blob: 0894527d932f4849cbe147eba4298a6a2f36264d [file] [log] [blame]
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/module.h>
#include <linux/slab.h>
#include "ppatomctrl.h"
#include "atombios.h"
#include "cgs_common.h"
#include "pp_debug.h"
#include "ppevvmath.h"
#define MEM_ID_MASK 0xff000000
#define MEM_ID_SHIFT 24
#define CLOCK_RANGE_MASK 0x00ffffff
#define CLOCK_RANGE_SHIFT 0
#define LOW_NIBBLE_MASK 0xf
#define DATA_EQU_PREV 0
#define DATA_FROM_TABLE 4
union voltage_object_info {
struct _ATOM_VOLTAGE_OBJECT_INFO v1;
struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
};
static int atomctrl_retrieve_ac_timing(
uint8_t index,
ATOM_INIT_REG_BLOCK *reg_block,
pp_atomctrl_mc_reg_table *table)
{
uint32_t i, j;
uint8_t tmem_id;
ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
uint8_t num_ranges = 0;
while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
if (index == tmem_id) {
table->mc_reg_table_entry[num_ranges].mclk_max =
(uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
CLOCK_RANGE_SHIFT);
for (i = 0, j = 1; i < table->last; i++) {
if ((table->mc_reg_address[i].uc_pre_reg_data &
LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
table->mc_reg_table_entry[num_ranges].mc_data[i] =
(uint32_t)*((uint32_t *)reg_data + j);
j++;
} else if ((table->mc_reg_address[i].uc_pre_reg_data &
LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
table->mc_reg_table_entry[num_ranges].mc_data[i] =
table->mc_reg_table_entry[num_ranges].mc_data[i-1];
}
}
num_ranges++;
}
reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
}
PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
"Invalid VramInfo table.", return -1);
table->num_entries = num_ranges;
return 0;
}
/**
* Get memory clock AC timing registers index from VBIOS table
* VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
* @param reg_block the address ATOM_INIT_REG_BLOCK
* @param table the address of MCRegTable
* @return 0
*/
static int atomctrl_set_mc_reg_address_table(
ATOM_INIT_REG_BLOCK *reg_block,
pp_atomctrl_mc_reg_table *table)
{
uint8_t i = 0;
uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
/ sizeof(ATOM_INIT_REG_INDEX_FORMAT));
ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
num_entries--; /* subtract 1 data end mark entry */
PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -1);
/* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
(i < num_entries)) {
table->mc_reg_address[i].s1 =
(uint16_t)(le16_to_cpu(format->usRegIndex));
table->mc_reg_address[i].uc_pre_reg_data =
format->ucPreRegDataLength;
i++;
format = (ATOM_INIT_REG_INDEX_FORMAT *)
((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
}
table->last = i;
return 0;
}
int atomctrl_initialize_mc_reg_table(
struct pp_hwmgr *hwmgr,
uint8_t module_index,
pp_atomctrl_mc_reg_table *table)
{
ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
ATOM_INIT_REG_BLOCK *reg_block;
int result = 0;
u8 frev, crev;
u16 size;
vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
cgs_atom_get_data_table(hwmgr->device,
GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
if (module_index >= vram_info->ucNumOfVRAMModule) {
printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
result = -1;
} else if (vram_info->sHeader.ucTableFormatRevision < 2) {
printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
result = -1;
}
if (0 == result) {
reg_block = (ATOM_INIT_REG_BLOCK *)
((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
result = atomctrl_set_mc_reg_address_table(reg_block, table);
}
if (0 == result) {
result = atomctrl_retrieve_ac_timing(module_index,
reg_block, table);
}
return result;
}
/**
* Set DRAM timings based on engine clock and memory clock.
*/
int atomctrl_set_engine_dram_timings_rv770(
struct pp_hwmgr *hwmgr,
uint32_t engine_clock,
uint32_t memory_clock)
{
SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
/* They are both in 10KHz Units. */
engine_clock_parameters.ulTargetEngineClock =
cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
((COMPUTE_ENGINE_PLL_PARAM << 24)));
/* in 10 khz units.*/
engine_clock_parameters.sReserved.ulClock =
cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
return cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
&engine_clock_parameters);
}
/**
* Private Function to get the PowerPlay Table Address.
