| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2020 - 2022, NVIDIA CORPORATION. All rights reserved |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/cpufreq.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_platform.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/units.h> |
| |
| #include <asm/smp_plat.h> |
| |
| #include <soc/tegra/bpmp.h> |
| #include <soc/tegra/bpmp-abi.h> |
| |
| #define KHZ 1000 |
| #define REF_CLK_MHZ 408 /* 408 MHz */ |
| #define US_DELAY 500 |
| #define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ) |
| #define MAX_CNT ~0U |
| |
| #define NDIV_MASK 0x1FF |
| |
| #define CORE_OFFSET(cpu) (cpu * 8) |
| #define CMU_CLKS_BASE 0x2000 |
| #define SCRATCH_FREQ_CORE_REG(data, cpu) (data->regs + CMU_CLKS_BASE + CORE_OFFSET(cpu)) |
| |
| #define MMCRAB_CLUSTER_BASE(cl) (0x30000 + (cl * 0x10000)) |
| #define CLUSTER_ACTMON_BASE(data, cl) \ |
| (data->regs + (MMCRAB_CLUSTER_BASE(cl) + data->soc->actmon_cntr_base)) |
| #define CORE_ACTMON_CNTR_REG(data, cl, cpu) (CLUSTER_ACTMON_BASE(data, cl) + CORE_OFFSET(cpu)) |
| |
| /* cpufreq transisition latency */ |
| #define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */ |
| |
| struct tegra_cpu_ctr { |
| u32 cpu; |
| u32 coreclk_cnt, last_coreclk_cnt; |
| u32 refclk_cnt, last_refclk_cnt; |
| }; |
| |
| struct read_counters_work { |
| struct work_struct work; |
| struct tegra_cpu_ctr c; |
| }; |
| |
| struct tegra_cpufreq_ops { |
| void (*read_counters)(struct tegra_cpu_ctr *c); |
| void (*set_cpu_ndiv)(struct cpufreq_policy *policy, u64 ndiv); |
| void (*get_cpu_cluster_id)(u32 cpu, u32 *cpuid, u32 *clusterid); |
| int (*get_cpu_ndiv)(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv); |
| }; |
| |
| struct tegra_cpufreq_soc { |
| struct tegra_cpufreq_ops *ops; |
| int maxcpus_per_cluster; |
| unsigned int num_clusters; |
| phys_addr_t actmon_cntr_base; |
| }; |
| |
| struct tegra194_cpufreq_data { |
| void __iomem *regs; |
| struct cpufreq_frequency_table **bpmp_luts; |
| const struct tegra_cpufreq_soc *soc; |
| bool icc_dram_bw_scaling; |
| }; |
| |
| static struct workqueue_struct *read_counters_wq; |
| |
| static int tegra_cpufreq_set_bw(struct cpufreq_policy *policy, unsigned long freq_khz) |
| { |
| struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); |
| struct dev_pm_opp *opp; |
| struct device *dev; |
| int ret; |
| |
| dev = get_cpu_device(policy->cpu); |
| if (!dev) |
| return -ENODEV; |
| |
| opp = dev_pm_opp_find_freq_exact(dev, freq_khz * KHZ, true); |
| if (IS_ERR(opp)) |
| return PTR_ERR(opp); |
| |
| ret = dev_pm_opp_set_opp(dev, opp); |
| if (ret) |
| data->icc_dram_bw_scaling = false; |
| |
| dev_pm_opp_put(opp); |
| return ret; |
| } |
| |
| static void tegra_get_cpu_mpidr(void *mpidr) |
| { |
| *((u64 *)mpidr) = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; |
| } |
| |
| static void tegra234_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid) |
| { |
| u64 mpidr; |
| |
| smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true); |
| |
| if (cpuid) |
| *cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
| if (clusterid) |
| *clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 2); |
| } |
| |
| static int tegra234_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv) |
| { |
| struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); |
