| /* |
| * Procedures for maintaining information about logical memory blocks. |
| * |
| * Peter Bergner, IBM Corp. June 2001. |
| * Copyright (C) 2001 Peter Bergner. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/bitops.h> |
| #include <linux/poison.h> |
| #include <linux/pfn.h> |
| #include <linux/debugfs.h> |
| #include <linux/kmemleak.h> |
| #include <linux/seq_file.h> |
| #include <linux/memblock.h> |
| #include <linux/bootmem.h> |
| |
| #include <asm/sections.h> |
| #include <linux/io.h> |
| |
| #include "internal.h" |
| |
| /** |
| * DOC: memblock overview |
| * |
| * Memblock is a method of managing memory regions during the early |
| * boot period when the usual kernel memory allocators are not up and |
| * running. |
| * |
| * Memblock views the system memory as collections of contiguous |
| * regions. There are several types of these collections: |
| * |
| * * ``memory`` - describes the physical memory available to the |
| * kernel; this may differ from the actual physical memory installed |
| * in the system, for instance when the memory is restricted with |
| * ``mem=`` command line parameter |
| * * ``reserved`` - describes the regions that were allocated |
| * * ``physmap`` - describes the actual physical memory regardless of |
| * the possible restrictions; the ``physmap`` type is only available |
| * on some architectures. |
| * |
| * Each region is represented by :c:type:`struct memblock_region` that |
| * defines the region extents, its attributes and NUMA node id on NUMA |
| * systems. Every memory type is described by the :c:type:`struct |
| * memblock_type` which contains an array of memory regions along with |
| * the allocator metadata. The memory types are nicely wrapped with |
| * :c:type:`struct memblock`. This structure is statically initialzed |
| * at build time. The region arrays for the "memory" and "reserved" |
| * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the |
| * "physmap" type to %INIT_PHYSMEM_REGIONS. |
| * The :c:func:`memblock_allow_resize` enables automatic resizing of |
| * the region arrays during addition of new regions. This feature |
| * should be used with care so that memory allocated for the region |
| * array will not overlap with areas that should be reserved, for |
| * example initrd. |
| * |
| * The early architecture setup should tell memblock what the physical |
| * memory layout is by using :c:func:`memblock_add` or |
| * :c:func:`memblock_add_node` functions. The first function does not |
| * assign the region to a NUMA node and it is appropriate for UMA |
| * systems. Yet, it is possible to use it on NUMA systems as well and |
| * assign the region to a NUMA node later in the setup process using |
| * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node` |
| * performs such an assignment directly. |
| * |
| * Once memblock is setup the memory can be allocated using either |
| * memblock or bootmem APIs. |
| * |
| * As the system boot progresses, the architecture specific |
| * :c:func:`mem_init` function frees all the memory to the buddy page |
| * allocator. |
| * |
| * If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the |
| * memblock data structures will be discarded after the system |
| * initialization compltes. |
| */ |
| |
| static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; |
| static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; |
| #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
| static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock; |
| #endif |
| |
| struct memblock memblock __initdata_memblock = { |
| .memory.regions = memblock_memory_init_regions, |
| .memory.cnt = 1, /* empty dummy entry */ |
| .memory.max = INIT_MEMBLOCK_REGIONS, |
| .memory.name = "memory", |
| |
| .reserved.regions = memblock_reserved_init_regions, |
| .reserved.cnt = 1, /* empty dummy entry */ |
| .reserved.max = INIT_MEMBLOCK_REGIONS, |
| .reserved.name = "reserved", |
| |
| #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
| .physmem.regions = memblock_physmem_init_regions, |
| .physmem.cnt = 1, /* empty dummy entry */ |
| .physmem.max = INIT_PHYSMEM_REGIONS, |
| .physmem.name = "physmem", |
| #endif |
| |
| .bottom_up = false, |
| .current_limit = MEMBLOCK_ALLOC_ANYWHERE, |
| }; |
| |
| int memblock_debug __initdata_memblock; |
| static bool system_has_some_mirror __initdata_memblock = false; |
| static int memblock_can_resize __initdata_memblock; |
| static int memblock_memory_in_slab __initdata_memblock = 0; |
| static int memblock_reserved_in_slab __initdata_memblock = 0; |
| |
| enum memblock_flags __init_memblock choose_memblock_flags(void) |
| { |
| return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; |
| } |
| |
| /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ |
| static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) |
| { |
| return *size = min(*size, PHYS_ADDR_MAX - base); |
| } |
| |
| /* |
| * Address comparison utilities |
| */ |
| static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, |
| phys_addr_t base2, phys_addr_t size2) |
| { |
| return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); |
| } |
| |
| bool __init_memblock memblock_overlaps_region(struct memblock_type *type, |
| phys_addr_t base, phys_addr_t size) |
| { |
| unsigned long i; |
| |
| for (i = 0; i < type->cnt; i++) |
| if (memblock_addrs_overlap(base, size, type->regions[i].base, |
| type->regions[i].size)) |
| break; |
| return i < type->cnt; |
| } |
| |
| /** |
| * __memblock_find_range_bottom_up - find free area utility in bottom-up |
| * @start: start of candidate range |
| * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or |
| * %MEMBLOCK_ALLOC_ACCESSIBLE |
| * @size: size of free area to find |
| * @align: alignment of free area to find |
| * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| * @flags: pick from blocks based on memory attributes |
| * |
| * Utility called from memblock_find_in_range_node(), find free area bottom-up. |
| * |
| * Return: |
| * Found address on success, 0 on failure. |
| */ |
| static phys_addr_t __init_memblock |
| __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, |
| phys_addr_t size, phys_addr_t align, int nid, |
| enum memblock_flags flags) |
| { |
| phys_addr_t this_start, this_end, cand; |
| u64 i; |
| |
| for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { |
| this_start = clamp(this_start, start, end); |
| this_end = clamp(this_end, start, end); |
| |
| cand = round_up(this_start, align); |
| if (cand < this_end && this_end - cand >= size) |
| return cand; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * __memblock_find_range_top_down - find free area utility, in top-down |
| * @start: start of candidate range |
| * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or |
| * %MEMBLOCK_ALLOC_ACCESSIBLE |
| * @size: size of free area to find |
| * @align: alignment of free area to find |
| * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| * @flags: pick from blocks based on memory attributes |
| * |
| * Utility called from memblock_find_in_range_node(), find free area top-down. |
| * |
| * Return: |
| * Found address on success, 0 on failure. |
| */ |
| static phys_addr_t __init_memblock |
| __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, |