* WARNING: The tabled returned by this function is in
* dynamically allocated memory.
* The caller has to release if by calling kfree.
*/
static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
{
int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
u8 frev, crev;
u16 size;
union voltage_object_info *voltage_info;
voltage_info = (union voltage_object_info *)
cgs_atom_get_data_table(device, index,
&size, &frev, &crev);
if (voltage_info != NULL)
return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
else
return NULL;
}
static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
uint8_t voltage_type, uint8_t voltage_mode)
{
unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
uint8_t *start = (uint8_t *)voltage_object_info_table;
while (offset < size) {
const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
(const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
return voltage_object;
offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
}
return NULL;
}
/** atomctrl_get_memory_pll_dividers_si().
*
* @param hwmgr input parameter: pointer to HwMgr
* @param clock_value input parameter: memory clock
* @param dividers output parameter: memory PLL dividers
* @param strobe_mode input parameter: 1 for strobe mode, 0 for performance mode
*/
int atomctrl_get_memory_pll_dividers_si(
struct pp_hwmgr *hwmgr,
uint32_t clock_value,
pp_atomctrl_memory_clock_param *mpll_param,
bool strobe_mode)
{
COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
int result;
mpll_parameters.ulClock = cpu_to_le32(clock_value);
mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
result = cgs_atom_exec_cmd_table
(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
&mpll_parameters);
if (0 == result) {
mpll_param->mpll_fb_divider.clk_frac =
le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
mpll_param->mpll_fb_divider.cl_kf =
le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
mpll_param->mpll_post_divider =
(uint32_t)mpll_parameters.ucPostDiv;
mpll_param->vco_mode =
(uint32_t)(mpll_parameters.ucPllCntlFlag &
MPLL_CNTL_FLAG_VCO_MODE_MASK);
mpll_param->yclk_sel =
(uint32_t)((mpll_parameters.ucPllCntlFlag &
MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
mpll_param->qdr =
(uint32_t)((mpll_parameters.ucPllCntlFlag &
MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
mpll_param->half_rate =
(uint32_t)((mpll_parameters.ucPllCntlFlag &
MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
mpll_param->dll_speed =
(uint32_t)(mpll_parameters.ucDllSpeed);
mpll_param->bw_ctrl =
(uint32_t)(mpll_parameters.ucBWCntl);
}
return result;
}
/** atomctrl_get_memory_pll_dividers_vi().
*
* @param hwmgr input parameter: pointer to HwMgr
* @param clock_value input parameter: memory clock
* @param dividers output parameter: memory PLL dividers
*/
int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
{
COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
int result;
mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
&mpll_parameters);
if (!result)
mpll_param->mpll_post_divider =
(uint32_t)mpll_parameters.ulClock.ucPostDiv;
return result;
}
int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
uint32_t clock_value,
pp_atomctrl_clock_dividers_kong *dividers)
{
COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
int result;
pll_parameters.ulClock = cpu_to_le32(clock_value);
result = cgs_atom_exec_cmd_table
(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
&pll_parameters);
if (0 == result) {
dividers->pll_post_divider = pll_parameters.ucPostDiv;
dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
}
return result;
}
int atomctrl_get_engine_pll_dividers_vi(
struct pp_hwmgr *hwmgr,
uint32_t clock_value,
pp_atomctrl_clock_dividers_vi *dividers)
{
COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
int result;
pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
result = cgs_atom_exec_cmd_table
(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
&pll_patameters);
if (0 == result) {
dividers->pll_post_divider =
pll_patameters.ulClock.ucPostDiv;
dividers->real_clock =
le32_to_cpu(pll_patameters.ulClock.ulClock);
dividers->ul_fb_div.ul_fb_div_frac =
le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
dividers->ul_fb_div.ul_fb_div =
le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
dividers->uc_pll_ref_div =
pll_patameters.ucPllRefDiv;
dividers->uc_pll_post_div =
pll_patameters.ucPllPostDiv;
dividers->uc_pll_cntl_flag =
pll_patameters.ucPllCntlFlag;
}
return result;
}
int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
uint32_t clock_value,
pp_atomctrl_clock_dividers_ai *dividers)
{
COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
int result;
pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
result = cgs_atom_exec_cmd_table
(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
&pll_patameters);
if (0 == result) {
dividers->usSclk_fcw_frac = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
dividers->usSclk_fcw_int = le16_to_cpu(pll_patameters.usSclk_fcw_int);
dividers->ucSclkPostDiv = pll_patameters.ucSclkPostDiv;
dividers->ucSclkVcoMode = pll_patameters.ucSclkVcoMode;
dividers->ucSclkPllRange = pll_patameters.ucSclkPllRange;
dividers->ucSscEnable = pll_patameters.ucSscEnable;
dividers->usSsc_fcw1_frac = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
dividers->usSsc_fcw1_int = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
dividers->usPcc_fcw_int = le16_to_cpu(pll_patameters.usPcc_fcw_int);
dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
}
return result;
}
int atomctrl_get_dfs_pll_dividers_vi(
struct pp_hwmgr *hwmgr,
uint32_t clock_value,
pp_atomctrl_clock_dividers_vi *dividers)
{
COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
int result;
pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
pll_patameters.ulClock.ucPostDiv =
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
result = cgs_atom_exec_cmd_table
(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
&pll_patameters);
if (0 == result) {
dividers->pll_post_divider =
pll_patameters.ulClock.ucPostDiv;
dividers->real_clock =
le32_to_cpu(pll_patameters.ulClock.ulClock);
dividers->ul_fb_div.ul_fb_div_frac =
le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
dividers->ul_fb_div.ul_fb_div =
le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
dividers->uc_pll_ref_div =
pll_patameters.ucPllRefDiv;
dividers->uc_pll_post_div =
pll_patameters.ucPllPostDiv;
dividers->uc_pll_cntl_flag =
pll_patameters.ucPllCntlFlag;
}
return result;
}
/**
* Get the reference clock in 10KHz
*/
uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
{
ATOM_FIRMWARE_INFO *fw_info;
u8 frev, crev;
u16 size;
uint32_t clock;
fw_info = (ATOM_FIRMWARE_INFO *)
cgs_atom_get_data_table(hwmgr->device,
GetIndexIntoMasterTable(DATA, FirmwareInfo),
&size, &frev, &crev);
if (fw_info == NULL)
clock = 2700;
else
clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
return clock;
}
/**
* Returns true if the given voltage type is controlled by GPIO pins.
* voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
* SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
* voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
*/
bool atomctrl_is_voltage_controled_by_gpio_v3(
struct pp_hwmgr *hwmgr,
uint8_t voltage_type,
uint8_t voltage_mode)
{
ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
bool ret;
PP_ASSERT_WITH_CODE((NULL != voltage_info),
"Could not find Voltage Table in BIOS.", return false;);
ret = (NULL != atomctrl_lookup_voltage_type_v3
(voltage_info, voltage_type, voltage_mode)) ? true : false;
return ret;
}
int atomctrl_get_voltage_table_v3(
struct pp_hwmgr *hwmgr,
uint8_t voltage_type,
uint8_t voltage_mode,
pp_atomctrl_voltage_table *voltage_table)
{
ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
unsigned int i;
PP_ASSERT_WITH_CODE((NULL != voltage_info),
"Could not find Voltage Table in BIOS.", return -1;);
voltage_object = atomctrl_lookup_voltage_type_v3
(voltage_info, voltage_type, voltage_mode);
if (voltage_object == NULL)
return -1;
PP_ASSERT_WITH_CODE(
(voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
"Too many voltage entries!",
return -1;
);
for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
voltage_table->entries[i].value =
le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
voltage_table->entries[i].smio_low =
le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
}
voltage_table->mask_low =
le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
voltage_table->count =
voltage_object->asGpioVoltageObj.ucGpioEntryNum;
voltage_table->phase_delay =
voltage_object->asGpioVoltageObj.ucPhaseDelay;
return 0;
}
static bool atomctrl_lookup_gpio_pin(
ATOM_GPIO_PIN_LUT * gpio_lookup_table,
const uint32_t pinId,
pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
{
unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
uint8_t *start = (uint8_t *)gpio_lookup_table;
while (offset < size) {
const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
(const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
if (pinId == pin_assignment->ucGPIO_ID) {
gpio_pin_assignment->uc_gpio_pin_bit_shift =
pin_assignment->ucGpioPinBitShift;
gpio_pin_assignment->us_gpio_pin_aindex =
le16_to_cpu(pin_assignment->usGpioPin_AIndex);
return true;
}
offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
}
return false;
}
/**
* Private Function to get the PowerPlay Table Address.
