| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * common.c - C code for kernel entry and exit |
| * Copyright (c) 2015 Andrew Lutomirski |
| * |
| * Based on asm and ptrace code by many authors. The code here originated |
| * in ptrace.c and signal.c. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/errno.h> |
| #include <linux/ptrace.h> |
| #include <linux/tracehook.h> |
| #include <linux/audit.h> |
| #include <linux/seccomp.h> |
| #include <linux/signal.h> |
| #include <linux/export.h> |
| #include <linux/context_tracking.h> |
| #include <linux/user-return-notifier.h> |
| #include <linux/nospec.h> |
| #include <linux/uprobes.h> |
| #include <linux/livepatch.h> |
| #include <linux/syscalls.h> |
| #include <linux/uaccess.h> |
| |
| #ifdef CONFIG_XEN_PV |
| #include <xen/xen-ops.h> |
| #include <xen/events.h> |
| #endif |
| |
| #include <asm/desc.h> |
| #include <asm/traps.h> |
| #include <asm/vdso.h> |
| #include <asm/cpufeature.h> |
| #include <asm/fpu/api.h> |
| #include <asm/nospec-branch.h> |
| #include <asm/io_bitmap.h> |
| #include <asm/syscall.h> |
| #include <asm/irq_stack.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/syscalls.h> |
| |
| #ifdef CONFIG_CONTEXT_TRACKING |
| /** |
| * enter_from_user_mode - Establish state when coming from user mode |
| * |
| * Syscall entry disables interrupts, but user mode is traced as interrupts |
| * enabled. Also with NO_HZ_FULL RCU might be idle. |
| * |
| * 1) Tell lockdep that interrupts are disabled |
| * 2) Invoke context tracking if enabled to reactivate RCU |
| * 3) Trace interrupts off state |
| */ |
| static noinstr void enter_from_user_mode(void) |
| { |
| enum ctx_state state = ct_state(); |
| |
| lockdep_hardirqs_off(CALLER_ADDR0); |
| user_exit_irqoff(); |
| |
| instrumentation_begin(); |
| CT_WARN_ON(state != CONTEXT_USER); |
| trace_hardirqs_off_finish(); |
| instrumentation_end(); |
| } |
| #else |
| static __always_inline void enter_from_user_mode(void) |
| { |
| lockdep_hardirqs_off(CALLER_ADDR0); |
| instrumentation_begin(); |
| trace_hardirqs_off_finish(); |
| instrumentation_end(); |
| } |
| #endif |
| |
| /** |
| * exit_to_user_mode - Fixup state when exiting to user mode |
| * |
| * Syscall exit enables interrupts, but the kernel state is interrupts |
| * disabled when this is invoked. Also tell RCU about it. |
| * |
| * 1) Trace interrupts on state |
| * 2) Invoke context tracking if enabled to adjust RCU state |
| * 3) Clear CPU buffers if CPU is affected by MDS and the migitation is on. |
| * 4) Tell lockdep that interrupts are enabled |
| */ |
| static __always_inline void exit_to_user_mode(void) |
| { |
| instrumentation_begin(); |
| trace_hardirqs_on_prepare(); |
| lockdep_hardirqs_on_prepare(CALLER_ADDR0); |
| instrumentation_end(); |
| |
| user_enter_irqoff(); |
| mds_user_clear_cpu_buffers(); |
| lockdep_hardirqs_on(CALLER_ADDR0); |
| } |
| |
| static void do_audit_syscall_entry(struct pt_regs *regs, u32 arch) |
| { |
| #ifdef CONFIG_X86_64 |
| if (arch == AUDIT_ARCH_X86_64) { |
| audit_syscall_entry(regs->orig_ax, regs->di, |
| regs->si, regs->dx, regs->r10); |
| } else |
| #endif |
| { |
| audit_syscall_entry(regs->orig_ax, regs->bx, |
| regs->cx, regs->dx, regs->si); |
| } |
| } |
| |
| /* |
| * Returns the syscall nr to run (which should match regs->orig_ax) or -1 |
| * to skip the syscall. |
| */ |