| phys_addr_t size, phys_addr_t align, int nid, |
| enum memblock_flags flags) |
| { |
| phys_addr_t this_start, this_end, cand; |
| u64 i; |
| |
| for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, |
| NULL) { |
| this_start = clamp(this_start, start, end); |
| this_end = clamp(this_end, start, end); |
| |
| if (this_end < size) |
| continue; |
| |
| cand = round_down(this_end - size, align); |
| if (cand >= this_start) |
| return cand; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * memblock_find_in_range_node - find free area in given range and node |
| * @size: size of free area to find |
| * @align: alignment of free area to find |
| * @start: start of candidate range |
| * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or |
| * %MEMBLOCK_ALLOC_ACCESSIBLE |
| * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| * @flags: pick from blocks based on memory attributes |
| * |
| * Find @size free area aligned to @align in the specified range and node. |
| * |
| * When allocation direction is bottom-up, the @start should be greater |
| * than the end of the kernel image. Otherwise, it will be trimmed. The |
| * reason is that we want the bottom-up allocation just near the kernel |
| * image so it is highly likely that the allocated memory and the kernel |
| * will reside in the same node. |
| * |
| * If bottom-up allocation failed, will try to allocate memory top-down. |
| * |
| * Return: |
| * Found address on success, 0 on failure. |
| */ |
| phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, |
| phys_addr_t align, phys_addr_t start, |
| phys_addr_t end, int nid, |
| enum memblock_flags flags) |
| { |
| phys_addr_t kernel_end, ret; |
| |
| /* pump up @end */ |
| if (end == MEMBLOCK_ALLOC_ACCESSIBLE) |
| end = memblock.current_limit; |
| |
| /* avoid allocating the first page */ |
| start = max_t(phys_addr_t, start, PAGE_SIZE); |
| end = max(start, end); |
| kernel_end = __pa_symbol(_end); |
| |
| /* |
| * try bottom-up allocation only when bottom-up mode |
| * is set and @end is above the kernel image. |
| */ |
| if (memblock_bottom_up() && end > kernel_end) { |
| phys_addr_t bottom_up_start; |
| |
| /* make sure we will allocate above the kernel */ |
| bottom_up_start = max(start, kernel_end); |
| |
| /* ok, try bottom-up allocation first */ |
| ret = __memblock_find_range_bottom_up(bottom_up_start, end, |
| size, align, nid, flags); |
| if (ret) |
| return ret; |
| |
| /* |
| * we always limit bottom-up allocation above the kernel, |
| * but top-down allocation doesn't have the limit, so |
| * retrying top-down allocation may succeed when bottom-up |
| * allocation failed. |
| * |
| * bottom-up allocation is expected to be fail very rarely, |
| * so we use WARN_ONCE() here to see the stack trace if |
| * fail happens. |
| */ |
| WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE), |
| "memblock: bottom-up allocation failed, memory hotremove may be affected\n"); |
| } |
| |
| return __memblock_find_range_top_down(start, end, size, align, nid, |
| flags); |
| } |
| |
| /** |
| * memblock_find_in_range - find free area in given range |
| * @start: start of candidate range |
| * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or |
| * %MEMBLOCK_ALLOC_ACCESSIBLE |
| * @size: size of free area to find |
| * @align: alignment of free area to find |
| * |
| * Find @size free area aligned to @align in the specified range. |
| * |
| * Return: |
| * Found address on success, 0 on failure. |
| */ |
| phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, |
| phys_addr_t end, phys_addr_t size, |
| phys_addr_t align) |
| { |
| phys_addr_t ret; |
| enum memblock_flags flags = choose_memblock_flags(); |
| |
| again: |
| ret = memblock_find_in_range_node(size, align, start, end, |
| NUMA_NO_NODE, flags); |
| |
| if (!ret && (flags & MEMBLOCK_MIRROR)) { |
| pr_warn("Could not allocate %pap bytes of mirrored memory\n", |
| &size); |
| flags &= ~MEMBLOCK_MIRROR; |
| goto again; |
| } |
| |
| return ret; |
| } |
| |
| static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) |
| { |
| type->total_size -= type->regions[r].size; |
| memmove(&type->regions[r], &type->regions[r + 1], |
| (type->cnt - (r + 1)) * sizeof(type->regions[r])); |
| type->cnt--; |
| |
| /* Special case for empty arrays */ |
| if (type->cnt == 0) { |
| WARN_ON(type->total_size != 0); |
| type->cnt = 1; |
| type->regions[0].base = 0; |
| type->regions[0].size = 0; |
| type->regions[0].flags = 0; |
| memblock_set_region_node(&type->regions[0], MAX_NUMNODES); |
| } |
| } |
| |
| #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK |
| /** |
| * memblock_discard - discard memory and reserved arrays if they were allocated |
| */ |
| void __init memblock_discard(void) |
| { |
| phys_addr_t addr, size; |
| |
| if (memblock.reserved.regions != memblock_reserved_init_regions) { |
| addr = __pa(memblock.reserved.regions); |
| size = PAGE_ALIGN(sizeof(struct memblock_region) * |
| memblock.reserved.max); |
| __memblock_free_late(addr, size); |
| } |
| |
| if (memblock.memory.regions != memblock_memory_init_regions) { |
| addr = __pa(memblock.memory.regions); |
| size = PAGE_ALIGN(sizeof(struct memblock_region) * |
| memblock.memory.max); |
| __memblock_free_late(addr, size); |
| } |
| } |
| #endif |
| |
| /** |
| * memblock_double_array - double the size of the memblock regions array |
| * @type: memblock type of the regions array being doubled |
| * @new_area_start: starting address of memory range to avoid overlap with |
| * @new_area_size: size of memory range to avoid overlap with |
| * |
| * Double the size of the @type regions array. If memblock is being used to |
| * allocate memory for a new reserved regions array and there is a previously |
| * allocated memory range [@new_area_start, @new_area_start + @new_area_size] |
| * waiting to be reserved, ensure the memory used by the new array does |
| * not overlap. |
| * |
| * Return: |
| * 0 on success, -1 on failure. |
| */ |
| static int __init_memblock memblock_double_array(struct memblock_type *type, |
| phys_addr_t new_area_start, |
| phys_addr_t new_area_size) |
| { |
| struct memblock_region *new_array, *old_array; |
| phys_addr_t old_alloc_size, new_alloc_size; |
| phys_addr_t old_size, new_size, addr, new_end; |
| int use_slab = slab_is_available(); |
| int *in_slab; |
| |
| /* We don't allow resizing until we know about the reserved regions |
| * of memory that aren't suitable for allocation |
| */ |
| if (!memblock_can_resize) |
| return -1; |
| |
| /* Calculate new doubled size */ |
| old_size = type->max * sizeof(struct memblock_region); |
| new_size = old_size << 1; |
| /* |
| * We need to allocated new one align to PAGE_SIZE, |
| * so we can free them completely later. |
| */ |
| old_alloc_size = PAGE_ALIGN(old_size); |
| new_alloc_size = PAGE_ALIGN(new_size); |
| |
| /* Retrieve the slab flag */ |
| if (type == &memblock.memory) |
| in_slab = &memblock_memory_in_slab; |
| else |
| in_slab = &memblock_reserved_in_slab; |
| |
| /* Try to find some space for it. |
| * |
| * WARNING: We assume that either slab_is_available() and we use it or |
| * we use MEMBLOCK for allocations. That means that this is unsafe to |
| * use when bootmem is currently active (unless bootmem itself is |