* WARNING: The tabled returned by this function is in
* dynamically allocated memory.
* The caller has to release if by calling kfree.
*/
static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
{
u8 frev, crev;
u16 size;
void *table_address;
table_address = (ATOM_GPIO_PIN_LUT *)
cgs_atom_get_data_table(device,
GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
&size, &frev, &crev);
PP_ASSERT_WITH_CODE((NULL != table_address),
"Error retrieving BIOS Table Address!", return NULL;);
return (ATOM_GPIO_PIN_LUT *)table_address;
}
/**
* Returns 1 if the given pin id find in lookup table.
*/
bool atomctrl_get_pp_assign_pin(
struct pp_hwmgr *hwmgr,
const uint32_t pinId,
pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
{
bool bRet = false;
ATOM_GPIO_PIN_LUT *gpio_lookup_table =
get_gpio_lookup_table(hwmgr->device);
PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
"Could not find GPIO lookup Table in BIOS.", return false);
bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
gpio_pin_assignment);
return bRet;
}
int atomctrl_calculate_voltage_evv_on_sclk(
struct pp_hwmgr *hwmgr,
uint8_t voltage_type,
uint32_t sclk,
uint16_t virtual_voltage_Id,
uint16_t *voltage,
uint16_t dpm_level,
bool debug)
{
ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
EFUSE_INPUT_PARAMETER sInput_FuseValues;
READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
fInt fLkg_FT, repeat;
fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
fInt fSclk_margin, fSclk, fEVV_V;
fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
uint32_t ul_FT_Lkg_V0NORM;
fInt fLn_MaxDivMin, fMin, fAverage, fRange;
fInt fRoots[2];
fInt fStepSize = GetScaledFraction(625, 100000);
int result;
getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
cgs_atom_get_data_table(hwmgr->device,
GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
NULL, NULL, NULL);
if (!getASICProfilingInfo)
return -1;
if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
(getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
return -1;
/*-----------------------------------------------------------
*GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
*-----------------------------------------------------------
*/
fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
switch (dpm_level) {
case 1:
fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm1));
fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
break;
case 2:
fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm2));
fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
break;
case 3:
fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm3));
fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
break;
case 4:
fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm4));
fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
break;
case 5:
fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm5));
fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
break;
case 6:
fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm6));
fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
break;
case 7:
fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm7));
fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
break;
default:
printk(KERN_ERR "DPM Level not supported\n");
fPowerDPMx = Convert_ULONG_ToFraction(1);
fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
}
/*-------------------------
* DECODING FUSE VALUES
* ------------------------
*/
/*Decode RO_Fused*/
sRO_fuse = getASICProfilingInfo->sRoFuse;
sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
sOutput_FuseValues.sEfuse = sInput_FuseValues;
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
&sOutput_FuseValues);
if (result)
return result;
/* Finally, the actual fuse value */
ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
sCACm_fuse = getASICProfilingInfo->sCACm;
sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
sOutput_FuseValues.sEfuse = sInput_FuseValues;
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
&sOutput_FuseValues);
if (result)
return result;
ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
sCACb_fuse = getASICProfilingInfo->sCACb;
sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
sOutput_FuseValues.sEfuse = sInput_FuseValues;
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
&sOutput_FuseValues);
if (result)
return result;
ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