| static long syscall_trace_enter(struct pt_regs *regs) |
| { |
| u32 arch = in_ia32_syscall() ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64; |
| |
| struct thread_info *ti = current_thread_info(); |
| unsigned long ret = 0; |
| u32 work; |
| |
| if (IS_ENABLED(CONFIG_DEBUG_ENTRY)) |
| BUG_ON(regs != task_pt_regs(current)); |
| |
| work = READ_ONCE(ti->flags); |
| |
| if (work & (_TIF_SYSCALL_TRACE | _TIF_SYSCALL_EMU)) { |
| ret = tracehook_report_syscall_entry(regs); |
| if (ret || (work & _TIF_SYSCALL_EMU)) |
| return -1L; |
| } |
| |
| #ifdef CONFIG_SECCOMP |
| /* |
| * Do seccomp after ptrace, to catch any tracer changes. |
| */ |
| if (work & _TIF_SECCOMP) { |
| struct seccomp_data sd; |
| |
| sd.arch = arch; |
| sd.nr = regs->orig_ax; |
| sd.instruction_pointer = regs->ip; |
| #ifdef CONFIG_X86_64 |
| if (arch == AUDIT_ARCH_X86_64) { |
| sd.args[0] = regs->di; |
| sd.args[1] = regs->si; |
| sd.args[2] = regs->dx; |
| sd.args[3] = regs->r10; |
| sd.args[4] = regs->r8; |
| sd.args[5] = regs->r9; |
| } else |
| #endif |
| { |
| sd.args[0] = regs->bx; |
| sd.args[1] = regs->cx; |
| sd.args[2] = regs->dx; |
| sd.args[3] = regs->si; |
| sd.args[4] = regs->di; |
| sd.args[5] = regs->bp; |
| } |
| |
| ret = __secure_computing(&sd); |
| if (ret == -1) |
| return ret; |
| } |
| #endif |
| |
| if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) |
| trace_sys_enter(regs, regs->orig_ax); |
| |
| do_audit_syscall_entry(regs, arch); |
| |
| return ret ?: regs->orig_ax; |
| } |
| |
| #define EXIT_TO_USERMODE_LOOP_FLAGS \ |
| (_TIF_SIGPENDING | _TIF_NOTIFY_RESUME | _TIF_UPROBE | \ |
| _TIF_NEED_RESCHED | _TIF_USER_RETURN_NOTIFY | _TIF_PATCH_PENDING) |
| |
| static void exit_to_usermode_loop(struct pt_regs *regs, u32 cached_flags) |
| { |
| /* |
| * In order to return to user mode, we need to have IRQs off with |
| * none of EXIT_TO_USERMODE_LOOP_FLAGS set. Several of these flags |
| * can be set at any time on preemptible kernels if we have IRQs on, |
| * so we need to loop. Disabling preemption wouldn't help: doing the |
| * work to clear some of the flags can sleep. |
| */ |
| while (true) { |
| /* We have work to do. */ |
| local_irq_enable(); |
| |
| if (cached_flags & _TIF_NEED_RESCHED) |
| schedule(); |
| |
| if (cached_flags & _TIF_UPROBE) |
| uprobe_notify_resume(regs); |
| |
| if (cached_flags & _TIF_PATCH_PENDING) |
| klp_update_patch_state(current); |
| |
| /* deal with pending signal delivery */ |
| if (cached_flags & _TIF_SIGPENDING) |
| do_signal(regs); |
| |
| if (cached_flags & _TIF_NOTIFY_RESUME) { |
| clear_thread_flag(TIF_NOTIFY_RESUME); |
| tracehook_notify_resume(regs); |
| rseq_handle_notify_resume(NULL, regs); |
| } |
| |
| if (cached_flags & _TIF_USER_RETURN_NOTIFY) |
| fire_user_return_notifiers(); |
| |
| /* Disable IRQs and retry */ |
| local_irq_disable(); |
| |
| cached_flags = READ_ONCE(current_thread_info()->flags); |
| |
| if (!(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS)) |
| break; |
| } |
| } |
| |
| static void __prepare_exit_to_usermode(struct pt_regs *regs) |
| { |
| struct thread_info *ti = current_thread_info(); |
| u32 cached_flags; |
| |
| addr_limit_user_check(); |
| |
| lockdep_assert_irqs_disabled(); |
| lockdep_sys_exit(); |
| |
| cached_flags = READ_ONCE(ti->flags); |
| |
| if (unlikely(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS)) |