| * implemented on top of MEMBLOCK which isn't the case yet) |
| * |
| * This should however not be an issue for now, as we currently only |
| * call into MEMBLOCK while it's still active, or much later when slab |
| * is active for memory hotplug operations |
| */ |
| if (use_slab) { |
| new_array = kmalloc(new_size, GFP_KERNEL); |
| addr = new_array ? __pa(new_array) : 0; |
| } else { |
| /* only exclude range when trying to double reserved.regions */ |
| if (type != &memblock.reserved) |
| new_area_start = new_area_size = 0; |
| |
| addr = memblock_find_in_range(new_area_start + new_area_size, |
| memblock.current_limit, |
| new_alloc_size, PAGE_SIZE); |
| if (!addr && new_area_size) |
| addr = memblock_find_in_range(0, |
| min(new_area_start, memblock.current_limit), |
| new_alloc_size, PAGE_SIZE); |
| |
| new_array = addr ? __va(addr) : NULL; |
| } |
| if (!addr) { |
| pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", |
| type->name, type->max, type->max * 2); |
| return -1; |
| } |
| |
| new_end = addr + new_size - 1; |
| memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", |
| type->name, type->max * 2, &addr, &new_end); |
| |
| /* |
| * Found space, we now need to move the array over before we add the |
| * reserved region since it may be our reserved array itself that is |
| * full. |
| */ |
| memcpy(new_array, type->regions, old_size); |
| memset(new_array + type->max, 0, old_size); |
| old_array = type->regions; |
| type->regions = new_array; |
| type->max <<= 1; |
| |
| /* Free old array. We needn't free it if the array is the static one */ |
| if (*in_slab) |
| kfree(old_array); |
| else if (old_array != memblock_memory_init_regions && |
| old_array != memblock_reserved_init_regions) |
| memblock_free(__pa(old_array), old_alloc_size); |
| |
| /* |
| * Reserve the new array if that comes from the memblock. Otherwise, we |
| * needn't do it |
| */ |
| if (!use_slab) |
| BUG_ON(memblock_reserve(addr, new_alloc_size)); |
| |
| /* Update slab flag */ |
| *in_slab = use_slab; |
| |
| return 0; |
| } |
| |
| /** |
| * memblock_merge_regions - merge neighboring compatible regions |
| * @type: memblock type to scan |
| * |
| * Scan @type and merge neighboring compatible regions. |
| */ |
| static void __init_memblock memblock_merge_regions(struct memblock_type *type) |
| { |
| int i = 0; |
| |
| /* cnt never goes below 1 */ |
| while (i < type->cnt - 1) { |
| struct memblock_region *this = &type->regions[i]; |
| struct memblock_region *next = &type->regions[i + 1]; |
| |
| if (this->base + this->size != next->base || |
| memblock_get_region_node(this) != |
| memblock_get_region_node(next) || |
| this->flags != next->flags) { |
| BUG_ON(this->base + this->size > next->base); |
| i++; |
| continue; |
| } |
| |
| this->size += next->size; |
| /* move forward from next + 1, index of which is i + 2 */ |
| memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); |
| type->cnt--; |
| } |
| } |
| |
| /** |
| * memblock_insert_region - insert new memblock region |
| * @type: memblock type to insert into |
| * @idx: index for the insertion point |
| * @base: base address of the new region |
| * @size: size of the new region |
| * @nid: node id of the new region |
| * @flags: flags of the new region |
| * |
| * Insert new memblock region [@base, @base + @size) into @type at @idx. |
| * @type must already have extra room to accommodate the new region. |
| */ |
| static void __init_memblock memblock_insert_region(struct memblock_type *type, |
| int idx, phys_addr_t base, |
| phys_addr_t size, |
| int nid, |
| enum memblock_flags flags) |
| { |
| struct memblock_region *rgn = &type->regions[idx]; |
| |
| BUG_ON(type->cnt >= type->max); |
| memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); |
| rgn->base = base; |
| rgn->size = size; |
| rgn->flags = flags; |
| memblock_set_region_node(rgn, nid); |
| type->cnt++; |
| type->total_size += size; |
| } |
| |
| /** |
| * memblock_add_range - add new memblock region |
| * @type: memblock type to add new region into |
| * @base: base address of the new region |
| * @size: size of the new region |
| * @nid: nid of the new region |
| * @flags: flags of the new region |
| * |
| * Add new memblock region [@base, @base + @size) into @type. The new region |
| * is allowed to overlap with existing ones - overlaps don't affect already |
| * existing regions. @type is guaranteed to be minimal (all neighbouring |
| * compatible regions are merged) after the addition. |
| * |
| * Return: |
| * 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_add_range(struct memblock_type *type, |
| phys_addr_t base, phys_addr_t size, |
| int nid, enum memblock_flags flags) |
| { |
| bool insert = false; |
| phys_addr_t obase = base; |
| phys_addr_t end = base + memblock_cap_size(base, &size); |
| int idx, nr_new; |
| struct memblock_region *rgn; |
| |
| if (!size) |
| return 0; |
| |
| /* special case for empty array */ |
| if (type->regions[0].size == 0) { |
| WARN_ON(type->cnt != 1 || type->total_size); |
| type->regions[0].base = base; |
| type->regions[0].size = size; |
| type->regions[0].flags = flags; |
| memblock_set_region_node(&type->regions[0], nid); |
| type->total_size = size; |
| return 0; |
| } |
| repeat: |
| /* |
| * The following is executed twice. Once with %false @insert and |
| * then with %true. The first counts the number of regions needed |
| * to accommodate the new area. The second actually inserts them. |
| */ |
| base = obase; |
| nr_new = 0; |
| |
| for_each_memblock_type(idx, type, rgn) { |
| phys_addr_t rbase = rgn->base; |
| phys_addr_t rend = rbase + rgn->size; |
| |
| if (rbase >= end) |
| break; |
| if (rend <= base) |
| continue; |
| /* |
| * @rgn overlaps. If it separates the lower part of new |
| * area, insert that portion. |
| */ |
| if (rbase > base) { |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
| WARN_ON(nid != memblock_get_region_node(rgn)); |
| #endif |
| WARN_ON(flags != rgn->flags); |
| nr_new++; |
| if (insert) |
| memblock_insert_region(type, idx++, base, |
| rbase - base, nid, |
| flags); |
| } |
| /* area below @rend is dealt with, forget about it */ |
| base = min(rend, end); |
| } |
| |
| /* insert the remaining portion */ |
| if (base < end) { |
| nr_new++; |
| if (insert) |
| memblock_insert_region(type, idx, base, end - base, |
| nid, flags); |
| } |
| |
| if (!nr_new) |
| return 0; |
| |
| /* |
| * If this was the first round, resize array and repeat for actual |
| * insertions; otherwise, merge and return. |
| */ |
| if (!insert) { |
| while (type->cnt + nr_new > type->max) |
| if (memblock_double_array(type, obase, size) < 0) |
| return -ENOMEM; |
| insert = true; |
| goto repeat; |
| } else { |
| memblock_merge_regions(type); |
| return 0; |
| } |
| } |
| |
| /** |
| * memblock_add_node - add new memblock region within a NUMA node |
| * @base: base address of the new region |
| * @size: size of the new region |
| * @nid: nid of the new region |
| * |
| * Add new memblock region [@base, @base + @size) to the "memory" |
| * type. See memblock_add_range() description for mode details |
| * |
| * Return: |
| * 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, |
| int nid) |
| { |
| return memblock_add_range(&memblock.memory, base, size, nid, 0); |