| void __iomem *freq_core_reg; |
| u64 mpidr_id; |
| |
| /* use physical id to get address of per core frequency register */ |
| mpidr_id = (clusterid * data->soc->maxcpus_per_cluster) + cpuid; |
| freq_core_reg = SCRATCH_FREQ_CORE_REG(data, mpidr_id); |
| |
| *ndiv = readl(freq_core_reg) & NDIV_MASK; |
| |
| return 0; |
| } |
| |
| static void tegra234_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv) |
| { |
| struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); |
| void __iomem *freq_core_reg; |
| u32 cpu, cpuid, clusterid; |
| u64 mpidr_id; |
| |
| for_each_cpu_and(cpu, policy->cpus, cpu_online_mask) { |
| data->soc->ops->get_cpu_cluster_id(cpu, &cpuid, &clusterid); |
| |
| /* use physical id to get address of per core frequency register */ |
| mpidr_id = (clusterid * data->soc->maxcpus_per_cluster) + cpuid; |
| freq_core_reg = SCRATCH_FREQ_CORE_REG(data, mpidr_id); |
| |
| writel(ndiv, freq_core_reg); |
| } |
| } |
| |
| /* |
| * This register provides access to two counter values with a single |
| * 64-bit read. The counter values are used to determine the average |
| * actual frequency a core has run at over a period of time. |
| * [63:32] PLLP counter: Counts at fixed frequency (408 MHz) |
| * [31:0] Core clock counter: Counts on every core clock cycle |
| */ |
| static void tegra234_read_counters(struct tegra_cpu_ctr *c) |
| { |
| struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); |
| void __iomem *actmon_reg; |
| u32 cpuid, clusterid; |
| u64 val; |
| |
| data->soc->ops->get_cpu_cluster_id(c->cpu, &cpuid, &clusterid); |
| actmon_reg = CORE_ACTMON_CNTR_REG(data, clusterid, cpuid); |
| |
| val = readq(actmon_reg); |
| c->last_refclk_cnt = upper_32_bits(val); |
| c->last_coreclk_cnt = lower_32_bits(val); |
| udelay(US_DELAY); |
| val = readq(actmon_reg); |
| c->refclk_cnt = upper_32_bits(val); |
| c->coreclk_cnt = lower_32_bits(val); |
| } |
| |
| static struct tegra_cpufreq_ops tegra234_cpufreq_ops = { |
| .read_counters = tegra234_read_counters, |
| .get_cpu_cluster_id = tegra234_get_cpu_cluster_id, |
| .get_cpu_ndiv = tegra234_get_cpu_ndiv, |
| .set_cpu_ndiv = tegra234_set_cpu_ndiv, |
| }; |
| |
| static const struct tegra_cpufreq_soc tegra234_cpufreq_soc = { |
| .ops = &tegra234_cpufreq_ops, |
| .actmon_cntr_base = 0x9000, |
| .maxcpus_per_cluster = 4, |
| .num_clusters = 3, |
| }; |
| |
| static const struct tegra_cpufreq_soc tegra239_cpufreq_soc = { |
| .ops = &tegra234_cpufreq_ops, |
| .actmon_cntr_base = 0x4000, |
| .maxcpus_per_cluster = 8, |
| .num_clusters = 1, |
| }; |
| |
| static void tegra194_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid) |
| { |
| u64 mpidr; |
| |
| smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true); |
| |
| if (cpuid) |
| *cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| if (clusterid) |
| *clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
| } |
| |
| /* |
| * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1. |
| * The register provides frequency feedback information to |
| * determine the average actual frequency a core has run at over |
| * a period of time. |
| * [31:0] PLLP counter: Counts at fixed frequency (408 MHz) |
| * [63:32] Core clock counter: counts on every core clock cycle |
| * where the core is architecturally clocking |
| */ |
| static u64 read_freq_feedback(void) |
| { |
