| /* |
| * vsp1_video.c -- R-Car VSP1 Video Node |
| * |
| * Copyright (C) 2013-2015 Renesas Electronics Corporation |
| * |
| * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| */ |
| |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/slab.h> |
| #include <linux/v4l2-mediabus.h> |
| #include <linux/videodev2.h> |
| #include <linux/wait.h> |
| |
| #include <media/media-entity.h> |
| #include <media/v4l2-dev.h> |
| #include <media/v4l2-fh.h> |
| #include <media/v4l2-ioctl.h> |
| #include <media/v4l2-subdev.h> |
| #include <media/videobuf2-v4l2.h> |
| #include <media/videobuf2-dma-contig.h> |
| |
| #include "vsp1.h" |
| #include "vsp1_bru.h" |
| #include "vsp1_dl.h" |
| #include "vsp1_entity.h" |
| #include "vsp1_hgo.h" |
| #include "vsp1_hgt.h" |
| #include "vsp1_pipe.h" |
| #include "vsp1_rwpf.h" |
| #include "vsp1_uds.h" |
| #include "vsp1_video.h" |
| |
| #define VSP1_VIDEO_DEF_FORMAT V4L2_PIX_FMT_YUYV |
| #define VSP1_VIDEO_DEF_WIDTH 1024 |
| #define VSP1_VIDEO_DEF_HEIGHT 768 |
| |
| #define VSP1_VIDEO_MIN_WIDTH 2U |
| #define VSP1_VIDEO_MAX_WIDTH 8190U |
| #define VSP1_VIDEO_MIN_HEIGHT 2U |
| #define VSP1_VIDEO_MAX_HEIGHT 8190U |
| |
| /* ----------------------------------------------------------------------------- |
| * Helper functions |
| */ |
| |
| static struct v4l2_subdev * |
| vsp1_video_remote_subdev(struct media_pad *local, u32 *pad) |
| { |
| struct media_pad *remote; |
| |
| remote = media_entity_remote_pad(local); |
| if (!remote || !is_media_entity_v4l2_subdev(remote->entity)) |
| return NULL; |
| |
| if (pad) |
| *pad = remote->index; |
| |
| return media_entity_to_v4l2_subdev(remote->entity); |
| } |
| |
| static int vsp1_video_verify_format(struct vsp1_video *video) |
| { |
| struct v4l2_subdev_format fmt; |
| struct v4l2_subdev *subdev; |
| int ret; |
| |
| subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad); |
| if (subdev == NULL) |
| return -EINVAL; |
| |
| fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE; |
| ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt); |
| if (ret < 0) |
| return ret == -ENOIOCTLCMD ? -EINVAL : ret; |
| |
| if (video->rwpf->fmtinfo->mbus != fmt.format.code || |
| video->rwpf->format.height != fmt.format.height || |
| video->rwpf->format.width != fmt.format.width) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int __vsp1_video_try_format(struct vsp1_video *video, |
| struct v4l2_pix_format_mplane *pix, |
| const struct vsp1_format_info **fmtinfo) |
| { |
| static const u32 xrgb_formats[][2] = { |
| { V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 }, |
| { V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 }, |
| { V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 }, |
| { V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 }, |
| }; |
| |
| const struct vsp1_format_info *info; |
| unsigned int width = pix->width; |
| unsigned int height = pix->height; |
| unsigned int i; |
| |
| /* |
| * Backward compatibility: replace deprecated RGB formats by their XRGB |
| * equivalent. This selects the format older userspace applications want |
| * while still exposing the new format. |
| */ |
| for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) { |
| if (xrgb_formats[i][0] == pix->pixelformat) { |
| pix->pixelformat = xrgb_formats[i][1]; |
| break; |
| } |
| } |
| |
| /* |
| * Retrieve format information and select the default format if the |
| * requested format isn't supported. |
| */ |
| info = vsp1_get_format_info(video->vsp1, pix->pixelformat); |
| if (info == NULL) |
| info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT); |
| |
| pix->pixelformat = info->fourcc; |
| pix->colorspace = V4L2_COLORSPACE_SRGB; |
| pix->field = V4L2_FIELD_NONE; |
| |
| if (info->fourcc == V4L2_PIX_FMT_HSV24 || |
| info->fourcc == V4L2_PIX_FMT_HSV32) |
| pix->hsv_enc = V4L2_HSV_ENC_256; |
| |
| memset(pix->reserved, 0, sizeof(pix->reserved)); |
| |
| /* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */ |
| width = round_down(width, info->hsub); |
| height = round_down(height, info->vsub); |
| |
| /* Clamp the width and height. */ |
| pix->width = clamp(width, VSP1_VIDEO_MIN_WIDTH, VSP1_VIDEO_MAX_WIDTH); |
| pix->height = clamp(height, VSP1_VIDEO_MIN_HEIGHT, |
| VSP1_VIDEO_MAX_HEIGHT); |
| |
| /* |
| * Compute and clamp the stride and image size. While not documented in |
| * the datasheet, strides not aligned to a multiple of 128 bytes result |
| * in image corruption. |
| */ |
| for (i = 0; i < min(info->planes, 2U); ++i) { |
