc->phy_info[1]; |
| phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; |
| phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); |
| phy_data.rate_n_flags = le32_to_cpu(desc->rate); |
| phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK); |
| phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK); |
| phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK); |
| phy_data.with_data = false; |
| phy_data.rx_vec[0] = desc->rx_vec[0]; |
| phy_data.rx_vec[1] = desc->rx_vec[1]; |
| |
| if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, |
| RX_NO_DATA_NOTIF, 0) < 2) { |
| IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n", |
| phy_data.rate_n_flags); |
| phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); |
| IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n", |
| phy_data.rate_n_flags); |
| } |
| |
| format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; |
| |
| if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, |
| RX_NO_DATA_NOTIF, 0) >= 3) { |
| if (unlikely(iwl_rx_packet_payload_len(pkt) < |
| sizeof(struct iwl_rx_no_data_ver_3))) |
| /* invalid len for ver 3 */ |
| return; |
| phy_data.rx_vec[2] = desc->rx_vec[2]; |
| phy_data.rx_vec[3] = desc->rx_vec[3]; |
| } else { |
| if (format == RATE_MCS_EHT_MSK) |
| /* no support for EHT before version 3 API */ |
| return; |
| } |
| |
| /* Dont use dev_alloc_skb(), we'll have enough headroom once |
| * ieee80211_hdr pulled. |
| */ |
| skb = alloc_skb(128, GFP_ATOMIC); |
| if (!skb) { |
| IWL_ERR(mvm, "alloc_skb failed\n"); |
| return; |
| } |
| |
| rx_status = IEEE80211_SKB_RXCB(skb); |
| |
| /* 0-length PSDU */ |
| rx_status->flag |= RX_FLAG_NO_PSDU; |
| |
| /* mark as failed PLCP on any errors to skip checks in mac80211 */ |
| if (le32_get_bits(desc->info, RX_NO_DATA_INFO_ERR_MSK) != |
| RX_NO_DATA_INFO_ERR_NONE) |
| rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC; |
| |
| switch (le32_get_bits(desc->info, RX_NO_DATA_INFO_TYPE_MSK)) { |
| case RX_NO_DATA_INFO_TYPE_NDP: |
| rx_status->zero_length_psdu_type = |
| IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; |
| break; |
| case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: |
| case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED: |
| rx_status->zero_length_psdu_type = |
| IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; |
| break; |
| default: |
| rx_status->zero_length_psdu_type = |
| IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; |
| break; |
| } |
| |
| rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : |
| NL80211_BAND_2GHZ; |
| |
| iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); |
| |
| /* no more radio tap info should be put after this point. |
| * |
| * We mark it as mac header, for upper layers to know where |
| * all radio tap header ends. |
| * |
| * Since data doesn't move data while putting data on skb and that is |
| * the only way we use, data + len is the next place that hdr would be put |
| */ |
| skb_set_mac_header(skb, skb->len); |
| |
| /* |
| * Override the nss from the rx_vec since the rate_n_flags has |
| * only 2 bits for the nss which gives a max of 4 ss but there |
| * may be up to 8 spatial streams. |
| */ |
| switch (format) { |
| case RATE_MCS_VHT_MSK: |
| rx_status->nss = |
| le32_get_bits(desc->rx_vec[0], |
| RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; |
| break; |
| case RATE_MCS_HE_MSK: |
| rx_status->nss = |
| le32_get_bits(desc->rx_vec[0], |
| RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; |
| break; |
| case RATE_MCS_EHT_MSK: |
| rx_status->nss = |
| le32_get_bits(desc->rx_vec[2], |
| RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1; |
| } |
| |
| rcu_read_lock(); |
| ieee80211_rx_napi(mvm->hw, sta, skb, napi); |
| rcu_read_unlock(); |
| } |
| |
| void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, |
| struct iwl_rx_cmd_buffer *rxb, int queue) |
| { |
| struct iwl_rx_packet *pkt = rxb_addr(rxb); |
| struct iwl_frame_release *release = (void *)pkt->data; |
| |
| if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) |
| return; |
| |
| iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, |
| le16_to_cpu(release->nssn), |
| queue); |
| } |
| |
| void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, |
| struct iwl_rx_cmd_buffer *rxb, int queue) |
| { |
| struct iwl_rx_packet *pkt = rxb_addr(rxb); |
| struct iwl_bar_frame_release *release = (void *)pkt->data; |
| unsigned int baid = le32_get_bits(release->ba_info, |
| IWL_BAR_FRAME_RELEASE_BAID_MASK); |
| unsigned int nssn = le32_get_bits(release->ba_info, |
| IWL_BAR_FRAME_RELEASE_NSSN_MASK); |
| unsigned int sta_id = le32_get_bits(release->sta_tid, |
| IWL_BAR_FRAME_RELEASE_STA_MASK); |
| unsigned int tid = le32_get_bits(release->sta_tid, |
| IWL_BAR_FRAME_RELEASE_TID_MASK); |
| struct iwl_mvm_baid_data *baid_data; |
| |
| if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) |
| return; |
| |
| if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || |
| baid >= ARRAY_SIZE(mvm->baid_map))) |
| return; |
| |
| rcu_read_lock(); |
| baid_data = rcu_dereference(mvm->baid_map[baid]); |
| if (!baid_data) { |
| IWL_DEBUG_RX(mvm, |
| "Got valid BAID %d but not allocated, invalid BAR release!\n", |
| baid); |
| goto out; |
| } |
| |
| if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX || |
| !(baid_data->sta_mask & BIT(sta_id)), |
| "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n", |
| baid, baid_data->sta_mask, baid_data->tid, sta_id, |
| tid)) |
| goto out; |
| |
| IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n", |
| nssn); |
| |
| iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue); |
| out: |
| rcu_read_unlock(); |
| } |