| u64 val = 0; |
| |
| asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : ); |
| |
| return val; |
| } |
| |
| static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response |
| *nltbl, u16 ndiv) |
| { |
| return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv); |
| } |
| |
| static void tegra194_read_counters(struct tegra_cpu_ctr *c) |
| { |
| u64 val; |
| |
| val = read_freq_feedback(); |
| c->last_refclk_cnt = lower_32_bits(val); |
| c->last_coreclk_cnt = upper_32_bits(val); |
| udelay(US_DELAY); |
| val = read_freq_feedback(); |
| c->refclk_cnt = lower_32_bits(val); |
| c->coreclk_cnt = upper_32_bits(val); |
| } |
| |
| static void tegra_read_counters(struct work_struct *work) |
| { |
| struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); |
| struct read_counters_work *read_counters_work; |
| struct tegra_cpu_ctr *c; |
| |
| /* |
| * ref_clk_counter(32 bit counter) runs on constant clk, |
| * pll_p(408MHz). |
| * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter |
| * = 10526880 usec = 10.527 sec to overflow |
| * |
| * Like wise core_clk_counter(32 bit counter) runs on core clock. |
| * It's synchronized to crab_clk (cpu_crab_clk) which runs at |
| * freq of cluster. Assuming max cluster clock ~2000MHz, |
| * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter |
| * = ~2.147 sec to overflow |
| */ |
| read_counters_work = container_of(work, struct read_counters_work, |
| work); |
| c = &read_counters_work->c; |
| |
| data->soc->ops->read_counters(c); |
| } |
| |
| /* |
| * Return instantaneous cpu speed |
| * Instantaneous freq is calculated as - |
| * -Takes sample on every query of getting the freq. |
| * - Read core and ref clock counters; |
| * - Delay for X us |
| * - Read above cycle counters again |
| * - Calculates freq by subtracting current and previous counters |
| * divided by the delay time or eqv. of ref_clk_counter in delta time |
| * - Return Kcycles/second, freq in KHz |
| * |
| * delta time period = x sec |
| * = delta ref_clk_counter / (408 * 10^6) sec |
| * freq in Hz = cycles/sec |
| * = (delta cycles / x sec |
| * = (delta cycles * 408 * 10^6) / delta ref_clk_counter |
| * in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter |
| * |
| * @cpu - logical cpu whose freq to be updated |
| * Returns freq in KHz on success, 0 if cpu is offline |
| */ |
| static unsigned int tegra194_calculate_speed(u32 cpu) |
| { |
| struct read_counters_work read_counters_work; |
| struct tegra_cpu_ctr c; |
| u32 delta_refcnt; |
| u32 delta_ccnt; |
| u32 rate_mhz; |
| |
| /* |
| * udelay() is required to reconstruct cpu frequency over an |
| * observation window. Using workqueue to call udelay() with |
| * interrupts enabled. |
| */ |
| read_counters_work.c.cpu = cpu; |
| INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters); |
| queue_work_on(cpu, read_counters_wq, &read_counters_work.work); |
| flush_work(&read_counters_work.work); |
| c = read_counters_work.c; |
| |
| if (c.coreclk_cnt < c.last_coreclk_cnt) |
| delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt); |
| else |
| delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt; |
| if (!delta_ccnt) |
| return 0; |
| |
| /* ref clock is 32 bits */ |
| if (c.refclk_cnt < c.last_refclk_cnt) |
| delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt); |
| else |