| } |
| |
| /** |
| * memblock_add - add new memblock region |
| * @base: base address of the new region |
| * @size: size of the new region |
| * |
| * Add new memblock region [@base, @base + @size) to the "memory" |
| * type. See memblock_add_range() description for mode details |
| * |
| * Return: |
| * 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) |
| { |
| phys_addr_t end = base + size - 1; |
| |
| memblock_dbg("memblock_add: [%pa-%pa] %pF\n", |
| &base, &end, (void *)_RET_IP_); |
| |
| return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); |
| } |
| |
| /** |
| * memblock_isolate_range - isolate given range into disjoint memblocks |
| * @type: memblock type to isolate range for |
| * @base: base of range to isolate |
| * @size: size of range to isolate |
| * @start_rgn: out parameter for the start of isolated region |
| * @end_rgn: out parameter for the end of isolated region |
| * |
| * Walk @type and ensure that regions don't cross the boundaries defined by |
| * [@base, @base + @size). Crossing regions are split at the boundaries, |
| * which may create at most two more regions. The index of the first |
| * region inside the range is returned in *@start_rgn and end in *@end_rgn. |
| * |
| * Return: |
| * 0 on success, -errno on failure. |
| */ |
| static int __init_memblock memblock_isolate_range(struct memblock_type *type, |
| phys_addr_t base, phys_addr_t size, |
| int *start_rgn, int *end_rgn) |
| { |
| phys_addr_t end = base + memblock_cap_size(base, &size); |
| int idx; |
| struct memblock_region *rgn; |
| |
| *start_rgn = *end_rgn = 0; |
| |
| if (!size) |
| return 0; |
| |
| /* we'll create at most two more regions */ |
| while (type->cnt + 2 > type->max) |
| if (memblock_double_array(type, base, size) < 0) |
| return -ENOMEM; |
| |
| for_each_memblock_type(idx, type, rgn) { |
| phys_addr_t rbase = rgn->base; |
| phys_addr_t rend = rbase + rgn->size; |
| |
| if (rbase >= end) |
| break; |
| if (rend <= base) |
| continue; |
| |
| if (rbase < base) { |
| /* |
| * @rgn intersects from below. Split and continue |
| * to process the next region - the new top half. |
| */ |
| rgn->base = base; |
| rgn->size -= base - rbase; |
| type->total_size -= base - rbase; |
| memblock_insert_region(type, idx, rbase, base - rbase, |
| memblock_get_region_node(rgn), |
| rgn->flags); |
| } else if (rend > end) { |
| /* |
| * @rgn intersects from above. Split and redo the |
| * current region - the new bottom half. |
| */ |
| rgn->base = end; |
| rgn->size -= end - rbase; |
| type->total_size -= end - rbase; |
| memblock_insert_region(type, idx--, rbase, end - rbase, |
| memblock_get_region_node(rgn), |
| rgn->flags); |
| } else { |
| /* @rgn is fully contained, record it */ |
| if (!*end_rgn) |
| *start_rgn = idx; |
| *end_rgn = idx + 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int __init_memblock memblock_remove_range(struct memblock_type *type, |
| phys_addr_t base, phys_addr_t size) |
| { |
| int start_rgn, end_rgn; |
| int i, ret; |
| |
| ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
| if (ret) |
| return ret; |
| |
| for (i = end_rgn - 1; i >= start_rgn; i--) |
| memblock_remove_region(type, i); |
| return 0; |
| } |
| |
| int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) |
| { |
| phys_addr_t end = base + size - 1; |
| |
| memblock_dbg("memblock_remove: [%pa-%pa] %pS\n", |
| &base, &end, (void *)_RET_IP_); |
| |
| return memblock_remove_range(&memblock.memory, base, size); |
| } |
| |
| |
| int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) |
| { |
| phys_addr_t end = base + size - 1; |
| |
| memblock_dbg(" memblock_free: [%pa-%pa] %pF\n", |
| &base, &end, (void *)_RET_IP_); |
| |
| kmemleak_free_part_phys(base, size); |
| return memblock_remove_range(&memblock.reserved, base, size); |
| } |
| |
| int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) |
| { |
| phys_addr_t end = base + size - 1; |
| |
| memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n", |
| &base, &end, (void *)_RET_IP_); |
| |
| return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); |
| } |
| |
| /** |
| * memblock_setclr_flag - set or clear flag for a memory region |
| * @base: base address of the region |
| * @size: size of the region |
| * @set: set or clear the flag |
| * @flag: the flag to udpate |
| * |
| * This function isolates region [@base, @base + @size), and sets/clears flag |
| * |
| * Return: 0 on success, -errno on failure. |
| */ |
| static int __init_memblock memblock_setclr_flag(phys_addr_t base, |
| phys_addr_t size, int set, int flag) |
| { |
| struct memblock_type *type = &memblock.memory; |
| int i, ret, start_rgn, end_rgn; |
| |
| ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
| if (ret) |
| return ret; |
| |
| for (i = start_rgn; i < end_rgn; i++) |
| if (set) |
| memblock_set_region_flags(&type->regions[i], flag); |
| else |
| memblock_clear_region_flags(&type->regions[i], flag); |
| |
| memblock_merge_regions(type); |
| return 0; |
| } |
| |
| /** |
| * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. |
| * @base: the base phys addr of the region |
| * @size: the size of the region |
| * |
| * Return: 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) |
| { |
| return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); |
| } |
| |
| /** |
| * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. |
| * @base: the base phys addr of the region |
| * @size: the size of the region |
| * |
| * Return: 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) |
| { |
| return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); |
| } |
| |
| /** |
| * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. |
| * @base: the base phys addr of the region |
| * @size: the size of the region |
| * |
| * Return: 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) |
| { |
| system_has_some_mirror = true; |
| |
| return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); |
| } |
| |
| /** |
| * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. |
| * @base: the base phys addr of the region |
| * @size: the size of the region |
| * |
| * Return: 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) |
| { |
| return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); |
| } |
| |
| /** |
| * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. |
| * @base: the base phys addr of the region |
| * @size: the size of the region |
| * |
| * Return: 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) |
| { |
| return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); |
| } |
| |
| /** |
| * __next_reserved_mem_region - next function for for_each_reserved_region() |
| * @idx: pointer to u64 loop variable |
| * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL |
| * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL |
| * |
| * Iterate over all reserved memory regions. |
| */ |
| void __init_memblock __next_reserved_mem_region(u64 *idx, |
| phys_addr_t *out_start, |
| phys_addr_t *out_end) |
| { |
| struct memblock_type *type = &memblock.reserved; |
| |
| if (*idx < type->cnt) { |
| struct memblock_region *r = &type->regions[*idx]; |
| phys_addr_t base = r->base; |
| phys_addr_t size = r->size; |
| |
| if (out_start) |