| unsigned int hsub = i > 0 ? info->hsub : 1; |
| unsigned int vsub = i > 0 ? info->vsub : 1; |
| unsigned int align = 128; |
| unsigned int bpl; |
| |
| bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline, |
| pix->width / hsub * info->bpp[i] / 8, |
| round_down(65535U, align)); |
| |
| pix->plane_fmt[i].bytesperline = round_up(bpl, align); |
| pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline |
| * pix->height / vsub; |
| } |
| |
| if (info->planes == 3) { |
| /* The second and third planes must have the same stride. */ |
| pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline; |
| pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage; |
| } |
| |
| pix->num_planes = info->planes; |
| |
| if (fmtinfo) |
| *fmtinfo = info; |
| |
| return 0; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * VSP1 Partition Algorithm support |
| */ |
| |
| /** |
| * vsp1_video_calculate_partition - Calculate the active partition output window |
| * |
| * @pipe: the pipeline |
| * @partition: partition that will hold the calculated values |
| * @div_size: pre-determined maximum partition division size |
| * @index: partition index |
| */ |
| static void vsp1_video_calculate_partition(struct vsp1_pipeline *pipe, |
| struct vsp1_partition *partition, |
| unsigned int div_size, |
| unsigned int index) |
| { |
| const struct v4l2_mbus_framefmt *format; |
| struct vsp1_partition_window window; |
| unsigned int modulus; |
| |
| /* |
| * Partitions are computed on the size before rotation, use the format |
| * at the WPF sink. |
| */ |
| format = vsp1_entity_get_pad_format(&pipe->output->entity, |
| pipe->output->entity.config, |
| RWPF_PAD_SINK); |
| |
| /* A single partition simply processes the output size in full. */ |
| if (pipe->partitions <= 1) { |
| window.left = 0; |
| window.width = format->width; |
| |
| vsp1_pipeline_propagate_partition(pipe, partition, index, |
| &window); |
| return; |
| } |
| |
| /* Initialise the partition with sane starting conditions. */ |
| window.left = index * div_size; |
| window.width = div_size; |
| |
| modulus = format->width % div_size; |
| |
| /* |
| * We need to prevent the last partition from being smaller than the |
| * *minimum* width of the hardware capabilities. |
| * |
| * If the modulus is less than half of the partition size, |
| * the penultimate partition is reduced to half, which is added |
| * to the final partition: |1234|1234|1234|12|341| |
| * to prevents this: |1234|1234|1234|1234|1|. |
| */ |
| if (modulus) { |
| /* |
| * pipe->partitions is 1 based, whilst index is a 0 based index. |
| * Normalise this locally. |
| */ |
| unsigned int partitions = pipe->partitions - 1; |
| |
| if (modulus < div_size / 2) { |
| if (index == partitions - 1) { |
| /* Halve the penultimate partition. */ |
| window.width = div_size / 2; |
| } else if (index == partitions) { |
| /* Increase the final partition. */ |
| window.width = (div_size / 2) + modulus; |
| window.left -= div_size / 2; |
| } |
| } else if (index == partitions) { |
| window.width = modulus; |
| } |
| } |
| |
| vsp1_pipeline_propagate_partition(pipe, partition, index, &window); |
| } |
| |
| static int vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe) |
| { |
| struct vsp1_device *vsp1 = pipe->output->entity.vsp1; |
| const struct v4l2_mbus_framefmt *format; |
| struct vsp1_entity *entity; |
| unsigned int div_size; |
| unsigned int i; |
| |
| /* |
| * Partitions are computed on the size before rotation, use the format |
| * at the WPF sink. |
| */ |
| format = vsp1_entity_get_pad_format(&pipe->output->entity, |
| pipe->output->entity.config, |
| RWPF_PAD_SINK); |
| div_size = format->width; |
| |
| /* |
| * Only Gen3 hardware requires image partitioning, Gen2 will operate |
| * with a single partition that covers the whole output. |
| */ |
| if (vsp1->info->gen == 3) { |
| list_for_each_entry(entity, &pipe->entities, list_pipe) { |
| unsigned int entity_max; |
| |
| if (!entity->ops->max_width) |
| continue; |
| |
| entity_max = entity->ops->max_width(entity, pipe); |
| if (entity_max) |
| div_size = min(div_size, entity_max); |
| } |
| } |
| |
| pipe->partitions = DIV_ROUND_UP(format->width, div_size); |
| pipe->part_table = kcalloc(pipe->partitions, sizeof(*pipe->part_table), |
| GFP_KERNEL); |
| if (!pipe->part_table) |
| return -ENOMEM; |
| |
| for (i = 0; i < pipe->partitions; ++i) |
| vsp1_video_calculate_partition(pipe, &pipe->part_table[i], |
| div_size, i); |
| |