| delta_refcnt = c.refclk_cnt - c.last_refclk_cnt; |
| if (!delta_refcnt) { |
| pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu); |
| return 0; |
| } |
| rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt; |
| |
| return (rate_mhz * KHZ); /* in KHz */ |
| } |
| |
| static void tegra194_get_cpu_ndiv_sysreg(void *ndiv) |
| { |
| u64 ndiv_val; |
| |
| asm volatile("mrs %0, s3_0_c15_c0_4" : "=r" (ndiv_val) : ); |
| |
| *(u64 *)ndiv = ndiv_val; |
| } |
| |
| static int tegra194_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv) |
| { |
| return smp_call_function_single(cpu, tegra194_get_cpu_ndiv_sysreg, &ndiv, true); |
| } |
| |
| static void tegra194_set_cpu_ndiv_sysreg(void *data) |
| { |
| u64 ndiv_val = *(u64 *)data; |
| |
| asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val)); |
| } |
| |
| static void tegra194_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv) |
| { |
| on_each_cpu_mask(policy->cpus, tegra194_set_cpu_ndiv_sysreg, &ndiv, true); |
| } |
| |
| static unsigned int tegra194_get_speed(u32 cpu) |
| { |
| struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); |
| struct cpufreq_frequency_table *pos; |
| u32 cpuid, clusterid; |
| unsigned int rate; |
| u64 ndiv; |
| int ret; |
| |
| data->soc->ops->get_cpu_cluster_id(cpu, &cpuid, &clusterid); |
| |
| /* reconstruct actual cpu freq using counters */ |
| rate = tegra194_calculate_speed(cpu); |
| |
| /* get last written ndiv value */ |
| ret = data->soc->ops->get_cpu_ndiv(cpu, cpuid, clusterid, &ndiv); |
| if (WARN_ON_ONCE(ret)) |
| return rate; |
| |
| /* |
| * If the reconstructed frequency has acceptable delta from |
| * the last written value, then return freq corresponding |
| * to the last written ndiv value from freq_table. This is |
| * done to return consistent value. |
| */ |
| cpufreq_for_each_valid_entry(pos, data->bpmp_luts[clusterid]) { |
| if (pos->driver_data != ndiv) |
| continue; |
| |
| if (abs(pos->frequency - rate) > 115200) { |
| pr_warn("cpufreq: cpu%d,cur:%u,set:%u,set ndiv:%llu\n", |
| cpu, rate, pos->frequency, ndiv); |
| } else { |
| rate = pos->frequency; |
| } |
| break; |
| } |
| return rate; |
| } |
| |
| static int tegra_cpufreq_init_cpufreq_table(struct cpufreq_policy *policy, |
| struct cpufreq_frequency_table *bpmp_lut, |
| struct cpufreq_frequency_table **opp_table) |
| { |
| struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); |
| struct cpufreq_frequency_table *freq_table = NULL; |
| struct cpufreq_frequency_table *pos; |
| struct device *cpu_dev; |
| struct dev_pm_opp *opp; |
| unsigned long rate; |
| int ret, max_opps; |
| int j = 0; |
| |
| cpu_dev = get_cpu_device(policy->cpu); |
| if (!cpu_dev) { |
| pr_err("%s: failed to get cpu%d device\n", __func__, policy->cpu); |
| return -ENODEV; |
| } |
| |
| /* Initialize OPP table mentioned in operating-points-v2 property in DT */ |
| ret = dev_pm_opp_of_add_table_indexed(cpu_dev, 0); |
| if (!ret) { |
| max_opps = dev_pm_opp_get_opp_count(cpu_dev); |
| if (max_opps <= 0) { |
| dev_err(cpu_dev, "Failed to add OPPs\n"); |
| return max_opps; |
| } |
| |
| /* Disable all opps and cross-validate against LUT later */ |
| for (rate = 0; ; rate++) { |
| opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate); |
| if (IS_ERR(opp)) |
| break; |
| |
| dev_pm_opp_put(opp); |
| dev_pm_opp_disable(cpu_dev, rate); |
| } |