sOutput_FuseValues.sEfuse = sInput_FuseValues;
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
&sOutput_FuseValues);
if (result)
return result;
ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
sKv_m_fuse = getASICProfilingInfo->sKv_m;
sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
sOutput_FuseValues.sEfuse = sInput_FuseValues;
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
&sOutput_FuseValues);
if (result)
return result;
ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
fRange = fMultiply(fRange, ConvertToFraction(-1));
fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
fAverage, fRange, sKv_m_fuse.ucEfuseLength);
sKv_b_fuse = getASICProfilingInfo->sKv_b;
sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
sOutput_FuseValues.sEfuse = sInput_FuseValues;
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
&sOutput_FuseValues);
if (result)
return result;
ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
fAverage, fRange, sKv_b_fuse.ucEfuseLength);
/* Decoding the Leakage - No special struct container */
/*
* usLkgEuseIndex=56
* ucLkgEfuseBitLSB=6
* ucLkgEfuseLength=10
* ulLkgEncodeLn_MaxDivMin=69077
* ulLkgEncodeMax=1000000
* ulLkgEncodeMin=1000
* ulEfuseLogisticAlpha=13
*/
sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
sOutput_FuseValues.sEfuse = sInput_FuseValues;
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
&sOutput_FuseValues);
if (result)
return result;
ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
fLkg_FT = fFT_Lkg_V0NORM;
/*-------------------------------------------
* PART 2 - Grabbing all required values
*-------------------------------------------
*/
fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
fMargin_FMAX_mean = GetScaledFraction(
le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
fMargin_Plat_mean = GetScaledFraction(
le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
fMargin_FMAX_sigma = GetScaledFraction(
le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
fMargin_Plat_sigma = GetScaledFraction(
le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
fMargin_DC_sigma = GetScaledFraction(
le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
fKv_m_fused = fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
fSclk = GetScaledFraction(sclk, 100);
fV_max = fDivide(GetScaledFraction(
le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
fV_FT = fDivide(GetScaledFraction(
le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
fV_min = fDivide(GetScaledFraction(
le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
/*-----------------------
* PART 3
*-----------------------
*/
fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
fC_Term = fAdd(fMargin_RO_c,
fAdd(fMultiply(fSM_A0, fLkg_FT),
fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
fAdd(fMultiply(fSM_A3, fSclk),
fSubtract(fSM_A7, fRO_fused)))));
fVDDC_base = fSubtract(fRO_fused,
fSubtract(fMargin_RO_c,
fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
repeat = fSubtract(fVDDC_base,
fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
fGetSquare(repeat)),
fAdd(fMultiply(fMargin_RO_b, repeat),
fMargin_RO_c));
fDC_SCLK = fSubtract(fRO_fused,
fSubtract(fRO_DC_margin,
fSubtract(fSM_A3,
fMultiply(fSM_A2, repeat))));
fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
fSigma_DC = fSubtract(fSclk, fDC_SCLK);
fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
fSquared_Sigma_DC = fGetSquare(fSigma_DC);
fSquared_Sigma_CR = fGetSquare(fSigma_CR);
fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
fSclk_margin = fAdd(fMicro_FMAX,
fAdd(fMicro_CR,
fAdd(fMargin_fixed,
fSqrt(fAdd(fSquared_Sigma_FMAX,
fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
/*
fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
*/
fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
fC_Term = fAdd(fRO_DC_margin,
fAdd(fMultiply(fSM_A0, fLkg_FT),
fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
fAdd(fSclk, fSclk_margin)),
fAdd(fMultiply(fSM_A3,
fAdd(fSclk, fSclk_margin)),
fSubtract(fSM_A7, fRO_fused)))));
SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
if (GreaterThan(fRoots[0], fRoots[1]))
fEVV_V = fRoots[1];
else
fEVV_V = fRoots[0];
if (GreaterThan(fV_min, fEVV_V))
fEVV_V = fV_min;
else if (GreaterThan(fEVV_V, fV_max))
fEVV_V = fSubtract(fV_max, fStepSize);
fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
/*-----------------
* PART 4