| *out_start = base; |
| if (out_end) |
| *out_end = base + size - 1; |
| |
| *idx += 1; |
| return; |
| } |
| |
| /* signal end of iteration */ |
| *idx = ULLONG_MAX; |
| } |
| |
| /** |
| * __next__mem_range - next function for for_each_free_mem_range() etc. |
| * @idx: pointer to u64 loop variable |
| * @nid: node selector, %NUMA_NO_NODE for all nodes |
| * @flags: pick from blocks based on memory attributes |
| * @type_a: pointer to memblock_type from where the range is taken |
| * @type_b: pointer to memblock_type which excludes memory from being taken |
| * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL |
| * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL |
| * @out_nid: ptr to int for nid of the range, can be %NULL |
| * |
| * Find the first area from *@idx which matches @nid, fill the out |
| * parameters, and update *@idx for the next iteration. The lower 32bit of |
| * *@idx contains index into type_a and the upper 32bit indexes the |
| * areas before each region in type_b. For example, if type_b regions |
| * look like the following, |
| * |
| * 0:[0-16), 1:[32-48), 2:[128-130) |
| * |
| * The upper 32bit indexes the following regions. |
| * |
| * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) |
| * |
| * As both region arrays are sorted, the function advances the two indices |
| * in lockstep and returns each intersection. |
| */ |
| void __init_memblock __next_mem_range(u64 *idx, int nid, |
| enum memblock_flags flags, |
| struct memblock_type *type_a, |
| struct memblock_type *type_b, |
| phys_addr_t *out_start, |
| phys_addr_t *out_end, int *out_nid) |
| { |
| int idx_a = *idx & 0xffffffff; |
| int idx_b = *idx >> 32; |
| |
| if (WARN_ONCE(nid == MAX_NUMNODES, |
| "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) |
| nid = NUMA_NO_NODE; |
| |
| for (; idx_a < type_a->cnt; idx_a++) { |
| struct memblock_region *m = &type_a->regions[idx_a]; |
| |
| phys_addr_t m_start = m->base; |
| phys_addr_t m_end = m->base + m->size; |
| int m_nid = memblock_get_region_node(m); |
| |
| /* only memory regions are associated with nodes, check it */ |
| if (nid != NUMA_NO_NODE && nid != m_nid) |
| continue; |
| |
| /* skip hotpluggable memory regions if needed */ |
| if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) |
| continue; |
| |
| /* if we want mirror memory skip non-mirror memory regions */ |
| if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) |
| continue; |
| |
| /* skip nomap memory unless we were asked for it explicitly */ |
| if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) |
| continue; |
| |
| if (!type_b) { |
| if (out_start) |
| *out_start = m_start; |
| if (out_end) |
| *out_end = m_end; |
| if (out_nid) |
| *out_nid = m_nid; |
| idx_a++; |
| *idx = (u32)idx_a | (u64)idx_b << 32; |
| return; |
| } |
| |
| /* scan areas before each reservation */ |
| for (; idx_b < type_b->cnt + 1; idx_b++) { |
| struct memblock_region *r; |
| phys_addr_t r_start; |
| phys_addr_t r_end; |
| |
| r = &type_b->regions[idx_b]; |
| r_start = idx_b ? r[-1].base + r[-1].size : 0; |
| r_end = idx_b < type_b->cnt ? |
| r->base : PHYS_ADDR_MAX; |
| |
| /* |
| * if idx_b advanced past idx_a, |
| * break out to advance idx_a |
| */ |
| if (r_start >= m_end) |
| break; |
| /* if the two regions intersect, we're done */ |
| if (m_start < r_end) { |
| if (out_start) |
| *out_start = |
| max(m_start, r_start); |
| if (out_end) |
| *out_end = min(m_end, r_end); |
| if (out_nid) |
| *out_nid = m_nid; |
| /* |
| * The region which ends first is |
| * advanced for the next iteration. |
| */ |
| if (m_end <= r_end) |
| idx_a++; |
| else |
| idx_b++; |
| *idx = (u32)idx_a | (u64)idx_b << 32; |
| return; |
| } |
| } |
| } |
| |
| /* signal end of iteration */ |
| *idx = ULLONG_MAX; |
| } |
| |
| /** |
| * __next_mem_range_rev - generic next function for for_each_*_range_rev() |
| * |
| * @idx: pointer to u64 loop variable |
| * @nid: node selector, %NUMA_NO_NODE for all nodes |
| * @flags: pick from blocks based on memory attributes |
| * @type_a: pointer to memblock_type from where the range is taken |
| * @type_b: pointer to memblock_type which excludes memory from being taken |
| * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL |
| * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL |
| * @out_nid: ptr to int for nid of the range, can be %NULL |
| * |
| * Finds the next range from type_a which is not marked as unsuitable |
| * in type_b. |
| * |
| * Reverse of __next_mem_range(). |
| */ |
| void __init_memblock __next_mem_range_rev(u64 *idx, int nid, |
| enum memblock_flags flags, |
| struct memblock_type *type_a, |
| struct memblock_type *type_b, |
| phys_addr_t *out_start, |
| phys_addr_t *out_end, int *out_nid) |
| { |
| int idx_a = *idx & 0xffffffff; |
| int idx_b = *idx >> 32; |
| |
| if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) |
| nid = NUMA_NO_NODE; |
| |
| if (*idx == (u64)ULLONG_MAX) { |
| idx_a = type_a->cnt - 1; |
| if (type_b != NULL) |
| idx_b = type_b->cnt; |
| else |
| idx_b = 0; |
| } |
| |
| for (; idx_a >= 0; idx_a--) { |
| struct memblock_region *m = &type_a->regions[idx_a]; |
| |
| phys_addr_t m_start = m->base; |
| phys_addr_t m_end = m->base + m->size; |
| int m_nid = memblock_get_region_node(m); |
| |
| /* only memory regions are associated with nodes, check it */ |
| if (nid != NUMA_NO_NODE && nid != m_nid) |
| continue; |
| |
| /* skip hotpluggable memory regions if needed */ |
| if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) |
| continue; |
| |
| /* if we want mirror memory skip non-mirror memory regions */ |
| if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) |
| continue; |
| |
| /* skip nomap memory unless we were asked for it explicitly */ |
| if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) |
| continue; |
| |
| if (!type_b) { |
| if (out_start) |
| *out_start = m_start; |
| if (out_end) |
| *out_end = m_end; |
| if (out_nid) |
| *out_nid = m_nid; |
| idx_a--; |
| *idx = (u32)idx_a | (u64)idx_b << 32; |
| return; |
| } |
| |
| /* scan areas before each reservation */ |
| for (; idx_b >= 0; idx_b--) { |
| struct memblock_region *r; |
| phys_addr_t r_start; |
| phys_addr_t r_end; |
| |
| r = &type_b->regions[idx_b]; |
| r_start = idx_b ? r[-1].base + r[-1].size : 0; |
| r_end = idx_b < type_b->cnt ? |
| r->base : PHYS_ADDR_MAX; |
| /* |
| * if idx_b advanced past idx_a, |
| * break out to advance idx_a |
| */ |
| |
| if (r_end <= m_start) |
| break; |
| /* if the two regions intersect, we're done */ |
| if (m_end > r_start) { |
| if (out_start) |
| *out_start = max(m_start, r_start); |
| if (out_end) |
| *out_end = min(m_end, r_end); |
| if (out_nid) |
| *out_nid = m_nid; |
| if (m_start >= r_start) |
| idx_a--; |
| else |
| idx_b--; |
| *idx = (u32)idx_a | (u64)idx_b << 32; |
| return; |
| } |
| } |
| } |
| /* signal end of iteration */ |
| *idx = ULLONG_MAX; |
| } |
| |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
| /* |
| * Common iterator interface used to define for_each_mem_range(). |
| */ |
| void __init_memblock __next_mem_pfn_range(int *idx, int nid, |
| unsigned long *out_start_pfn, |
| unsigned long *out_end_pfn, int *out_nid) |
| { |
| struct memblock_type *type = &memblock.memory; |
| struct memblock_region *r; |
| |