| exit_to_usermode_loop(regs, cached_flags); |
| |
| /* Reload ti->flags; we may have rescheduled above. */ |
| cached_flags = READ_ONCE(ti->flags); |
| |
| if (unlikely(cached_flags & _TIF_IO_BITMAP)) |
| tss_update_io_bitmap(); |
| |
| fpregs_assert_state_consistent(); |
| if (unlikely(cached_flags & _TIF_NEED_FPU_LOAD)) |
| switch_fpu_return(); |
| |
| #ifdef CONFIG_COMPAT |
| /* |
| * Compat syscalls set TS_COMPAT. Make sure we clear it before |
| * returning to user mode. We need to clear it *after* signal |
| * handling, because syscall restart has a fixup for compat |
| * syscalls. The fixup is exercised by the ptrace_syscall_32 |
| * selftest. |
| * |
| * We also need to clear TS_REGS_POKED_I386: the 32-bit tracer |
| * special case only applies after poking regs and before the |
| * very next return to user mode. |
| */ |
| ti->status &= ~(TS_COMPAT|TS_I386_REGS_POKED); |
| #endif |
| } |
| |
| __visible noinstr void prepare_exit_to_usermode(struct pt_regs *regs) |
| { |
| instrumentation_begin(); |
| __prepare_exit_to_usermode(regs); |
| instrumentation_end(); |
| exit_to_user_mode(); |
| } |
| |
| #define SYSCALL_EXIT_WORK_FLAGS \ |
| (_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT | \ |
| _TIF_SINGLESTEP | _TIF_SYSCALL_TRACEPOINT) |
| |
| static void syscall_slow_exit_work(struct pt_regs *regs, u32 cached_flags) |
| { |
| bool step; |
| |
| audit_syscall_exit(regs); |
| |
| if (cached_flags & _TIF_SYSCALL_TRACEPOINT) |
| trace_sys_exit(regs, regs->ax); |
| |
| /* |
| * If TIF_SYSCALL_EMU is set, we only get here because of |
| * TIF_SINGLESTEP (i.e. this is PTRACE_SYSEMU_SINGLESTEP). |
| * We already reported this syscall instruction in |
| * syscall_trace_enter(). |
| */ |
| step = unlikely( |
| (cached_flags & (_TIF_SINGLESTEP | _TIF_SYSCALL_EMU)) |
| == _TIF_SINGLESTEP); |
| if (step || cached_flags & _TIF_SYSCALL_TRACE) |
| tracehook_report_syscall_exit(regs, step); |
| } |
| |
| static void __syscall_return_slowpath(struct pt_regs *regs) |
| { |
| struct thread_info *ti = current_thread_info(); |
| u32 cached_flags = READ_ONCE(ti->flags); |
| |
| CT_WARN_ON(ct_state() != CONTEXT_KERNEL); |
| |
| if (IS_ENABLED(CONFIG_PROVE_LOCKING) && |
| WARN(irqs_disabled(), "syscall %ld left IRQs disabled", regs->orig_ax)) |
| local_irq_enable(); |
| |
| rseq_syscall(regs); |
| |
| /* |
| * First do one-time work. If these work items are enabled, we |
| * want to run them exactly once per syscall exit with IRQs on. |
| */ |
| if (unlikely(cached_flags & SYSCALL_EXIT_WORK_FLAGS)) |
| syscall_slow_exit_work(regs, cached_flags); |
| |
| local_irq_disable(); |
| __prepare_exit_to_usermode(regs); |
| } |
| |
| /* |
| * Called with IRQs on and fully valid regs. Returns with IRQs off in a |
| * state such that we can immediately switch to user mode. |
| */ |
| __visible noinstr void syscall_return_slowpath(struct pt_regs *regs) |
| { |
| instrumentation_begin(); |
| __syscall_return_slowpath(regs); |
| instrumentation_end(); |
| exit_to_user_mode(); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| __visible noinstr void do_syscall_64(unsigned long nr, struct pt_regs *regs) |
| { |
| struct thread_info *ti; |
| |
| enter_from_user_mode(); |
| instrumentation_begin(); |
| |
| local_irq_enable(); |
| ti = current_thread_info(); |
| if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY) |
| nr = syscall_trace_enter(regs); |