| return 0; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Pipeline Management |
| */ |
| |
| /* |
| * vsp1_video_complete_buffer - Complete the current buffer |
| * @video: the video node |
| * |
| * This function completes the current buffer by filling its sequence number, |
| * time stamp and payload size, and hands it back to the videobuf core. |
| * |
| * When operating in DU output mode (deep pipeline to the DU through the LIF), |
| * the VSP1 needs to constantly supply frames to the display. In that case, if |
| * no other buffer is queued, reuse the one that has just been processed instead |
| * of handing it back to the videobuf core. |
| * |
| * Return the next queued buffer or NULL if the queue is empty. |
| */ |
| static struct vsp1_vb2_buffer * |
| vsp1_video_complete_buffer(struct vsp1_video *video) |
| { |
| struct vsp1_pipeline *pipe = video->rwpf->pipe; |
| struct vsp1_vb2_buffer *next = NULL; |
| struct vsp1_vb2_buffer *done; |
| unsigned long flags; |
| unsigned int i; |
| |
| spin_lock_irqsave(&video->irqlock, flags); |
| |
| if (list_empty(&video->irqqueue)) { |
| spin_unlock_irqrestore(&video->irqlock, flags); |
| return NULL; |
| } |
| |
| done = list_first_entry(&video->irqqueue, |
| struct vsp1_vb2_buffer, queue); |
| |
| /* In DU output mode reuse the buffer if the list is singular. */ |
| if (pipe->lif && list_is_singular(&video->irqqueue)) { |
| spin_unlock_irqrestore(&video->irqlock, flags); |
| return done; |
| } |
| |
| list_del(&done->queue); |
| |
| if (!list_empty(&video->irqqueue)) |
| next = list_first_entry(&video->irqqueue, |
| struct vsp1_vb2_buffer, queue); |
| |
| spin_unlock_irqrestore(&video->irqlock, flags); |
| |
| done->buf.sequence = pipe->sequence; |
| done->buf.vb2_buf.timestamp = ktime_get_ns(); |
| for (i = 0; i < done->buf.vb2_buf.num_planes; ++i) |
| vb2_set_plane_payload(&done->buf.vb2_buf, i, |
| vb2_plane_size(&done->buf.vb2_buf, i)); |
| vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE); |
| |
| return next; |
| } |
| |
| static void vsp1_video_frame_end(struct vsp1_pipeline *pipe, |
| struct vsp1_rwpf *rwpf) |
| { |
| struct vsp1_video *video = rwpf->video; |
| struct vsp1_vb2_buffer *buf; |
| |
| buf = vsp1_video_complete_buffer(video); |
| if (buf == NULL) |
| return; |
| |
| video->rwpf->mem = buf->mem; |
| pipe->buffers_ready |= 1 << video->pipe_index; |
| } |
| |
| static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe, |
| struct vsp1_dl_list *dl, |
| unsigned int partition) |
| { |
| struct vsp1_entity *entity; |
| |
| pipe->partition = &pipe->part_table[partition]; |
| |
| list_for_each_entry(entity, &pipe->entities, list_pipe) { |
| if (entity->ops->configure) |
| entity->ops->configure(entity, pipe, dl, |
| VSP1_ENTITY_PARAMS_PARTITION); |
| } |
| } |
| |
| static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe) |
| { |
| struct vsp1_device *vsp1 = pipe->output->entity.vsp1; |
| struct vsp1_entity *entity; |
| unsigned int partition; |
| |
| if (!pipe->dl) |
| pipe->dl = vsp1_dl_list_get(pipe->output->dlm); |
| |
| /* |
| * Start with the runtime parameters as the configure operation can |
| * compute/cache information needed when configuring partitions. This |
| * is the case with flipping in the WPF. |
| */ |
| list_for_each_entry(entity, &pipe->entities, list_pipe) { |
| if (entity->ops->configure) |
| entity->ops->configure(entity, pipe, pipe->dl, |
| VSP1_ENTITY_PARAMS_RUNTIME); |
| } |
| |
| /* Run the first partition */ |
| vsp1_video_pipeline_run_partition(pipe, pipe->dl, 0); |
| |
| /* Process consecutive partitions as necessary */ |
| for (partition = 1; partition < pipe->partitions; ++partition) { |
| struct vsp1_dl_list *dl; |
| |
| dl = vsp1_dl_list_get(pipe->output->dlm); |
| |
| /* |
| * An incomplete chain will still function, but output only |
| * the partitions that had a dl available. The frame end |
| * interrupt will be marked on the last dl in the chain. |
| */ |
| if (!dl) { |
| dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n"); |
| break; |
| } |
| |
| vsp1_video_pipeline_run_partition(pipe, dl, partition); |
| vsp1_dl_list_add_chain(pipe->dl, dl); |
| } |
| |
| /* Complete, and commit the head display list. */ |
| vsp1_dl_list_commit(pipe->dl); |
| pipe->dl = NULL; |
| |
| vsp1_pipeline_run(pipe); |
| } |
| |
| static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe, |
| bool completed) |
| { |
| struct vsp1_device *vsp1 = pipe->output->entity.vsp1; |
| enum vsp1_pipeline_state state; |
| unsigned long flags; |
| unsigned int i; |