*-----------------
*/
fV_x = fV_min;
while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
fGetSquare(fV_x)), fDerateTDP);
fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
fT_prod), fKv_b_fused), fV_x)), fV_x)));
fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
fKt_Beta_fused, fT_prod)));
fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
fKt_Beta_fused, fT_FT)));
fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
fTDP_Current = fDivide(fTDP_Power, fV_x);
fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
ConvertToFraction(10)));
fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
if (GreaterThan(fV_max, fV_NL) &&
(GreaterThan(fV_NL, fEVV_V) ||
Equal(fV_NL, fEVV_V))) {
fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
*voltage = (uint16_t)fV_NL.partial.real;
break;
} else
fV_x = fAdd(fV_x, fStepSize);
}
return result;
}
/** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
* @param hwmgr input: pointer to hwManager
* @param voltage_type input: type of EVV voltage VDDC or VDDGFX
* @param sclk input: in 10Khz unit. DPM state SCLK frequency
* which is define in PPTable SCLK/VDDC dependence
* table associated with this virtual_voltage_Id
* @param virtual_voltage_Id input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
* @param voltage output: real voltage level in unit of mv
*/
int atomctrl_get_voltage_evv_on_sclk(
struct pp_hwmgr *hwmgr,
uint8_t voltage_type,
uint32_t sclk, uint16_t virtual_voltage_Id,
uint16_t *voltage)
{
int result;
GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
get_voltage_info_param_space.ucVoltageType =
voltage_type;
get_voltage_info_param_space.ucVoltageMode =
ATOM_GET_VOLTAGE_EVV_VOLTAGE;
get_voltage_info_param_space.usVoltageLevel =
cpu_to_le16(virtual_voltage_Id);
get_voltage_info_param_space.ulSCLKFreq =
cpu_to_le32(sclk);
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
&get_voltage_info_param_space);
if (0 != result)
return result;
*voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
(&get_voltage_info_param_space))->usVoltageLevel);
return result;
}
/**
* atomctrl_get_voltage_evv gets voltage via call to ATOM COMMAND table.
* @param hwmgr input: pointer to hwManager
* @param virtual_voltage_id input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
* @param voltage output: real voltage level in unit of mv
*/
int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
uint16_t virtual_voltage_id,
uint16_t *voltage)
{
int result;
int entry_id;
GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
/* found */
break;
}
}
PP_ASSERT_WITH_CODE(entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count,
"Can't find requested voltage id in vddc_dependency_on_sclk table!",
return -EINVAL;
);
get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
get_voltage_info_param_space.ulSCLKFreq =
cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
&get_voltage_info_param_space);
if (0 != result)
return result;
*voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
(&get_voltage_info_param_space))->usVoltageLevel);
return result;
}
/**
* Get the mpll reference clock in 10KHz
*/
uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
{
ATOM_COMMON_TABLE_HEADER *fw_info;
uint32_t clock;
u8 frev, crev;
u16 size;
fw_info = (ATOM_COMMON_TABLE_HEADER *)
cgs_atom_get_data_table(hwmgr->device,
GetIndexIntoMasterTable(DATA, FirmwareInfo),
&size, &frev, &crev);
if (fw_info == NULL)
clock = 2700;
else {
if ((fw_info->ucTableFormatRevision == 2) &&
(le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
(ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
} else {
ATOM_FIRMWARE_INFO *fwInfo_0_0 =
(ATOM_FIRMWARE_INFO *)fw_info;
clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
}
}
return clock;
}
/**
* Get the asic internal spread spectrum table
*/
static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
{
ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
u8 frev, crev;
u16 size;
table = (ATOM_ASIC_INTERNAL_SS_INFO *)
cgs_atom_get_data_table(device,
GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
&size, &frev, &crev);
return table;
}
/**
* Get the asic internal spread spectrum assignment
*/
static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
const uint8_t clockSource,
const uint32_t clockSpeed,
pp_atomctrl_internal_ss_info *ssEntry)
{
ATOM_ASIC_INTERNAL_SS_INFO *table;
ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