| |
| if (likely(nr < NR_syscalls)) { |
| nr = array_index_nospec(nr, NR_syscalls); |
| regs->ax = sys_call_table[nr](regs); |
| #ifdef CONFIG_X86_X32_ABI |
| } else if (likely((nr & __X32_SYSCALL_BIT) && |
| (nr & ~__X32_SYSCALL_BIT) < X32_NR_syscalls)) { |
| nr = array_index_nospec(nr & ~__X32_SYSCALL_BIT, |
| X32_NR_syscalls); |
| regs->ax = x32_sys_call_table[nr](regs); |
| #endif |
| } |
| __syscall_return_slowpath(regs); |
| |
| instrumentation_end(); |
| exit_to_user_mode(); |
| } |
| #endif |
| |
| #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION) |
| /* |
| * Does a 32-bit syscall. Called with IRQs on in CONTEXT_KERNEL. Does |
| * all entry and exit work and returns with IRQs off. This function is |
| * extremely hot in workloads that use it, and it's usually called from |
| * do_fast_syscall_32, so forcibly inline it to improve performance. |
| */ |
| static void do_syscall_32_irqs_on(struct pt_regs *regs) |
| { |
| struct thread_info *ti = current_thread_info(); |
| unsigned int nr = (unsigned int)regs->orig_ax; |
| |
| #ifdef CONFIG_IA32_EMULATION |
| ti->status |= TS_COMPAT; |
| #endif |
| |
| if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY) { |
| /* |
| * Subtlety here: if ptrace pokes something larger than |
| * 2^32-1 into orig_ax, this truncates it. This may or |
| * may not be necessary, but it matches the old asm |
| * behavior. |
| */ |
| nr = syscall_trace_enter(regs); |
| } |
| |
| if (likely(nr < IA32_NR_syscalls)) { |
| nr = array_index_nospec(nr, IA32_NR_syscalls); |
| regs->ax = ia32_sys_call_table[nr](regs); |
| } |
| |
| __syscall_return_slowpath(regs); |
| } |
| |
| /* Handles int $0x80 */ |
| __visible noinstr void do_int80_syscall_32(struct pt_regs *regs) |
| { |
| enter_from_user_mode(); |
| instrumentation_begin(); |
| |
| local_irq_enable(); |
| do_syscall_32_irqs_on(regs); |
| |
| instrumentation_end(); |
| exit_to_user_mode(); |
| } |
| |
| static bool __do_fast_syscall_32(struct pt_regs *regs) |
| { |
| int res; |
| |
| /* Fetch EBP from where the vDSO stashed it. */ |
| if (IS_ENABLED(CONFIG_X86_64)) { |
| /* |
| * Micro-optimization: the pointer we're following is |
| * explicitly 32 bits, so it can't be out of range. |
| */ |
| res = __get_user(*(u32 *)®s->bp, |
| (u32 __user __force *)(unsigned long)(u32)regs->sp); |
| } else { |
| res = get_user(*(u32 *)®s->bp, |
| (u32 __user __force *)(unsigned long)(u32)regs->sp); |
| } |
| |
| if (res) { |
| /* User code screwed up. */ |
| regs->ax = -EFAULT; |
| local_irq_disable(); |
| __prepare_exit_to_usermode(regs); |
| return false; |
| } |
| |
| /* Now this is just like a normal syscall. */ |
| do_syscall_32_irqs_on(regs); |
| return true; |
| } |
| |
| /* Returns 0 to return using IRET or 1 to return using SYSEXIT/SYSRETL. */ |
| __visible noinstr long do_fast_syscall_32(struct pt_regs *regs) |
| { |
| /* |
| * Called using the internal vDSO SYSENTER/SYSCALL32 calling |
| * convention. Adjust regs so it looks like we entered using int80. |
| */ |
| unsigned long landing_pad = (unsigned long)current->mm->context.vdso + |
| vdso_image_32.sym_int80_landing_pad; |
| bool success; |
| |
| /* |
| * SYSENTER loses EIP, and even SYSCALL32 needs us to skip forward |
| * so that 'regs->ip -= 2' lands back on an int $0x80 instruction. |
| * Fix it up. |
| */ |
| regs->ip = landing_pad; |
| |
| enter_from_user_mode(); |