| while (++*idx < type->cnt) { |
| r = &type->regions[*idx]; |
| |
| if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) |
| continue; |
| if (nid == MAX_NUMNODES || nid == r->nid) |
| break; |
| } |
| if (*idx >= type->cnt) { |
| *idx = -1; |
| return; |
| } |
| |
| if (out_start_pfn) |
| *out_start_pfn = PFN_UP(r->base); |
| if (out_end_pfn) |
| *out_end_pfn = PFN_DOWN(r->base + r->size); |
| if (out_nid) |
| *out_nid = r->nid; |
| } |
| |
| /** |
| * memblock_set_node - set node ID on memblock regions |
| * @base: base of area to set node ID for |
| * @size: size of area to set node ID for |
| * @type: memblock type to set node ID for |
| * @nid: node ID to set |
| * |
| * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. |
| * Regions which cross the area boundaries are split as necessary. |
| * |
| * Return: |
| * 0 on success, -errno on failure. |
| */ |
| int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, |
| struct memblock_type *type, int nid) |
| { |
| int start_rgn, end_rgn; |
| int i, ret; |
| |
| ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
| if (ret) |
| return ret; |
| |
| for (i = start_rgn; i < end_rgn; i++) |
| memblock_set_region_node(&type->regions[i], nid); |
| |
| memblock_merge_regions(type); |
| return 0; |
| } |
| #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
| |
| static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, |
| phys_addr_t align, phys_addr_t start, |
| phys_addr_t end, int nid, |
| enum memblock_flags flags) |
| { |
| phys_addr_t found; |
| |
| if (!align) |
| align = SMP_CACHE_BYTES; |
| |
| found = memblock_find_in_range_node(size, align, start, end, nid, |
| flags); |
| if (found && !memblock_reserve(found, size)) { |
| /* |
| * The min_count is set to 0 so that memblock allocations are |
| * never reported as leaks. |
| */ |
| kmemleak_alloc_phys(found, size, 0, 0); |
| return found; |
| } |
| return 0; |
| } |
| |
| phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align, |
| phys_addr_t start, phys_addr_t end, |
| enum memblock_flags flags) |
| { |
| return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, |
| flags); |
| } |
| |
| phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, |
| phys_addr_t align, phys_addr_t max_addr, |
| int nid, enum memblock_flags flags) |
| { |
| return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags); |
| } |
| |
| phys_addr_t __init memblock_phys_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) |
| { |
| enum memblock_flags flags = choose_memblock_flags(); |
| phys_addr_t ret; |
| |
| again: |
| ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, |
| nid, flags); |
| |
| if (!ret && (flags & MEMBLOCK_MIRROR)) { |
| flags &= ~MEMBLOCK_MIRROR; |
| goto again; |
| } |
| return ret; |
| } |
| |
| phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) |
| { |
| return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE, |
| MEMBLOCK_NONE); |
| } |
| |
| phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) |
| { |
| phys_addr_t alloc; |
| |
| alloc = __memblock_alloc_base(size, align, max_addr); |
| |
| if (alloc == 0) |
| panic("ERROR: Failed to allocate %pa bytes below %pa.\n", |
| &size, &max_addr); |
| |
| return alloc; |
| } |
| |
| phys_addr_t __init memblock_phys_alloc(phys_addr_t size, phys_addr_t align) |
| { |
| return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); |
| } |
| |
| phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) |
| { |
| phys_addr_t res = memblock_phys_alloc_nid(size, align, nid); |
| |
| if (res) |
| return res; |
| return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); |
| } |
| |
| /** |
| * memblock_virt_alloc_internal - allocate boot memory block |
| * @size: size of memory block to be allocated in bytes |
| * @align: alignment of the region and block's size |
| * @min_addr: the lower bound of the memory region to allocate (phys address) |
| * @max_addr: the upper bound of the memory region to allocate (phys address) |
| * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| * |
| * The @min_addr limit is dropped if it can not be satisfied and the allocation |
| * will fall back to memory below @min_addr. Also, allocation may fall back |
| * to any node in the system if the specified node can not |
| * hold the requested memory. |
| * |
| * The allocation is performed from memory region limited by |
| * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE. |
| * |
| * The memory block is aligned on %SMP_CACHE_BYTES if @align == 0. |
| * |
| * The phys address of allocated boot memory block is converted to virtual and |
| * allocated memory is reset to 0. |
| * |
| * In addition, function sets the min_count to 0 using kmemleak_alloc for |
| * allocated boot memory block, so that it is never reported as leaks. |
| * |
| * Return: |
| * Virtual address of allocated memory block on success, NULL on failure. |
| */ |
| static void * __init memblock_virt_alloc_internal( |
| phys_addr_t size, phys_addr_t align, |
| phys_addr_t min_addr, phys_addr_t max_addr, |
| int nid) |
| { |
| phys_addr_t alloc; |
| void *ptr; |
| enum memblock_flags flags = choose_memblock_flags(); |
| |
| if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) |
| nid = NUMA_NO_NODE; |
| |
| /* |
| * Detect any accidental use of these APIs after slab is ready, as at |
| * this moment memblock may be deinitialized already and its |
| * internal data may be destroyed (after execution of free_all_bootmem) |
| */ |
| if (WARN_ON_ONCE(slab_is_available())) |
| return kzalloc_node(size, GFP_NOWAIT, nid); |
| |
| if (!align) |
| align = SMP_CACHE_BYTES; |
| |
| if (max_addr > memblock.current_limit) |
| max_addr = memblock.current_limit; |
| again: |
| alloc = memblock_find_in_range_node(size, align, min_addr, max_addr, |
| nid, flags); |
| if (alloc && !memblock_reserve(alloc, size)) |
| goto done; |
| |
| if (nid != NUMA_NO_NODE) { |
| alloc = memblock_find_in_range_node(size, align, min_addr, |
| max_addr, NUMA_NO_NODE, |
| flags); |
| if (alloc && !memblock_reserve(alloc, size)) |
| goto done; |
| } |
| |
| if (min_addr) { |
| min_addr = 0; |
| goto again; |
| } |
| |
| if (flags & MEMBLOCK_MIRROR) { |
| flags &= ~MEMBLOCK_MIRROR; |
| pr_warn("Could not allocate %pap bytes of mirrored memory\n", |
| &size); |
| goto again; |
| } |
| |
| return NULL; |
| done: |
| ptr = phys_to_virt(alloc); |
| |
| /* |
| * The min_count is set to 0 so that bootmem allocated blocks |
| * are never reported as leaks. This is because many of these blocks |
| * are only referred via the physical address which is not |
| * looked up by kmemleak. |
| */ |
| kmemleak_alloc(ptr, size, 0, 0); |
| |
| return ptr; |
| } |
| |
| /** |
| * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing |
| * memory and without panicking |
| * @size: size of memory block to be allocated in bytes |
| * @align: alignment of the region and block's size |
| * @min_addr: the lower bound of the memory region from where the allocation |
| * is preferred (phys address) |
| * @max_addr: the upper bound of the memory region from where the allocation |
| * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to |
| * allocate only from memory limited by memblock.current_limit value |
| * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| * |