| |
| /* M2M Pipelines should never call here with an incomplete frame. */ |
| WARN_ON_ONCE(!completed); |
| |
| spin_lock_irqsave(&pipe->irqlock, flags); |
| |
| /* Complete buffers on all video nodes. */ |
| for (i = 0; i < vsp1->info->rpf_count; ++i) { |
| if (!pipe->inputs[i]) |
| continue; |
| |
| vsp1_video_frame_end(pipe, pipe->inputs[i]); |
| } |
| |
| vsp1_video_frame_end(pipe, pipe->output); |
| |
| state = pipe->state; |
| pipe->state = VSP1_PIPELINE_STOPPED; |
| |
| /* |
| * If a stop has been requested, mark the pipeline as stopped and |
| * return. Otherwise restart the pipeline if ready. |
| */ |
| if (state == VSP1_PIPELINE_STOPPING) |
| wake_up(&pipe->wq); |
| else if (vsp1_pipeline_ready(pipe)) |
| vsp1_video_pipeline_run(pipe); |
| |
| spin_unlock_irqrestore(&pipe->irqlock, flags); |
| } |
| |
| static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe, |
| struct vsp1_rwpf *input, |
| struct vsp1_rwpf *output) |
| { |
| struct media_entity_enum ent_enum; |
| struct vsp1_entity *entity; |
| struct media_pad *pad; |
| struct vsp1_bru *bru = NULL; |
| int ret; |
| |
| ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * The main data path doesn't include the HGO or HGT, use |
| * vsp1_entity_remote_pad() to traverse the graph. |
| */ |
| |
| pad = vsp1_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]); |
| |
| while (1) { |
| if (pad == NULL) { |
| ret = -EPIPE; |
| goto out; |
| } |
| |
| /* We've reached a video node, that shouldn't have happened. */ |
| if (!is_media_entity_v4l2_subdev(pad->entity)) { |
| ret = -EPIPE; |
| goto out; |
| } |
| |
| entity = to_vsp1_entity( |
| media_entity_to_v4l2_subdev(pad->entity)); |
| |
| /* |
| * A BRU or BRS is present in the pipeline, store its input pad |
| * number in the input RPF for use when configuring the RPF. |
| */ |
| if (entity->type == VSP1_ENTITY_BRU || |
| entity->type == VSP1_ENTITY_BRS) { |
| /* BRU and BRS can't be chained. */ |
| if (bru) { |
| ret = -EPIPE; |
| goto out; |
| } |
| |
| bru = to_bru(&entity->subdev); |
| bru->inputs[pad->index].rpf = input; |
| input->bru_input = pad->index; |
| } |
| |
| /* We've reached the WPF, we're done. */ |
| if (entity->type == VSP1_ENTITY_WPF) |
| break; |
| |
| /* Ensure the branch has no loop. */ |
| if (media_entity_enum_test_and_set(&ent_enum, |
| &entity->subdev.entity)) { |
| ret = -EPIPE; |
| goto out; |
| } |
| |
| /* UDS can't be chained. */ |
| if (entity->type == VSP1_ENTITY_UDS) { |
| if (pipe->uds) { |
| ret = -EPIPE; |
| goto out; |
| } |
| |
| pipe->uds = entity; |
| pipe->uds_input = bru ? &bru->entity : &input->entity; |
| } |
| |
| /* Follow the source link, ignoring any HGO or HGT. */ |
| pad = &entity->pads[entity->source_pad]; |
| pad = vsp1_entity_remote_pad(pad); |
| } |
| |
| /* The last entity must be the output WPF. */ |
| if (entity != &output->entity) |
| ret = -EPIPE; |
| |
| out: |
| media_entity_enum_cleanup(&ent_enum); |
| |
| return ret; |
| } |
| |
| static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe, |
| struct vsp1_video *video) |
| { |
| struct media_graph graph; |
| struct media_entity *entity = &video->video.entity; |
| struct media_device *mdev = entity->graph_obj.mdev; |
| unsigned int i; |
| int ret; |
| |
| /* Walk the graph to locate the entities and video nodes. */ |
| ret = media_graph_walk_init(&graph, mdev); |
| if (ret) |
| return ret; |
| |
| media_graph_walk_start(&graph, entity); |
| |
| while ((entity = media_graph_walk_next(&graph))) { |
| struct v4l2_subdev *subdev; |
| struct vsp1_rwpf *rwpf; |
| struct vsp1_entity *e; |
| |
| if (!is_media_entity_v4l2_subdev(entity)) |
| continue; |
| |
| subdev = media_entity_to_v4l2_subdev(entity); |
| e = to_vsp1_entity(subdev); |
| list_add_tail(&e->list_pipe, &pipe->entities); |
| |
| switch (e->type) { |
| case VSP1_ENTITY_RPF: |
| rwpf = to_rwpf(subdev); |
| pipe->inputs[rwpf->entity.index] = rwpf; |
| rwpf->video->pipe_index = ++pipe->num_inputs; |
| rwpf->pipe = pipe; |
| break; |
| |
| case VSP1_ENTITY_WPF: |
| rwpf = to_rwpf(subdev); |
| pipe->output = rwpf; |
| rwpf->video->pipe_index = 0; |
| rwpf->pipe = pipe; |
| break; |
| |
| case VSP1_ENTITY_LIF: |
| pipe->lif = e; |
| break; |
| |
| case VSP1_ENTITY_BRU: |
| case VSP1_ENTITY_BRS: |
| pipe->bru = e; |
| break; |
| |
| case VSP1_ENTITY_HGO: |
| pipe->hgo = e; |
| to_hgo(subdev)->histo.pipe = pipe; |
| break; |
| |
| case VSP1_ENTITY_HGT: |
| pipe->hgt = e; |
| to_hgt(subdev)->histo.pipe = pipe; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| media_graph_walk_cleanup(&graph); |