| instrumentation_begin(); |
| |
| local_irq_enable(); |
| success = __do_fast_syscall_32(regs); |
| |
| instrumentation_end(); |
| exit_to_user_mode(); |
| |
| /* If it failed, keep it simple: use IRET. */ |
| if (!success) |
| return 0; |
| |
| #ifdef CONFIG_X86_64 |
| /* |
| * Opportunistic SYSRETL: if possible, try to return using SYSRETL. |
| * SYSRETL is available on all 64-bit CPUs, so we don't need to |
| * bother with SYSEXIT. |
| * |
| * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP, |
| * because the ECX fixup above will ensure that this is essentially |
| * never the case. |
| */ |
| return regs->cs == __USER32_CS && regs->ss == __USER_DS && |
| regs->ip == landing_pad && |
| (regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF)) == 0; |
| #else |
| /* |
| * Opportunistic SYSEXIT: if possible, try to return using SYSEXIT. |
| * |
| * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP, |
| * because the ECX fixup above will ensure that this is essentially |
| * never the case. |
| * |
| * We don't allow syscalls at all from VM86 mode, but we still |
| * need to check VM, because we might be returning from sys_vm86. |
| */ |
| return static_cpu_has(X86_FEATURE_SEP) && |
| regs->cs == __USER_CS && regs->ss == __USER_DS && |
| regs->ip == landing_pad && |
| (regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF | X86_EFLAGS_VM)) == 0; |
| #endif |
| } |
| #endif |
| |
| SYSCALL_DEFINE0(ni_syscall) |
| { |
| return -ENOSYS; |
| } |
| |
| /** |
| * idtentry_enter_cond_rcu - Handle state tracking on idtentry with conditional |
| * RCU handling |
| * @regs: Pointer to pt_regs of interrupted context |
| * |
| * Invokes: |
| * - lockdep irqflag state tracking as low level ASM entry disabled |
| * interrupts. |
| * |
| * - Context tracking if the exception hit user mode. |
| * |
| * - The hardirq tracer to keep the state consistent as low level ASM |
| * entry disabled interrupts. |
| * |
| * For kernel mode entries RCU handling is done conditional. If RCU is |
| * watching then the only RCU requirement is to check whether the tick has |
| * to be restarted. If RCU is not watching then rcu_irq_enter() has to be |
| * invoked on entry and rcu_irq_exit() on exit. |
| * |
| * Avoiding the rcu_irq_enter/exit() calls is an optimization but also |
| * solves the problem of kernel mode pagefaults which can schedule, which |
| * is not possible after invoking rcu_irq_enter() without undoing it. |
| * |
| * For user mode entries enter_from_user_mode() must be invoked to |
| * establish the proper context for NOHZ_FULL. Otherwise scheduling on exit |
| * would not be possible. |
| * |
| * Returns: True if RCU has been adjusted on a kernel entry |
| * False otherwise |
| * |
| * The return value must be fed into the rcu_exit argument of |
| * idtentry_exit_cond_rcu(). |
| */ |
| bool noinstr idtentry_enter_cond_rcu(struct pt_regs *regs) |
| { |
| if (user_mode(regs)) { |
| enter_from_user_mode(); |
| return false; |
| } |
| |
| /* |
| * If this entry hit the idle task invoke rcu_irq_enter() whether |
| * RCU is watching or not. |
| * |
| * Interupts can nest when the first interrupt invokes softirq |
| * processing on return which enables interrupts. |
| * |
| * Scheduler ticks in the idle task can mark quiescent state and |
| * terminate a grace period, if and only if the timer interrupt is |
