| /* |
| * Copyright 2010 Red Hat Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Ben Skeggs |
| */ |
| #include "ummu.h" |
| #include "vmm.h" |
| |
| #include <subdev/bar.h> |
| #include <subdev/fb.h> |
| |
| #include <nvif/if500d.h> |
| #include <nvif/if900d.h> |
| |
| struct nvkm_mmu_ptp { |
| struct nvkm_mmu_pt *pt; |
| struct list_head head; |
| u8 shift; |
| u16 mask; |
| u16 free; |
| }; |
| |
| static void |
| nvkm_mmu_ptp_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt *pt) |
| { |
| const int slot = pt->base >> pt->ptp->shift; |
| struct nvkm_mmu_ptp *ptp = pt->ptp; |
| |
| /* If there were no free slots in the parent allocation before, |
| * there will be now, so return PTP to the cache. |
| */ |
| if (!ptp->free) |
| list_add(&ptp->head, &mmu->ptp.list); |
| ptp->free |= BIT(slot); |
| |
| /* If there's no more sub-allocations, destroy PTP. */ |
| if (ptp->free == ptp->mask) { |
| nvkm_mmu_ptc_put(mmu, force, &ptp->pt); |
| list_del(&ptp->head); |
| kfree(ptp); |
| } |
| |
| kfree(pt); |
| } |
| |
| static struct nvkm_mmu_pt * |
| nvkm_mmu_ptp_get(struct nvkm_mmu *mmu, u32 size, bool zero) |
| { |
| struct nvkm_mmu_pt *pt; |
| struct nvkm_mmu_ptp *ptp; |
| int slot; |
| |
| if (!(pt = kzalloc(sizeof(*pt), GFP_KERNEL))) |
| return NULL; |
| |
| ptp = list_first_entry_or_null(&mmu->ptp.list, typeof(*ptp), head); |
| if (!ptp) { |
| /* Need to allocate a new parent to sub-allocate from. */ |
| if (!(ptp = kmalloc(sizeof(*ptp), GFP_KERNEL))) { |
| kfree(pt); |
| return NULL; |
| } |
| |
| ptp->pt = nvkm_mmu_ptc_get(mmu, 0x1000, 0x1000, false); |
| if (!ptp->pt) { |
| kfree(ptp); |
| kfree(pt); |
| return NULL; |
| } |
| |
| ptp->shift = order_base_2(size); |
| slot = nvkm_memory_size(ptp->pt->memory) >> ptp->shift; |
| ptp->mask = (1 << slot) - 1; |
| ptp->free = ptp->mask; |
| list_add(&ptp->head, &mmu->ptp.list); |
| } |
| pt->ptp = ptp; |
| pt->sub = true; |
| |
| /* Sub-allocate from parent object, removing PTP from cache |
| * if there's no more free slots left. |
| */ |
| slot = __ffs(ptp->free); |
| ptp->free &= ~BIT(slot); |
| if (!ptp->free) |
| list_del(&ptp->head); |
| |
| pt->memory = pt->ptp->pt->memory; |
| pt->base = slot << ptp->shift; |
| pt->addr = pt->ptp->pt->addr + pt->base; |
| return pt; |
| } |
| |
| struct nvkm_mmu_ptc { |
| struct list_head head; |
| struct list_head item; |
| u32 size; |
| u32 refs; |
| }; |
| |
| static inline struct nvkm_mmu_ptc * |
| nvkm_mmu_ptc_find(struct nvkm_mmu *mmu, u32 size) |
| { |
| struct nvkm_mmu_ptc *ptc; |
| |
| list_for_each_entry(ptc, &mmu->ptc.list, head) { |
| if (ptc->size == size) |
| return ptc; |
| } |
| |
| ptc = kmalloc(sizeof(*ptc), GFP_KERNEL); |
| if (ptc) { |
| INIT_LIST_HEAD(&ptc->item); |
| ptc->size = size; |