| * Public function, provides additional debug information (including caller |
| * info), if enabled. Does not zero allocated memory, does not panic if request |
| * cannot be satisfied. |
| * |
| * Return: |
| * Virtual address of allocated memory block on success, NULL on failure. |
| */ |
| void * __init memblock_virt_alloc_try_nid_raw( |
| phys_addr_t size, phys_addr_t align, |
| phys_addr_t min_addr, phys_addr_t max_addr, |
| int nid) |
| { |
| void *ptr; |
| |
| memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n", |
| __func__, (u64)size, (u64)align, nid, &min_addr, |
| &max_addr, (void *)_RET_IP_); |
| |
| ptr = memblock_virt_alloc_internal(size, align, |
| min_addr, max_addr, nid); |
| if (ptr && size > 0) |
| page_init_poison(ptr, size); |
| |
| return ptr; |
| } |
| |
| /** |
| * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block |
| * @size: size of memory block to be allocated in bytes |
| * @align: alignment of the region and block's size |
| * @min_addr: the lower bound of the memory region from where the allocation |
| * is preferred (phys address) |
| * @max_addr: the upper bound of the memory region from where the allocation |
| * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to |
| * allocate only from memory limited by memblock.current_limit value |
| * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| * |
| * Public function, provides additional debug information (including caller |
| * info), if enabled. This function zeroes the allocated memory. |
| * |
| * Return: |
| * Virtual address of allocated memory block on success, NULL on failure. |
| */ |
| void * __init memblock_virt_alloc_try_nid_nopanic( |
| phys_addr_t size, phys_addr_t align, |
| phys_addr_t min_addr, phys_addr_t max_addr, |
| int nid) |
| { |
| void *ptr; |
| |
| memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n", |
| __func__, (u64)size, (u64)align, nid, &min_addr, |
| &max_addr, (void *)_RET_IP_); |
| |
| ptr = memblock_virt_alloc_internal(size, align, |
| min_addr, max_addr, nid); |
| if (ptr) |
| memset(ptr, 0, size); |
| return ptr; |
| } |
| |
| /** |
| * memblock_virt_alloc_try_nid - allocate boot memory block with panicking |
| * @size: size of memory block to be allocated in bytes |
| * @align: alignment of the region and block's size |
| * @min_addr: the lower bound of the memory region from where the allocation |
| * is preferred (phys address) |
| * @max_addr: the upper bound of the memory region from where the allocation |
| * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to |
| * allocate only from memory limited by memblock.current_limit value |
| * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| * |
| * Public panicking version of memblock_virt_alloc_try_nid_nopanic() |
| * which provides debug information (including caller info), if enabled, |
| * and panics if the request can not be satisfied. |
| * |
| * Return: |
| * Virtual address of allocated memory block on success, NULL on failure. |
| */ |
| void * __init memblock_virt_alloc_try_nid( |
| phys_addr_t size, phys_addr_t align, |
| phys_addr_t min_addr, phys_addr_t max_addr, |
| int nid) |
| { |
| void *ptr; |
| |
| memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n", |
| __func__, (u64)size, (u64)align, nid, &min_addr, |
| &max_addr, (void *)_RET_IP_); |
| ptr = memblock_virt_alloc_internal(size, align, |
| min_addr, max_addr, nid); |
| if (ptr) { |
| memset(ptr, 0, size); |
| return ptr; |
| } |
| |
| panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa\n", |
| __func__, (u64)size, (u64)align, nid, &min_addr, &max_addr); |
| return NULL; |
| } |
| |
| /** |
| * __memblock_free_early - free boot memory block |
| * @base: phys starting address of the boot memory block |
| * @size: size of the boot memory block in bytes |
| * |
| * Free boot memory block previously allocated by memblock_virt_alloc_xx() API. |
| * The freeing memory will not be released to the buddy allocator. |
| */ |
| void __init __memblock_free_early(phys_addr_t base, phys_addr_t size) |
| { |
| phys_addr_t end = base + size - 1; |
| |
| memblock_dbg("%s: [%pa-%pa] %pF\n", |
| __func__, &base, &end, (void *)_RET_IP_); |
| kmemleak_free_part_phys(base, size); |
| memblock_remove_range(&memblock.reserved, base, size); |
| } |
| |
| /** |
| * __memblock_free_late - free bootmem block pages directly to buddy allocator |
| * @base: phys starting address of the boot memory block |
| * @size: size of the boot memory block in bytes |
| * |
| * This is only useful when the bootmem allocator has already been torn |
| * down, but we are still initializing the system. Pages are released directly |
| * to the buddy allocator, no bootmem metadata is updated because it is gone. |
| */ |
| void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) |
| { |
| phys_addr_t cursor, end; |
| |
| end = base + size - 1; |
| memblock_dbg("%s: [%pa-%pa] %pF\n", |
| __func__, &base, &end, (void *)_RET_IP_); |
| kmemleak_free_part_phys(base, size); |
| cursor = PFN_UP(base); |
| end = PFN_DOWN(base + size); |
| |
| for (; cursor < end; cursor++) { |
| __free_pages_bootmem(pfn_to_page(cursor), cursor, 0); |
| totalram_pages++; |
| } |
| } |
| |
| /* |
| * Remaining API functions |
| */ |
| |
| phys_addr_t __init_memblock memblock_phys_mem_size(void) |
| { |
| return memblock.memory.total_size; |
| } |
| |
| phys_addr_t __init_memblock memblock_reserved_size(void) |
| { |
| return memblock.reserved.total_size; |
| } |
| |
| phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) |
| { |
| unsigned long pages = 0; |
| struct memblock_region *r; |
| unsigned long start_pfn, end_pfn; |
| |
| for_each_memblock(memory, r) { |
| start_pfn = memblock_region_memory_base_pfn(r); |
| end_pfn = memblock_region_memory_end_pfn(r); |
| start_pfn = min_t(unsigned long, start_pfn, limit_pfn); |
| end_pfn = min_t(unsigned long, end_pfn, limit_pfn); |
| pages += end_pfn - start_pfn; |
| } |
| |
| return PFN_PHYS(pages); |
| } |
| |
| /* lowest address */ |
| phys_addr_t __init_memblock memblock_start_of_DRAM(void) |
| { |
| return memblock.memory.regions[0].base; |
| } |
| |
| phys_addr_t __init_memblock memblock_end_of_DRAM(void) |
| { |
| int idx = memblock.memory.cnt - 1; |
| |
| return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); |
| } |
| |
| static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) |
| { |
| phys_addr_t max_addr = PHYS_ADDR_MAX; |
| struct memblock_region *r; |
| |
| /* |
| * translate the memory @limit size into the max address within one of |
| * the memory memblock regions, if the @limit exceeds the total size |
| * of those regions, max_addr will keep original value PHYS_ADDR_MAX |
| */ |
| for_each_memblock(memory, r) { |
| if (limit <= r->size) { |
| max_addr = r->base + limit; |
| break; |
| } |
| limit -= r->size; |
| } |
| |
| return max_addr; |
| } |
| |
| void __init memblock_enforce_memory_limit(phys_addr_t limit) |
| { |
| phys_addr_t max_addr = PHYS_ADDR_MAX; |
| |
| if (!limit) |
| return; |
| |
| max_addr = __find_max_addr(limit); |
| |
| /* @limit exceeds the total size of the memory, do nothing */ |
| if (max_addr == PHYS_ADDR_MAX) |
| return; |
| |
| /* truncate both memory and reserved regions */ |