| * not nested into another interrupt. |
| * |
| * Checking for __rcu_is_watching() here would prevent the nesting |
| * interrupt to invoke rcu_irq_enter(). If that nested interrupt is |
| * the tick then rcu_flavor_sched_clock_irq() would wrongfully |
| * assume that it is the first interupt and eventually claim |
| * quiescient state and end grace periods prematurely. |
| * |
| * Unconditionally invoke rcu_irq_enter() so RCU state stays |
| * consistent. |
| * |
| * TINY_RCU does not support EQS, so let the compiler eliminate |
| * this part when enabled. |
| */ |
| if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) { |
| /* |
| * If RCU is not watching then the same careful |
| * sequence vs. lockdep and tracing is required |
| * as in enter_from_user_mode(). |
| */ |
| lockdep_hardirqs_off(CALLER_ADDR0); |
| rcu_irq_enter(); |
| instrumentation_begin(); |
| trace_hardirqs_off_finish(); |
| instrumentation_end(); |
| |
| return true; |
| } |
| |
| /* |
| * If RCU is watching then RCU only wants to check whether it needs |
| * to restart the tick in NOHZ mode. rcu_irq_enter_check_tick() |
| * already contains a warning when RCU is not watching, so no point |
| * in having another one here. |
| */ |
| instrumentation_begin(); |
| rcu_irq_enter_check_tick(); |
| /* Use the combo lockdep/tracing function */ |
| trace_hardirqs_off(); |
| instrumentation_end(); |
| |
| return false; |
| } |
| |
| static void idtentry_exit_cond_resched(struct pt_regs *regs, bool may_sched) |
| { |
| if (may_sched && !preempt_count()) { |
| /* Sanity check RCU and thread stack */ |
| rcu_irq_exit_check_preempt(); |
| if (IS_ENABLED(CONFIG_DEBUG_ENTRY)) |
| WARN_ON_ONCE(!on_thread_stack()); |
| if (need_resched()) |
| preempt_schedule_irq(); |
| } |
| /* Covers both tracing and lockdep */ |
| trace_hardirqs_on(); |
| } |
| |
| /** |
| * idtentry_exit_cond_rcu - Handle return from exception with conditional RCU |
| * handling |
| * @regs: Pointer to pt_regs (exception entry regs) |
| * @rcu_exit: Invoke rcu_irq_exit() if true |
| * |
| * Depending on the return target (kernel/user) this runs the necessary |
| * preemption and work checks if possible and reguired and returns to |
| * the caller with interrupts disabled and no further work pending. |
| * |
| * This is the last action before returning to the low level ASM code which |
| * just needs to return to the appropriate context. |
| * |
| * Counterpart to idtentry_enter_cond_rcu(). The return value of the entry |
| * function must be fed into the @rcu_exit argument. |
| */ |
| void noinstr idtentry_exit_cond_rcu(struct pt_regs *regs, bool rcu_exit) |
| { |
| lockdep_assert_irqs_disabled(); |
| |
| /* Check whether this returns to user mode */ |
| if (user_mode(regs)) { |
| prepare_exit_to_usermode(regs); |
| } else if (regs->flags & X86_EFLAGS_IF) { |
| /* |
| * If RCU was not watching on entry this needs to be done |
| * carefully and needs the same ordering of lockdep/tracing |
| * and RCU as the return to user mode path. |
| */ |
| if (rcu_exit) { |
| instrumentation_begin(); |
| /* Tell the tracer that IRET will enable interrupts */ |
| trace_hardirqs_on_prepare(); |
| lockdep_hardirqs_on_prepare(CALLER_ADDR0); |
| instrumentation_end(); |
| rcu_irq_exit(); |
| lockdep_hardirqs_on(CALLER_ADDR0); |
| return; |
| } |
| |
| instrumentation_begin(); |