| |
| /* We need one output and at least one input. */ |
| if (pipe->num_inputs == 0 || !pipe->output) |
| return -EPIPE; |
| |
| /* |
| * Follow links downstream for each input and make sure the graph |
| * contains no loop and that all branches end at the output WPF. |
| */ |
| for (i = 0; i < video->vsp1->info->rpf_count; ++i) { |
| if (!pipe->inputs[i]) |
| continue; |
| |
| ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i], |
| pipe->output); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe, |
| struct vsp1_video *video) |
| { |
| vsp1_pipeline_init(pipe); |
| |
| pipe->frame_end = vsp1_video_pipeline_frame_end; |
| |
| return vsp1_video_pipeline_build(pipe, video); |
| } |
| |
| static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video) |
| { |
| struct vsp1_pipeline *pipe; |
| int ret; |
| |
| /* |
| * Get a pipeline object for the video node. If a pipeline has already |
| * been allocated just increment its reference count and return it. |
| * Otherwise allocate a new pipeline and initialize it, it will be freed |
| * when the last reference is released. |
| */ |
| if (!video->rwpf->pipe) { |
| pipe = kzalloc(sizeof(*pipe), GFP_KERNEL); |
| if (!pipe) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = vsp1_video_pipeline_init(pipe, video); |
| if (ret < 0) { |
| vsp1_pipeline_reset(pipe); |
| kfree(pipe); |
| return ERR_PTR(ret); |
| } |
| } else { |
| pipe = video->rwpf->pipe; |
| kref_get(&pipe->kref); |
| } |
| |
| return pipe; |
| } |
| |
| static void vsp1_video_pipeline_release(struct kref *kref) |
| { |
| struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref); |
| |
| vsp1_pipeline_reset(pipe); |
| kfree(pipe); |
| } |
| |
| static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe) |
| { |
| struct media_device *mdev = &pipe->output->entity.vsp1->media_dev; |
| |
| mutex_lock(&mdev->graph_mutex); |
| kref_put(&pipe->kref, vsp1_video_pipeline_release); |
| mutex_unlock(&mdev->graph_mutex); |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * videobuf2 Queue Operations |
| */ |
| |
| static int |
| vsp1_video_queue_setup(struct vb2_queue *vq, |
| unsigned int *nbuffers, unsigned int *nplanes, |
| unsigned int sizes[], struct device *alloc_devs[]) |
| { |
| struct vsp1_video *video = vb2_get_drv_priv(vq); |
| const struct v4l2_pix_format_mplane *format = &video->rwpf->format; |
| unsigned int i; |
| |
| if (*nplanes) { |
| if (*nplanes != format->num_planes) |
| return -EINVAL; |
| |
| for (i = 0; i < *nplanes; i++) |
| if (sizes[i] < format->plane_fmt[i].sizeimage) |
| return -EINVAL; |
| return 0; |
| } |
| |
| *nplanes = format->num_planes; |
| |
| for (i = 0; i < format->num_planes; ++i) |
| sizes[i] = format->plane_fmt[i].sizeimage; |
| |
| return 0; |
| } |
| |
| static int vsp1_video_buffer_prepare(struct vb2_buffer *vb) |
| { |
| struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); |
| struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue); |
| struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf); |
| const struct v4l2_pix_format_mplane *format = &video->rwpf->format; |
| unsigned int i; |
| |
| if (vb->num_planes < format->num_planes) |
| return -EINVAL; |
| |
| for (i = 0; i < vb->num_planes; ++i) { |
| buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i); |
| |
| if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage) |
| return -EINVAL; |
| } |
| |
| for ( ; i < 3; ++i) |
| buf->mem.addr[i] = 0; |
| |
| return 0; |
| } |
| |
| static void vsp1_video_buffer_queue(struct vb2_buffer *vb) |
| { |
| struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); |
| struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue); |
| struct vsp1_pipeline *pipe = video->rwpf->pipe; |
| struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf); |
| unsigned long flags; |
| bool empty; |
| |
| spin_lock_irqsave(&video->irqlock, flags); |
| empty = list_empty(&video->irqqueue); |
| list_add_tail(&buf->queue, &video->irqqueue); |
| spin_unlock_irqrestore(&video->irqlock, flags); |
| |
| if (!empty) |
| return; |
| |
| spin_lock_irqsave(&pipe->irqlock, flags); |
| |
| video->rwpf->mem = buf->mem; |
| pipe->buffers_ready |= 1 << video->pipe_index; |
| |
| if (vb2_is_streaming(&video->queue) && |
| vsp1_pipeline_ready(pipe)) |
| vsp1_video_pipeline_run(pipe); |
| |
| spin_unlock_irqrestore(&pipe->irqlock, flags); |
| } |
| |
| static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe) |
| { |