| ptc->refs = 0; |
| list_add(&ptc->head, &mmu->ptc.list); |
| } |
| |
| return ptc; |
| } |
| |
| void |
| nvkm_mmu_ptc_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt **ppt) |
| { |
| struct nvkm_mmu_pt *pt = *ppt; |
| if (pt) { |
| /* Handle sub-allocated page tables. */ |
| if (pt->sub) { |
| mutex_lock(&mmu->ptp.mutex); |
| nvkm_mmu_ptp_put(mmu, force, pt); |
| mutex_unlock(&mmu->ptp.mutex); |
| return; |
| } |
| |
| /* Either cache or free the object. */ |
| mutex_lock(&mmu->ptc.mutex); |
| if (pt->ptc->refs < 8 /* Heuristic. */ && !force) { |
| list_add_tail(&pt->head, &pt->ptc->item); |
| pt->ptc->refs++; |
| } else { |
| nvkm_memory_unref(&pt->memory); |
| kfree(pt); |
| } |
| mutex_unlock(&mmu->ptc.mutex); |
| } |
| } |
| |
| struct nvkm_mmu_pt * |
| nvkm_mmu_ptc_get(struct nvkm_mmu *mmu, u32 size, u32 align, bool zero) |
| { |
| struct nvkm_mmu_ptc *ptc; |
| struct nvkm_mmu_pt *pt; |
| int ret; |
| |
| /* Sub-allocated page table (ie. GP100 LPT). */ |
| if (align < 0x1000) { |
| mutex_lock(&mmu->ptp.mutex); |
| pt = nvkm_mmu_ptp_get(mmu, align, zero); |
| mutex_unlock(&mmu->ptp.mutex); |
| return pt; |
| } |
| |
| /* Lookup cache for this page table size. */ |
| mutex_lock(&mmu->ptc.mutex); |
| ptc = nvkm_mmu_ptc_find(mmu, size); |
| if (!ptc) { |
| mutex_unlock(&mmu->ptc.mutex); |
| return NULL; |
| } |
| |
| /* If there's a free PT in the cache, reuse it. */ |
| pt = list_first_entry_or_null(&ptc->item, typeof(*pt), head); |
| if (pt) { |
| if (zero) |
| nvkm_fo64(pt->memory, 0, 0, size >> 3); |
| list_del(&pt->head); |
| ptc->refs--; |
| mutex_unlock(&mmu->ptc.mutex); |
| return pt; |
| } |
| mutex_unlock(&mmu->ptc.mutex); |
| |
| /* No such luck, we need to allocate. */ |
| if (!(pt = kmalloc(sizeof(*pt), GFP_KERNEL))) |
| return NULL; |
| pt->ptc = ptc; |
| pt->sub = false; |
| |
| ret = nvkm_memory_new(mmu->subdev.device, NVKM_MEM_TARGET_INST, |
| size, align, zero, &pt->memory); |
| if (ret) { |
| kfree(pt); |
| return NULL; |
| } |
| |
| pt->base = 0; |
| pt->addr = nvkm_memory_addr(pt->memory); |
| return pt; |
| } |
| |
| void |
| nvkm_mmu_ptc_dump(struct nvkm_mmu *mmu) |
| { |
| struct nvkm_mmu_ptc *ptc; |
| list_for_each_entry(ptc, &mmu->ptc.list, head) { |
| struct nvkm_mmu_pt *pt, *tt; |
| list_for_each_entry_safe(pt, tt, &ptc->item, head) { |
| nvkm_memory_unref(&pt->memory); |
| list_del(&pt->head); |
| kfree(pt); |
| } |
| } |
| } |
| |
| static void |
| nvkm_mmu_ptc_fini(struct nvkm_mmu *mmu) |
| { |
| struct nvkm_mmu_ptc *ptc, *ptct; |
| |
| list_for_each_entry_safe(ptc, ptct, &mmu->ptc.list, head) { |
| WARN_ON(!list_empty(&ptc->item)); |
| list_del(&ptc->head); |
| kfree(ptc); |
| } |
| } |
| |
| static void |
| nvkm_mmu_ptc_init(struct nvkm_mmu *mmu) |