| idtentry_exit_cond_resched(regs, IS_ENABLED(CONFIG_PREEMPTION)); |
| instrumentation_end(); |
| } else { |
| /* |
| * IRQ flags state is correct already. Just tell RCU if it |
| * was not watching on entry. |
| */ |
| if (rcu_exit) |
| rcu_irq_exit(); |
| } |
| } |
| |
| /** |
| * idtentry_enter_user - Handle state tracking on idtentry from user mode |
| * @regs: Pointer to pt_regs of interrupted context |
| * |
| * Invokes enter_from_user_mode() to establish the proper context for |
| * NOHZ_FULL. Otherwise scheduling on exit would not be possible. |
| */ |
| void noinstr idtentry_enter_user(struct pt_regs *regs) |
| { |
| enter_from_user_mode(); |
| } |
| |
| /** |
| * idtentry_exit_user - Handle return from exception to user mode |
| * @regs: Pointer to pt_regs (exception entry regs) |
| * |
| * Runs the necessary preemption and work checks and returns to the caller |
| * with interrupts disabled and no further work pending. |
| * |
| * This is the last action before returning to the low level ASM code which |
| * just needs to return to the appropriate context. |
| * |
| * Counterpart to idtentry_enter_user(). |
| */ |
| void noinstr idtentry_exit_user(struct pt_regs *regs) |
| { |
| lockdep_assert_irqs_disabled(); |
| |
| prepare_exit_to_usermode(regs); |
| } |
| |
| #ifdef CONFIG_XEN_PV |
| #ifndef CONFIG_PREEMPTION |
| /* |
| * Some hypercalls issued by the toolstack can take many 10s of |
| * seconds. Allow tasks running hypercalls via the privcmd driver to |
| * be voluntarily preempted even if full kernel preemption is |
| * disabled. |
| * |
| * Such preemptible hypercalls are bracketed by |
| * xen_preemptible_hcall_begin() and xen_preemptible_hcall_end() |
| * calls. |
| */ |
| DEFINE_PER_CPU(bool, xen_in_preemptible_hcall); |
| EXPORT_SYMBOL_GPL(xen_in_preemptible_hcall); |
| |
| /* |
| * In case of scheduling the flag must be cleared and restored after |
| * returning from schedule as the task might move to a different CPU. |
| */ |
| static __always_inline bool get_and_clear_inhcall(void) |
| { |
| bool inhcall = __this_cpu_read(xen_in_preemptible_hcall); |
| |
| __this_cpu_write(xen_in_preemptible_hcall, false); |
| return inhcall; |
| } |
| |
| static __always_inline void restore_inhcall(bool inhcall) |
| { |
| __this_cpu_write(xen_in_preemptible_hcall, inhcall); |
| } |
| #else |
| static __always_inline bool get_and_clear_inhcall(void) { return false; } |
| static __always_inline void restore_inhcall(bool inhcall) { } |
| #endif |
| |
| static void __xen_pv_evtchn_do_upcall(void) |
| { |
| irq_enter_rcu(); |
| inc_irq_stat(irq_hv_callback_count); |
| |
| xen_hvm_evtchn_do_upcall(); |
| |
| irq_exit_rcu(); |
| } |
| |
| __visible noinstr void xen_pv_evtchn_do_upcall(struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs; |
| bool inhcall, rcu_exit; |
| |
| rcu_exit = idtentry_enter_cond_rcu(regs); |
| old_regs = set_irq_regs(regs); |
| |
| instrumentation_begin(); |
| run_on_irqstack_cond(__xen_pv_evtchn_do_upcall, NULL, regs); |
| instrumentation_begin(); |
| |
| set_irq_regs(old_regs); |
| |
| inhcall = get_and_clear_inhcall(); |
| if (inhcall && !WARN_ON_ONCE(rcu_exit)) { |
| instrumentation_begin(); |
| idtentry_exit_cond_resched(regs, true); |
| instrumentation_end(); |
| restore_inhcall(inhcall); |
| } else { |
| idtentry_exit_cond_rcu(regs, rcu_exit); |
| } |
| } |
| #endif /* CONFIG_XEN_PV */ |