| } else { |
| dev_err(cpu_dev, "Invalid or empty opp table in device tree\n"); |
| data->icc_dram_bw_scaling = false; |
| return ret; |
| } |
| |
| freq_table = kcalloc((max_opps + 1), sizeof(*freq_table), GFP_KERNEL); |
| if (!freq_table) |
| return -ENOMEM; |
| |
| /* |
| * Cross check the frequencies from BPMP-FW LUT against the OPP's present in DT. |
| * Enable only those DT OPP's which are present in LUT also. |
| */ |
| cpufreq_for_each_valid_entry(pos, bpmp_lut) { |
| opp = dev_pm_opp_find_freq_exact(cpu_dev, pos->frequency * KHZ, false); |
| if (IS_ERR(opp)) |
| continue; |
| |
| ret = dev_pm_opp_enable(cpu_dev, pos->frequency * KHZ); |
| if (ret < 0) |
| return ret; |
| |
| freq_table[j].driver_data = pos->driver_data; |
| freq_table[j].frequency = pos->frequency; |
| j++; |
| } |
| |
| freq_table[j].driver_data = pos->driver_data; |
| freq_table[j].frequency = CPUFREQ_TABLE_END; |
| |
| *opp_table = &freq_table[0]; |
| |
| dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus); |
| |
| return ret; |
| } |
| |
| static int tegra194_cpufreq_init(struct cpufreq_policy *policy) |
| { |
| struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); |
| int maxcpus_per_cluster = data->soc->maxcpus_per_cluster; |
| struct cpufreq_frequency_table *freq_table; |
| struct cpufreq_frequency_table *bpmp_lut; |
| u32 start_cpu, cpu; |
| u32 clusterid; |
| int ret; |
| |
| data->soc->ops->get_cpu_cluster_id(policy->cpu, NULL, &clusterid); |
| if (clusterid >= data->soc->num_clusters || !data->bpmp_luts[clusterid]) |
| return -EINVAL; |
| |
| start_cpu = rounddown(policy->cpu, maxcpus_per_cluster); |
| /* set same policy for all cpus in a cluster */ |
| for (cpu = start_cpu; cpu < (start_cpu + maxcpus_per_cluster); cpu++) { |
| if (cpu_possible(cpu)) |
| cpumask_set_cpu(cpu, policy->cpus); |
| } |
| policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY; |
| |
| bpmp_lut = data->bpmp_luts[clusterid]; |
| |
| if (data->icc_dram_bw_scaling) { |
| ret = tegra_cpufreq_init_cpufreq_table(policy, bpmp_lut, &freq_table); |
| if (!ret) { |
| policy->freq_table = freq_table; |
| return 0; |
| } |
| } |
| |
| data->icc_dram_bw_scaling = false; |
| policy->freq_table = bpmp_lut; |
| pr_info("OPP tables missing from DT, EMC frequency scaling disabled\n"); |
| |
| return 0; |
| } |
| |
| static int tegra194_cpufreq_online(struct cpufreq_policy *policy) |
| { |
| /* We did light-weight tear down earlier, nothing to do here */ |
| return 0; |
| } |
| |
| static int tegra194_cpufreq_offline(struct cpufreq_policy *policy) |
| { |
| /* |
| * Preserve policy->driver_data and don't free resources on light-weight |
| * tear down. |
| */ |
| |
| return 0; |
| } |
| |
| static int tegra194_cpufreq_exit(struct cpufreq_policy *policy) |
| { |
| struct device *cpu_dev = get_cpu_device(policy->cpu); |
| |
| dev_pm_opp_remove_all_dynamic(cpu_dev); |
| dev_pm_opp_of_cpumask_remove_table(policy->related_cpus); |
| |
| return 0; |
| } |
| |
| static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy, |
| unsigned int index) |
| { |
| struct cpufreq_frequency_table *tbl = policy->freq_table + index; |
| struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); |
| |
| /* |
| * Each core writes frequency in per core register. Then both cores |
| * in a cluster run at same frequency which is the maximum frequency |