| { |
| mutex_init(&mmu->ptc.mutex); |
| INIT_LIST_HEAD(&mmu->ptc.list); |
| mutex_init(&mmu->ptp.mutex); |
| INIT_LIST_HEAD(&mmu->ptp.list); |
| } |
| |
| static void |
| nvkm_mmu_type(struct nvkm_mmu *mmu, int heap, u8 type) |
| { |
| if (heap >= 0 && !WARN_ON(mmu->type_nr == ARRAY_SIZE(mmu->type))) { |
| mmu->type[mmu->type_nr].type = type | mmu->heap[heap].type; |
| mmu->type[mmu->type_nr].heap = heap; |
| mmu->type_nr++; |
| } |
| } |
| |
| static int |
| nvkm_mmu_heap(struct nvkm_mmu *mmu, u8 type, u64 size) |
| { |
| if (size) { |
| if (!WARN_ON(mmu->heap_nr == ARRAY_SIZE(mmu->heap))) { |
| mmu->heap[mmu->heap_nr].type = type; |
| mmu->heap[mmu->heap_nr].size = size; |
| return mmu->heap_nr++; |
| } |
| } |
| return -EINVAL; |
| } |
| |
| static void |
| nvkm_mmu_host(struct nvkm_mmu *mmu) |
| { |
| struct nvkm_device *device = mmu->subdev.device; |
| u8 type = NVKM_MEM_KIND * !!mmu->func->kind_sys; |
| int heap; |
| |
| /* Non-mappable system memory. */ |
| heap = nvkm_mmu_heap(mmu, NVKM_MEM_HOST, ~0ULL); |
| nvkm_mmu_type(mmu, heap, type); |
| |
| /* Non-coherent, cached, system memory. |
| * |
| * Block-linear mappings of system memory must be done through |
| * BAR1, and cannot be supported on systems where we're unable |
| * to map BAR1 with write-combining. |
| */ |
| type |= NVKM_MEM_MAPPABLE; |
| if (!device->bar || device->bar->iomap_uncached) |
| nvkm_mmu_type(mmu, heap, type & ~NVKM_MEM_KIND); |
| else |
| nvkm_mmu_type(mmu, heap, type); |
| |
| /* Coherent, cached, system memory. |
| * |
| * Unsupported on systems that aren't able to support snooped |
| * mappings, and also for block-linear mappings which must be |
| * done through BAR1. |
| */ |
| type |= NVKM_MEM_COHERENT; |
| if (device->func->cpu_coherent) |
| nvkm_mmu_type(mmu, heap, type & ~NVKM_MEM_KIND); |
| |
| /* Uncached system memory. */ |
| nvkm_mmu_type(mmu, heap, type |= NVKM_MEM_UNCACHED); |
| } |
| |
| static void |
| nvkm_mmu_vram(struct nvkm_mmu *mmu) |
| { |
| struct nvkm_device *device = mmu->subdev.device; |
| struct nvkm_mm *mm = &device->fb->ram->vram; |
| const u64 sizeN = nvkm_mm_heap_size(mm, NVKM_RAM_MM_NORMAL); |
| const u64 sizeU = nvkm_mm_heap_size(mm, NVKM_RAM_MM_NOMAP); |
| const u64 sizeM = nvkm_mm_heap_size(mm, NVKM_RAM_MM_MIXED); |
| u8 type = NVKM_MEM_KIND * !!mmu->func->kind; |
| u8 heap = NVKM_MEM_VRAM; |
| int heapM, heapN, heapU; |
| |
| /* Mixed-memory doesn't support compression or display. */ |
| heapM = nvkm_mmu_heap(mmu, heap, sizeM << NVKM_RAM_MM_SHIFT); |
| |
| heap |= NVKM_MEM_COMP; |
| heap |= NVKM_MEM_DISP; |
| heapN = nvkm_mmu_heap(mmu, heap, sizeN << NVKM_RAM_MM_SHIFT); |
| heapU = nvkm_mmu_heap(mmu, heap, sizeU << NVKM_RAM_MM_SHIFT); |
| |