| struct vsp1_entity *entity; |
| int ret; |
| |
| /* Determine this pipelines sizes for image partitioning support. */ |
| ret = vsp1_video_pipeline_setup_partitions(pipe); |
| if (ret < 0) |
| return ret; |
| |
| /* Prepare the display list. */ |
| pipe->dl = vsp1_dl_list_get(pipe->output->dlm); |
| if (!pipe->dl) |
| return -ENOMEM; |
| |
| if (pipe->uds) { |
| struct vsp1_uds *uds = to_uds(&pipe->uds->subdev); |
| |
| /* |
| * If a BRU or BRS is present in the pipeline before the UDS, |
| * the alpha component doesn't need to be scaled as the BRU and |
| * BRS output alpha value is fixed to 255. Otherwise we need to |
| * scale the alpha component only when available at the input |
| * RPF. |
| */ |
| if (pipe->uds_input->type == VSP1_ENTITY_BRU || |
| pipe->uds_input->type == VSP1_ENTITY_BRS) { |
| uds->scale_alpha = false; |
| } else { |
| struct vsp1_rwpf *rpf = |
| to_rwpf(&pipe->uds_input->subdev); |
| |
| uds->scale_alpha = rpf->fmtinfo->alpha; |
| } |
| } |
| |
| list_for_each_entry(entity, &pipe->entities, list_pipe) { |
| vsp1_entity_route_setup(entity, pipe, pipe->dl); |
| |
| if (entity->ops->configure) |
| entity->ops->configure(entity, pipe, pipe->dl, |
| VSP1_ENTITY_PARAMS_INIT); |
| } |
| |
| return 0; |
| } |
| |
| static void vsp1_video_cleanup_pipeline(struct vsp1_pipeline *pipe) |
| { |
| struct vsp1_video *video = pipe->output->video; |
| struct vsp1_vb2_buffer *buffer; |
| unsigned long flags; |
| |
| /* Remove all buffers from the IRQ queue. */ |
| spin_lock_irqsave(&video->irqlock, flags); |
| list_for_each_entry(buffer, &video->irqqueue, queue) |
| vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR); |
| INIT_LIST_HEAD(&video->irqqueue); |
| spin_unlock_irqrestore(&video->irqlock, flags); |
| |
| /* Release our partition table allocation */ |
| mutex_lock(&pipe->lock); |
| kfree(pipe->part_table); |
| pipe->part_table = NULL; |
| mutex_unlock(&pipe->lock); |
| } |
| |
| static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count) |
| { |
| struct vsp1_video *video = vb2_get_drv_priv(vq); |
| struct vsp1_pipeline *pipe = video->rwpf->pipe; |
| bool start_pipeline = false; |
| unsigned long flags; |
| int ret; |
| |
| mutex_lock(&pipe->lock); |
| if (pipe->stream_count == pipe->num_inputs) { |
| ret = vsp1_video_setup_pipeline(pipe); |
| if (ret < 0) { |
| mutex_unlock(&pipe->lock); |
| vsp1_video_cleanup_pipeline(pipe); |
| return ret; |
| } |
| |
| start_pipeline = true; |
| } |
| |
| pipe->stream_count++; |
| mutex_unlock(&pipe->lock); |
| |
| /* |
| * vsp1_pipeline_ready() is not sufficient to establish that all streams |
| * are prepared and the pipeline is configured, as multiple streams |
| * can race through streamon with buffers already queued; Therefore we |
| * don't even attempt to start the pipeline until the last stream has |
| * called through here. |
| */ |
| if (!start_pipeline) |
| return 0; |
| |
| spin_lock_irqsave(&pipe->irqlock, flags); |
| if (vsp1_pipeline_ready(pipe)) |
| vsp1_video_pipeline_run(pipe); |
| spin_unlock_irqrestore(&pipe->irqlock, flags); |
| |
| return 0; |
| } |
| |
| static void vsp1_video_stop_streaming(struct vb2_queue *vq) |
| { |
| struct vsp1_video *video = vb2_get_drv_priv(vq); |
| struct vsp1_pipeline *pipe = video->rwpf->pipe; |
| unsigned long flags; |
| int ret; |
| |
| /* |
| * Clear the buffers ready flag to make sure the device won't be started |
| * by a QBUF on the video node on the other side of the pipeline. |
| */ |
| spin_lock_irqsave(&video->irqlock, flags); |
| pipe->buffers_ready &= ~(1 << video->pipe_index); |
| spin_unlock_irqrestore(&video->irqlock, flags); |
| |
| mutex_lock(&pipe->lock); |
| if (--pipe->stream_count == pipe->num_inputs) { |
| /* Stop the pipeline. */ |
| ret = vsp1_pipeline_stop(pipe); |
| if (ret == -ETIMEDOUT) |
| dev_err(video->vsp1->dev, "pipeline stop timeout\n"); |
| |
| vsp1_dl_list_put(pipe->dl); |
| pipe->dl = NULL; |
| } |
| mutex_unlock(&pipe->lock); |
| |
| media_pipeline_stop(&video->video.entity); |
| vsp1_video_cleanup_pipeline(pipe); |
| vsp1_video_pipeline_put(pipe); |
| } |
| |
| static const struct vb2_ops vsp1_video_queue_qops = { |
| .queue_setup = vsp1_video_queue_setup, |
| .buf_prepare = vsp1_video_buffer_prepare, |
| .buf_queue = vsp1_video_buffer_queue, |
| .wait_prepare = vb2_ops_wait_prepare, |
| .wait_finish = vb2_ops_wait_finish, |
| .start_streaming = vsp1_video_start_streaming, |
| .stop_streaming = vsp1_video_stop_streaming, |
| }; |
| |