| * request out of the values requested by both cores in that cluster. |
| */ |
| data->soc->ops->set_cpu_ndiv(policy, (u64)tbl->driver_data); |
| |
| if (data->icc_dram_bw_scaling) |
| tegra_cpufreq_set_bw(policy, tbl->frequency); |
| |
| return 0; |
| } |
| |
| static struct cpufreq_driver tegra194_cpufreq_driver = { |
| .name = "tegra194", |
| .flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_INITIAL_FREQ_CHECK | |
| CPUFREQ_IS_COOLING_DEV, |
| .verify = cpufreq_generic_frequency_table_verify, |
| .target_index = tegra194_cpufreq_set_target, |
| .get = tegra194_get_speed, |
| .init = tegra194_cpufreq_init, |
| .exit = tegra194_cpufreq_exit, |
| .online = tegra194_cpufreq_online, |
| .offline = tegra194_cpufreq_offline, |
| .attr = cpufreq_generic_attr, |
| }; |
| |
| static struct tegra_cpufreq_ops tegra194_cpufreq_ops = { |
| .read_counters = tegra194_read_counters, |
| .get_cpu_cluster_id = tegra194_get_cpu_cluster_id, |
| .get_cpu_ndiv = tegra194_get_cpu_ndiv, |
| .set_cpu_ndiv = tegra194_set_cpu_ndiv, |
| }; |
| |
| static const struct tegra_cpufreq_soc tegra194_cpufreq_soc = { |
| .ops = &tegra194_cpufreq_ops, |
| .maxcpus_per_cluster = 2, |
| .num_clusters = 4, |
| }; |
| |
| static void tegra194_cpufreq_free_resources(void) |
| { |
| destroy_workqueue(read_counters_wq); |
| } |
| |
| static struct cpufreq_frequency_table * |
| tegra_cpufreq_bpmp_read_lut(struct platform_device *pdev, struct tegra_bpmp *bpmp, |
| unsigned int cluster_id) |
| { |
| struct cpufreq_frequency_table *freq_table; |
| struct mrq_cpu_ndiv_limits_response resp; |
| unsigned int num_freqs, ndiv, delta_ndiv; |
| struct mrq_cpu_ndiv_limits_request req; |
| struct tegra_bpmp_message msg; |
| u16 freq_table_step_size; |
| int err, index; |
| |
| memset(&req, 0, sizeof(req)); |
| req.cluster_id = cluster_id; |
| |
| memset(&msg, 0, sizeof(msg)); |
| msg.mrq = MRQ_CPU_NDIV_LIMITS; |
| msg.tx.data = &req; |
| msg.tx.size = sizeof(req); |
| msg.rx.data = &resp; |
| msg.rx.size = sizeof(resp); |
| |
| err = tegra_bpmp_transfer(bpmp, &msg); |
| if (err) |
| return ERR_PTR(err); |
| if (msg.rx.ret == -BPMP_EINVAL) { |
| /* Cluster not available */ |
| return NULL; |
| } |
| if (msg.rx.ret) |
| return ERR_PTR(-EINVAL); |
| |
| /* |
| * Make sure frequency table step is a multiple of mdiv to match |
| * vhint table granularity. |
| */ |
| freq_table_step_size = resp.mdiv * |
| DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz); |
| |
| dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n", |
| cluster_id, freq_table_step_size); |
| |
| delta_ndiv = resp.ndiv_max - resp.ndiv_min; |
| |
| if (unlikely(delta_ndiv == 0)) { |
| num_freqs = 1; |
| } else { |
| /* We store both ndiv_min and ndiv_max hence the +1 */ |
| num_freqs = delta_ndiv / freq_table_step_size + 1; |
| } |
| |
| num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0; |
| |
| freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1, |
| sizeof(*freq_table), GFP_KERNEL); |
| if (!freq_table) |
| return ERR_PTR(-ENOMEM); |
| |
| for (index = 0, ndiv = resp.ndiv_min; |
| ndiv < resp.ndiv_max; |
| index++, ndiv += freq_table_step_size) { |
| freq_table[index].driver_data = ndiv; |
| freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv); |
| } |
| |
| freq_table[index].driver_data = resp.ndiv_max; |
| freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max); |
| freq_table[index].frequency = CPUFREQ_TABLE_END; |
| |
| return freq_table; |
| } |
| |
| static int tegra194_cpufreq_probe(struct platform_device *pdev) |
| { |
| const struct tegra_cpufreq_soc *soc; |
| struct tegra194_cpufreq_data *data; |
| struct tegra_bpmp *bpmp; |
| struct device *cpu_dev; |
| int err, i; |
| |
| data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| soc = of_device_get_match_data(&pdev->dev); |
| |
| if (soc->ops && soc->maxcpus_per_cluster && soc->num_clusters) { |
| data->soc = soc; |
| } else { |
| dev_err(&pdev->dev, "soc data missing\n"); |
| return -EINVAL; |
| } |
| |
| data->bpmp_luts = devm_kcalloc(&pdev->dev, data->soc->num_clusters, |
| sizeof(*data->bpmp_luts), GFP_KERNEL); |
| if (!data->bpmp_luts) |
| return -ENOMEM; |
| |
| if (soc->actmon_cntr_base) { |
| /* mmio registers are used for frequency request and re-construction */ |
| data->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(data->regs)) |
| return PTR_ERR(data->regs); |
| } |
| |
| platform_set_drvdata(pdev, data); |
| |
| bpmp = tegra_bpmp_get(&pdev->dev); |
| if (IS_ERR(bpmp)) |
| return PTR_ERR(bpmp); |
| |
| read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1); |
| if (!read_counters_wq) { |
| dev_err(&pdev->dev, "fail to create_workqueue\n"); |
| err = -EINVAL; |
| goto put_bpmp; |
| } |
| |
| for (i = 0; i < data->soc->num_clusters; i++) { |
| data->bpmp_luts[i] = tegra_cpufreq_bpmp_read_lut(pdev, bpmp, i); |
| if (IS_ERR(data->bpmp_luts[i])) { |
| err = PTR_ERR(data->bpmp_luts[i]); |
| goto err_free_res; |
| } |
| } |
| |
| tegra194_cpufreq_driver.driver_data = data; |
| |
| /* Check for optional OPPv2 and interconnect paths on CPU0 to enable ICC scaling */ |
| cpu_dev = get_cpu_device(0); |
| if (!cpu_dev) { |
| err = -EPROBE_DEFER; |
| goto err_free_res; |
| } |
| |
| if (dev_pm_opp_of_get_opp_desc_node(cpu_dev)) { |
| err = dev_pm_opp_of_find_icc_paths(cpu_dev, NULL); |
| if (!err) |
| data->icc_dram_bw_scaling = true; |
| } |
| |
| err = cpufreq_register_driver(&tegra194_cpufreq_driver); |
| if (!err) |
| goto put_bpmp; |
| |
| err_free_res: |
| tegra194_cpufreq_free_resources(); |
| put_bpmp: |
| tegra_bpmp_put(bpmp); |
| return err; |
| } |
| |
| static void tegra194_cpufreq_remove(struct platform_device *pdev) |
| { |
| cpufreq_unregister_driver(&tegra194_cpufreq_driver); |
| tegra194_cpufreq_free_resources(); |
| } |
| |
| static const struct of_device_id tegra194_cpufreq_of_match[] = { |
| { .compatible = "nvidia,tegra194-ccplex", .data = &tegra194_cpufreq_soc }, |
| { .compatible = "nvidia,tegra234-ccplex-cluster", .data = &tegra234_cpufreq_soc }, |
| { .compatible = "nvidia,tegra239-ccplex-cluster", .data = &tegra239_cpufreq_soc }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match); |
| |
| static struct platform_driver tegra194_ccplex_driver = { |
| .driver = { |
| .name = "tegra194-cpufreq", |
| .of_match_table = tegra194_cpufreq_of_match, |
| }, |
| .probe = tegra194_cpufreq_probe, |
| .remove_new = tegra194_cpufreq_remove, |
| }; |
| module_platform_driver(tegra194_ccplex_driver); |
| |
| MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>"); |
| MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>"); |
| MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver"); |
| MODULE_LICENSE("GPL v2"); |