| /* Add non-mappable VRAM types first so that they're preferred |
| * over anything else. Mixed-memory will be slower than other |
| * heaps, it's prioritised last. |
| */ |
| nvkm_mmu_type(mmu, heapU, type); |
| nvkm_mmu_type(mmu, heapN, type); |
| nvkm_mmu_type(mmu, heapM, type); |
| |
| /* Add host memory types next, under the assumption that users |
| * wanting mappable memory want to use them as staging buffers |
| * or the like. |
| */ |
| nvkm_mmu_host(mmu); |
| |
| /* Mappable VRAM types go last, as they're basically the worst |
| * possible type to ask for unless there's no other choice. |
| */ |
| if (device->bar) { |
| /* Write-combined BAR1 access. */ |
| type |= NVKM_MEM_MAPPABLE; |
| if (!device->bar->iomap_uncached) { |
| nvkm_mmu_type(mmu, heapN, type); |
| nvkm_mmu_type(mmu, heapM, type); |
| } |
| |
| /* Uncached BAR1 access. */ |
| type |= NVKM_MEM_COHERENT; |
| type |= NVKM_MEM_UNCACHED; |
| nvkm_mmu_type(mmu, heapN, type); |
| nvkm_mmu_type(mmu, heapM, type); |
| } |
| } |
| |
| static int |
| nvkm_mmu_oneinit(struct nvkm_subdev *subdev) |
| { |
| struct nvkm_mmu *mmu = nvkm_mmu(subdev); |
| |
| /* Determine available memory types. */ |
| if (mmu->subdev.device->fb && mmu->subdev.device->fb->ram) |
| nvkm_mmu_vram(mmu); |
| else |
| nvkm_mmu_host(mmu); |
| |
| if (mmu->func->vmm.global) { |
| int ret = nvkm_vmm_new(subdev->device, 0, 0, NULL, 0, NULL, |
| "gart", &mmu->vmm); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| nvkm_mmu_init(struct nvkm_subdev *subdev) |
| { |
| struct nvkm_mmu *mmu = nvkm_mmu(subdev); |
| if (mmu->func->init) |
| mmu->func->init(mmu); |
| return 0; |
| } |
| |
| static void * |
| nvkm_mmu_dtor(struct nvkm_subdev *subdev) |
| { |
| struct nvkm_mmu *mmu = nvkm_mmu(subdev); |
| |
| nvkm_vmm_unref(&mmu->vmm); |
| |
| nvkm_mmu_ptc_fini(mmu); |
| mutex_destroy(&mmu->mutex); |
| return mmu; |
| } |
| |
| static const struct nvkm_subdev_func |
| nvkm_mmu = { |
| .dtor = nvkm_mmu_dtor, |
| .oneinit = nvkm_mmu_oneinit, |
| .init = nvkm_mmu_init, |
| }; |
| |
| void |
| nvkm_mmu_ctor(const struct nvkm_mmu_func *func, struct nvkm_device *device, |
| enum nvkm_subdev_type type, int inst, struct nvkm_mmu *mmu) |
| { |
| nvkm_subdev_ctor(&nvkm_mmu, device, type, inst, &mmu->subdev); |
| mmu->func = func; |
| mmu->dma_bits = func->dma_bits; |
| nvkm_mmu_ptc_init(mmu); |
| mutex_init(&mmu->mutex); |
| mmu->user.ctor = nvkm_ummu_new; |
| mmu->user.base = func->mmu.user; |
| } |
| |
| int |
| nvkm_mmu_new_(const struct nvkm_mmu_func *func, struct nvkm_device *device, |
| enum nvkm_subdev_type type, int inst, struct nvkm_mmu **pmmu) |
| { |
| if (!(*pmmu = kzalloc(sizeof(**pmmu), GFP_KERNEL))) |
| return -ENOMEM; |
| nvkm_mmu_ctor(func, device, type, inst, *pmmu); |
| return 0; |
| } |