| memblock_remove_range(&memblock.memory, max_addr, |
| PHYS_ADDR_MAX); |
| memblock_remove_range(&memblock.reserved, max_addr, |
| PHYS_ADDR_MAX); |
| } |
| |
| void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) |
| { |
| int start_rgn, end_rgn; |
| int i, ret; |
| |
| if (!size) |
| return; |
| |
| ret = memblock_isolate_range(&memblock.memory, base, size, |
| &start_rgn, &end_rgn); |
| if (ret) |
| return; |
| |
| /* remove all the MAP regions */ |
| for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) |
| if (!memblock_is_nomap(&memblock.memory.regions[i])) |
| memblock_remove_region(&memblock.memory, i); |
| |
| for (i = start_rgn - 1; i >= 0; i--) |
| if (!memblock_is_nomap(&memblock.memory.regions[i])) |
| memblock_remove_region(&memblock.memory, i); |
| |
| /* truncate the reserved regions */ |
| memblock_remove_range(&memblock.reserved, 0, base); |
| memblock_remove_range(&memblock.reserved, |
| base + size, PHYS_ADDR_MAX); |
| } |
| |
| void __init memblock_mem_limit_remove_map(phys_addr_t limit) |
| { |
| phys_addr_t max_addr; |
| |
| if (!limit) |
| return; |
| |
| max_addr = __find_max_addr(limit); |
| |
| /* @limit exceeds the total size of the memory, do nothing */ |
| if (max_addr == PHYS_ADDR_MAX) |
| return; |
| |
| memblock_cap_memory_range(0, max_addr); |
| } |
| |
| static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) |
| { |
| unsigned int left = 0, right = type->cnt; |
| |
| do { |
| unsigned int mid = (right + left) / 2; |
| |
| if (addr < type->regions[mid].base) |
| right = mid; |
| else if (addr >= (type->regions[mid].base + |
| type->regions[mid].size)) |
| left = mid + 1; |
| else |
| return mid; |
| } while (left < right); |
| return -1; |
| } |
| |
| bool __init memblock_is_reserved(phys_addr_t addr) |
| { |
| return memblock_search(&memblock.reserved, addr) != -1; |
| } |
| |
| bool __init_memblock memblock_is_memory(phys_addr_t addr) |
| { |
| return memblock_search(&memblock.memory, addr) != -1; |
| } |
| |
| bool __init_memblock memblock_is_map_memory(phys_addr_t addr) |
| { |
| int i = memblock_search(&memblock.memory, addr); |
| |
| if (i == -1) |
| return false; |
| return !memblock_is_nomap(&memblock.memory.regions[i]); |
| } |
| |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
| int __init_memblock memblock_search_pfn_nid(unsigned long pfn, |
| unsigned long *start_pfn, unsigned long *end_pfn) |
| { |
| struct memblock_type *type = &memblock.memory; |
| int mid = memblock_search(type, PFN_PHYS(pfn)); |
| |
| if (mid == -1) |
| return -1; |
| |
| *start_pfn = PFN_DOWN(type->regions[mid].base); |
| *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); |
| |
| return type->regions[mid].nid; |
| } |
| #endif |
| |
| /** |
| * memblock_is_region_memory - check if a region is a subset of memory |
| * @base: base of region to check |
| * @size: size of region to check |
| * |
| * Check if the region [@base, @base + @size) is a subset of a memory block. |
| * |
| * Return: |
| * 0 if false, non-zero if true |
| */ |
| bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) |
| { |
| int idx = memblock_search(&memblock.memory, base); |
| phys_addr_t end = base + memblock_cap_size(base, &size); |
| |
| if (idx == -1) |
| return false; |
| return (memblock.memory.regions[idx].base + |
| memblock.memory.regions[idx].size) >= end; |
| } |
| |
| /** |
| * memblock_is_region_reserved - check if a region intersects reserved memory |
| * @base: base of region to check |
| * @size: size of region to check |
| * |
| * Check if the region [@base, @base + @size) intersects a reserved |
| * memory block. |
| * |
| * Return: |
| * True if they intersect, false if not. |
| */ |
| bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) |
| { |
| memblock_cap_size(base, &size); |
| return memblock_overlaps_region(&memblock.reserved, base, size); |
| } |
| |
| void __init_memblock memblock_trim_memory(phys_addr_t align) |
| { |
| phys_addr_t start, end, orig_start, orig_end; |
| struct memblock_region *r; |
| |
| for_each_memblock(memory, r) { |
| orig_start = r->base; |
| orig_end = r->base + r->size; |
| start = round_up(orig_start, align); |
| end = round_down(orig_end, align); |
| |
| if (start == orig_start && end == orig_end) |
| continue; |
| |
| if (start < end) { |
| r->base = start; |
| r->size = end - start; |
| } else { |
| memblock_remove_region(&memblock.memory, |
| r - memblock.memory.regions); |
| r--; |
| } |
| } |
| } |
| |
| void __init_memblock memblock_set_current_limit(phys_addr_t limit) |
| { |
| memblock.current_limit = limit; |
| } |
| |
| phys_addr_t __init_memblock memblock_get_current_limit(void) |
| { |
| return memblock.current_limit; |
| } |
| |
| static void __init_memblock memblock_dump(struct memblock_type *type) |
| { |
| phys_addr_t base, end, size; |
| enum memblock_flags flags; |
| int idx; |
| struct memblock_region *rgn; |
| |
| pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); |
| |
| for_each_memblock_type(idx, type, rgn) { |
| char nid_buf[32] = ""; |
| |
| base = rgn->base; |
| size = rgn->size; |
| end = base + size - 1; |
| flags = rgn->flags; |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
| if (memblock_get_region_node(rgn) != MAX_NUMNODES) |
| snprintf(nid_buf, sizeof(nid_buf), " on node %d", |
| memblock_get_region_node(rgn)); |
| #endif |
| pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", |
| type->name, idx, &base, &end, &size, nid_buf, flags); |
| } |
| } |
| |
| void __init_memblock __memblock_dump_all(void) |
| { |
| pr_info("MEMBLOCK configuration:\n"); |
| pr_info(" memory size = %pa reserved size = %pa\n", |
| &memblock.memory.total_size, |
| &memblock.reserved.total_size); |
| |
| memblock_dump(&memblock.memory); |
| memblock_dump(&memblock.reserved); |
| #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
| memblock_dump(&memblock.physmem); |
| #endif |
| } |
| |
| void __init memblock_allow_resize(void) |
| { |
| memblock_can_resize = 1; |
| } |
| |
| static int __init early_memblock(char *p) |
| { |
| if (p && strstr(p, "debug")) |
| memblock_debug = 1; |
| return 0; |
| } |
| early_param("memblock", early_memblock); |
| |
| #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) |
| |
| static int memblock_debug_show(struct seq_file *m, void *private) |
| { |
| struct memblock_type *type = m->private; |
| struct memblock_region *reg; |
| int i; |
| phys_addr_t end; |
| |
| for (i = 0; i < type->cnt; i++) { |
| reg = &type->regions[i]; |
| end = reg->base + reg->size - 1; |
| |
| seq_printf(m, "%4d: ", i); |
| seq_printf(m, "%pa..%pa\n", ®->base, &end); |
| } |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(memblock_debug); |
| |
| static int __init memblock_init_debugfs(void) |
| { |
| struct dentry *root = debugfs_create_dir("memblock", NULL); |
| if (!root) |
| return -ENXIO; |
| debugfs_create_file("memory", 0444, root, |
| &memblock.memory, &memblock_debug_fops); |
| debugfs_create_file("reserved", 0444, root, |
| &memblock.reserved, &memblock_debug_fops); |
| #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
| debugfs_create_file("physmem", 0444, root, |
| &memblock.physmem, &memblock_debug_fops); |
| #endif |
| |
| return 0; |
| } |
| __initcall(memblock_init_debugfs); |
| |
| #endif /* CONFIG_DEBUG_FS */ |