int entry_found = 0;
memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
table = asic_internal_ss_get_ss_table(hwmgr->device);
if (NULL == table)
return -1;
ssInfo = &table->asSpreadSpectrum[0];
while (((uint8_t *)ssInfo - (uint8_t *)table) <
le16_to_cpu(table->sHeader.usStructureSize)) {
if ((clockSource == ssInfo->ucClockIndication) &&
((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
entry_found = 1;
break;
}
ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
sizeof(ATOM_ASIC_SS_ASSIGNMENT));
}
if (entry_found) {
ssEntry->speed_spectrum_percentage =
le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
(GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
(GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
ssEntry->speed_spectrum_rate /= 100;
}
switch (ssInfo->ucSpreadSpectrumMode) {
case 0:
ssEntry->speed_spectrum_mode =
pp_atomctrl_spread_spectrum_mode_down;
break;
case 1:
ssEntry->speed_spectrum_mode =
pp_atomctrl_spread_spectrum_mode_center;
break;
default:
ssEntry->speed_spectrum_mode =
pp_atomctrl_spread_spectrum_mode_down;
break;
}
}
return entry_found ? 0 : 1;
}
/**
* Get the memory clock spread spectrum info
*/
int atomctrl_get_memory_clock_spread_spectrum(
struct pp_hwmgr *hwmgr,
const uint32_t memory_clock,
pp_atomctrl_internal_ss_info *ssInfo)
{
return asic_internal_ss_get_ss_asignment(hwmgr,
ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
}
/**
* Get the engine clock spread spectrum info
*/
int atomctrl_get_engine_clock_spread_spectrum(
struct pp_hwmgr *hwmgr,
const uint32_t engine_clock,
pp_atomctrl_internal_ss_info *ssInfo)
{
return asic_internal_ss_get_ss_asignment(hwmgr,
ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
}
int atomctrl_read_efuse(void *device, uint16_t start_index,
uint16_t end_index, uint32_t mask, uint32_t *efuse)
{
int result;
READ_EFUSE_VALUE_PARAMETER efuse_param;
efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
efuse_param.sEfuse.ucBitShift = (uint8_t)
(start_index - ((start_index / 32) * 32));
efuse_param.sEfuse.ucBitLength = (uint8_t)
((end_index - start_index) + 1);
result = cgs_atom_exec_cmd_table(device,
GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
&efuse_param);
if (!result)
*efuse = le32_to_cpu(efuse_param.ulEfuseValue) & mask;
return result;
}
int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
uint8_t level)
{
DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
int result;
memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
memory_clock & SET_CLOCK_FREQ_MASK;
memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
ADJUST_MC_SETTING_PARAM;
memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
result = cgs_atom_exec_cmd_table
(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
&memory_clock_parameters);
return result;
}
int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
{
int result;
GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
get_voltage_info_param_space.ucVoltageType = voltage_type;
get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
result = cgs_atom_exec_cmd_table(hwmgr->device,
GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
&get_voltage_info_param_space);
if (0 != result)
return result;
*voltage = le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)
(&get_voltage_info_param_space))->ulVoltageLevel);
return result;
}
int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
{
int i;
u8 frev, crev;
u16 size;
ATOM_SMU_INFO_V2_1 *psmu_info =
(ATOM_SMU_INFO_V2_1 *)cgs_atom_get_data_table(hwmgr->device,
GetIndexIntoMasterTable(DATA, SMU_Info),
&size, &frev, &crev);
for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
table->entry[i].usFcw_pcc =
le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
table->entry[i].usFcw_trans_upper =
le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
table->entry[i].usRcw_trans_lower =
le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
}
return 0;
}
int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
struct pp_atom_ctrl__avfs_parameters *param)
{
ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
if (param == NULL)
return -EINVAL;
profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
cgs_atom_get_data_table(hwmgr->device,
GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
NULL, NULL, NULL);
if (!profile)
return -1;
param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
return 0;
}