| /* ----------------------------------------------------------------------------- |
| * V4L2 ioctls |
| */ |
| |
| static int |
| vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap) |
| { |
| struct v4l2_fh *vfh = file->private_data; |
| struct vsp1_video *video = to_vsp1_video(vfh->vdev); |
| |
| cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING |
| | V4L2_CAP_VIDEO_CAPTURE_MPLANE |
| | V4L2_CAP_VIDEO_OUTPUT_MPLANE; |
| |
| if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE) |
| cap->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE |
| | V4L2_CAP_STREAMING; |
| else |
| cap->device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE |
| | V4L2_CAP_STREAMING; |
| |
| strlcpy(cap->driver, "vsp1", sizeof(cap->driver)); |
| strlcpy(cap->card, video->video.name, sizeof(cap->card)); |
| snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s", |
| dev_name(video->vsp1->dev)); |
| |
| return 0; |
| } |
| |
| static int |
| vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format) |
| { |
| struct v4l2_fh *vfh = file->private_data; |
| struct vsp1_video *video = to_vsp1_video(vfh->vdev); |
| |
| if (format->type != video->queue.type) |
| return -EINVAL; |
| |
| mutex_lock(&video->lock); |
| format->fmt.pix_mp = video->rwpf->format; |
| mutex_unlock(&video->lock); |
| |
| return 0; |
| } |
| |
| static int |
| vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format) |
| { |
| struct v4l2_fh *vfh = file->private_data; |
| struct vsp1_video *video = to_vsp1_video(vfh->vdev); |
| |
| if (format->type != video->queue.type) |
| return -EINVAL; |
| |
| return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL); |
| } |
| |
| static int |
| vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format) |
| { |
| struct v4l2_fh *vfh = file->private_data; |
| struct vsp1_video *video = to_vsp1_video(vfh->vdev); |
| const struct vsp1_format_info *info; |
| int ret; |
| |
| if (format->type != video->queue.type) |
| return -EINVAL; |
| |
| ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info); |
| if (ret < 0) |
| return ret; |
| |
| mutex_lock(&video->lock); |
| |
| if (vb2_is_busy(&video->queue)) { |
| ret = -EBUSY; |
| goto done; |
| } |
| |
| video->rwpf->format = format->fmt.pix_mp; |
| video->rwpf->fmtinfo = info; |
| |
| done: |
| mutex_unlock(&video->lock); |
| return ret; |
| } |
| |
| static int |
| vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type) |
| { |
| struct v4l2_fh *vfh = file->private_data; |
| struct vsp1_video *video = to_vsp1_video(vfh->vdev); |
| struct media_device *mdev = &video->vsp1->media_dev; |
| struct vsp1_pipeline *pipe; |
| int ret; |
| |
| if (video->queue.owner && video->queue.owner != file->private_data) |
| return -EBUSY; |
| |
| /* |
| * Get a pipeline for the video node and start streaming on it. No link |
| * touching an entity in the pipeline can be activated or deactivated |
| * once streaming is started. |
| */ |
| mutex_lock(&mdev->graph_mutex); |
| |
| pipe = vsp1_video_pipeline_get(video); |
| if (IS_ERR(pipe)) { |
| mutex_unlock(&mdev->graph_mutex); |
| return PTR_ERR(pipe); |
| } |
| |
| ret = __media_pipeline_start(&video->video.entity, &pipe->pipe); |
| if (ret < 0) { |
| mutex_unlock(&mdev->graph_mutex); |
| goto err_pipe; |
| } |
| |
| mutex_unlock(&mdev->graph_mutex); |
| |
| /* |
| * Verify that the configured format matches the output of the connected |
| * subdev. |
| */ |
| ret = vsp1_video_verify_format(video); |
| if (ret < 0) |
| goto err_stop; |
| |
| /* Start the queue. */ |
| ret = vb2_streamon(&video->queue, type); |
| if (ret < 0) |
| goto err_stop; |
| |
| return 0; |
| |
| err_stop: |
| media_pipeline_stop(&video->video.entity); |
| err_pipe: |
| vsp1_video_pipeline_put(pipe); |
| return ret; |
| } |
| |
| static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = { |
| .vidioc_querycap = vsp1_video_querycap, |
| .vidioc_g_fmt_vid_cap_mplane = vsp1_video_get_format, |
| .vidioc_s_fmt_vid_cap_mplane = vsp1_video_set_format, |
| .vidioc_try_fmt_vid_cap_mplane = vsp1_video_try_format, |
| .vidioc_g_fmt_vid_out_mplane = vsp1_video_get_format, |
| .vidioc_s_fmt_vid_out_mplane = vsp1_video_set_format, |
| .vidioc_try_fmt_vid_out_mplane = vsp1_video_try_format, |
| .vidioc_reqbufs = vb2_ioctl_reqbufs, |
| .vidioc_querybuf = vb2_ioctl_querybuf, |
| .vidioc_qbuf = vb2_ioctl_qbuf, |
| .vidioc_dqbuf = vb2_ioctl_dqbuf, |
| .vidioc_expbuf = vb2_ioctl_expbuf, |
| .vidioc_create_bufs = vb2_ioctl_create_bufs, |
| .vidioc_prepare_buf = vb2_ioctl_prepare_buf, |
| .vidioc_streamon = vsp1_video_streamon, |
| .vidioc_streamoff = vb2_ioctl_streamoff, |
| }; |
| |
| /* ----------------------------------------------------------------------------- |
| * V4L2 File Operations |
| */ |
| |
| static int vsp1_video_open(struct file *file) |
| { |
| struct vsp1_video *video = video_drvdata(file); |
| struct v4l2_fh *vfh; |
| int ret = 0; |
| |
| vfh = kzalloc(sizeof(*vfh), GFP_KERNEL); |
| if (vfh == NULL) |
| return -ENOMEM; |
| |
| v4l2_fh_init(vfh, &video->video); |
| v4l2_fh_add(vfh); |
| |
| file->private_data = vfh; |
| |
| ret = vsp1_device_get(video->vsp1); |
| if (ret < 0) { |
| v4l2_fh_del(vfh); |
| v4l2_fh_exit(vfh); |
| kfree(vfh); |
| } |
| |
| return ret; |
| } |
| |
| static int vsp1_video_release(struct file *file) |
| { |
| struct vsp1_video *video = video_drvdata(file); |
| struct v4l2_fh *vfh = file->private_data; |
| |
| mutex_lock(&video->lock); |
| if (video->queue.owner == vfh) { |
| vb2_queue_release(&video->queue); |
| video->queue.owner = NULL; |
| } |
| mutex_unlock(&video->lock); |
| |
| vsp1_device_put(video->vsp1); |
| |
| v4l2_fh_release(file); |
| |
| file->private_data = NULL; |
| |
| return 0; |
| } |
| |
| static const struct v4l2_file_operations vsp1_video_fops = { |
| .owner = THIS_MODULE, |
| .unlocked_ioctl = video_ioctl2, |
| .open = vsp1_video_open, |
| .release = vsp1_video_release, |
| .poll = vb2_fop_poll, |
| .mmap = vb2_fop_mmap, |
| }; |
| |
| /* ----------------------------------------------------------------------------- |
| * Initialization and Cleanup |
| */ |
| |
| struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1, |
| struct vsp1_rwpf *rwpf) |
| { |
| struct vsp1_video *video; |
| const char *direction; |
| int ret; |
| |
| video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL); |
| if (!video) |
| return ERR_PTR(-ENOMEM); |
| |
| rwpf->video = video; |
| |
| video->vsp1 = vsp1; |
| video->rwpf = rwpf; |
| |
| if (rwpf->entity.type == VSP1_ENTITY_RPF) { |
| direction = "input"; |
| video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE; |
| video->pad.flags = MEDIA_PAD_FL_SOURCE; |
| video->video.vfl_dir = VFL_DIR_TX; |
| } else { |
| direction = "output"; |
| video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE; |
| video->pad.flags = MEDIA_PAD_FL_SINK; |
| video->video.vfl_dir = VFL_DIR_RX; |
| } |
| |
| mutex_init(&video->lock); |
| spin_lock_init(&video->irqlock); |
| INIT_LIST_HEAD(&video->irqqueue); |
| |
| /* Initialize the media entity... */ |
| ret = media_entity_pads_init(&video->video.entity, 1, &video->pad); |
| if (ret < 0) |
| return ERR_PTR(ret); |
| |
| /* ... and the format ... */ |
| rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT; |
| rwpf->format.width = VSP1_VIDEO_DEF_WIDTH; |
| rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT; |
| __vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo); |
| |
| /* ... and the video node... */ |
| video->video.v4l2_dev = &video->vsp1->v4l2_dev; |
| video->video.fops = &vsp1_video_fops; |
| snprintf(video->video.name, sizeof(video->video.name), "%s %s", |
| rwpf->entity.subdev.name, direction); |
| video->video.vfl_type = VFL_TYPE_GRABBER; |
| video->video.release = video_device_release_empty; |
| video->video.ioctl_ops = &vsp1_video_ioctl_ops; |
| |
| video_set_drvdata(&video->video, video); |
| |
| video->queue.type = video->type; |
| video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF; |
| video->queue.lock = &video->lock; |
| video->queue.drv_priv = video; |
| video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer); |
| video->queue.ops = &vsp1_video_queue_qops; |
| video->queue.mem_ops = &vb2_dma_contig_memops; |
| video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; |
| video->queue.dev = video->vsp1->bus_master; |
| ret = vb2_queue_init(&video->queue); |
| if (ret < 0) { |
| dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n"); |
| goto error; |
| } |
| |
| /* ... and register the video device. */ |
| video->video.queue = &video->queue; |
| ret = video_register_device(&video->video, VFL_TYPE_GRABBER, -1); |
| if (ret < 0) { |
| dev_err(video->vsp1->dev, "failed to register video device\n"); |
| goto error; |
| } |
| |
| return video; |
| |
| error: |
| vsp1_video_cleanup(video); |
| return ERR_PTR(ret); |
| } |
| |
| void vsp1_video_cleanup(struct vsp1_video *video) |
| { |
| if (video_is_registered(&video->video)) |
| video_unregister_device(&video->video); |
| |
| media_entity_cleanup(&video->video.entity); |
| } |