| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2015 Broadcom Corporation |
| */ |
| |
| #include <linux/interrupt.h> |
| #include <linux/irqchip/chained_irq.h> |
| #include <linux/irqdomain.h> |
| #include <linux/msi.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_pci.h> |
| #include <linux/pci.h> |
| |
| #include "pcie-iproc.h" |
| |
| #define IPROC_MSI_INTR_EN_SHIFT 11 |
| #define IPROC_MSI_INTR_EN BIT(IPROC_MSI_INTR_EN_SHIFT) |
| #define IPROC_MSI_INT_N_EVENT_SHIFT 1 |
| #define IPROC_MSI_INT_N_EVENT BIT(IPROC_MSI_INT_N_EVENT_SHIFT) |
| #define IPROC_MSI_EQ_EN_SHIFT 0 |
| #define IPROC_MSI_EQ_EN BIT(IPROC_MSI_EQ_EN_SHIFT) |
| |
| #define IPROC_MSI_EQ_MASK 0x3f |
| |
| /* Max number of GIC interrupts */ |
| #define NR_HW_IRQS 6 |
| |
| /* Number of entries in each event queue */ |
| #define EQ_LEN 64 |
| |
| /* Size of each event queue memory region */ |
| #define EQ_MEM_REGION_SIZE SZ_4K |
| |
| /* Size of each MSI address region */ |
| #define MSI_MEM_REGION_SIZE SZ_4K |
| |
| enum iproc_msi_reg { |
| IPROC_MSI_EQ_PAGE = 0, |
| IPROC_MSI_EQ_PAGE_UPPER, |
| IPROC_MSI_PAGE, |
| IPROC_MSI_PAGE_UPPER, |
| IPROC_MSI_CTRL, |
| IPROC_MSI_EQ_HEAD, |
| IPROC_MSI_EQ_TAIL, |
| IPROC_MSI_INTS_EN, |
| IPROC_MSI_REG_SIZE, |
| }; |
| |
| struct iproc_msi; |
| |
| /** |
| * iProc MSI group |
| * |
| * One MSI group is allocated per GIC interrupt, serviced by one iProc MSI |
| * event queue. |
| * |
| * @msi: pointer to iProc MSI data |
| * @gic_irq: GIC interrupt |
| * @eq: Event queue number |
| */ |
| struct iproc_msi_grp { |
| struct iproc_msi *msi; |
| int gic_irq; |
| unsigned int eq; |
| }; |
| |
| /** |
| * iProc event queue based MSI |
| * |
| * Only meant to be used on platforms without MSI support integrated into the |
| * GIC. |
| * |
| * @pcie: pointer to iProc PCIe data |
| * @reg_offsets: MSI register offsets |
| * @grps: MSI groups |
| * @nr_irqs: number of total interrupts connected to GIC |
| * @nr_cpus: number of toal CPUs |
| * @has_inten_reg: indicates the MSI interrupt enable register needs to be |
| * set explicitly (required for some legacy platforms) |
| * @bitmap: MSI vector bitmap |
| * @bitmap_lock: lock to protect access to the MSI bitmap |
| * @nr_msi_vecs: total number of MSI vectors |
| * @inner_domain: inner IRQ domain |
| * @msi_domain: MSI IRQ domain |
| * @nr_eq_region: required number of 4K aligned memory region for MSI event |
| * queues |
| * @nr_msi_region: required number of 4K aligned address region for MSI posted |
| * writes |
| * @eq_cpu: pointer to allocated memory region for MSI event queues |
| * @eq_dma: DMA address of MSI event queues |
| * @msi_addr: MSI address |
| */ |
| struct iproc_msi { |
| struct iproc_pcie *pcie; |
| const u16 (*reg_offsets)[IPROC_MSI_REG_SIZE]; |
| struct iproc_msi_grp *grps; |
| int nr_irqs; |
| int nr_cpus; |
| bool has_inten_reg; |
| unsigned long *bitmap; |
| struct mutex bitmap_lock; |
| unsigned int nr_msi_vecs; |
| struct irq_domain *inner_domain; |
| struct irq_domain *msi_domain; |
| unsigned int nr_eq_region; |
| unsigned int nr_msi_region; |
| void *eq_cpu; |
| dma_addr_t eq_dma; |
| phys_addr_t msi_addr; |
| }; |
| |
| static const u16 iproc_msi_reg_paxb[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = { |
| { 0x200, 0x2c0, 0x204, 0x2c4, 0x210, 0x250, 0x254, 0x208 }, |
| { 0x200, 0x2c0, 0x204, 0x2c4, 0x214, 0x258, 0x25c, 0x208 }, |
| { 0x200, 0x2c0, 0x204, 0x2c4, 0x218, 0x260, 0x264, 0x208 }, |
| { 0x200, 0x2c0, 0x204, 0x2c4, 0x21c, 0x268, 0x26c, 0x208 }, |
| { 0x200, 0x2c0, 0x204, 0x2c4, 0x220, 0x270, 0x274, 0x208 }, |
| { 0x200, 0x2c0, 0x204, 0x2c4, 0x224, 0x278, 0x27c, 0x208 }, |
| }; |
| |
| static const u16 iproc_msi_reg_paxc[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = { |
| { 0xc00, 0xc04, 0xc08, 0xc0c, 0xc40, 0xc50, 0xc60 }, |
| { 0xc10, 0xc14, 0xc18, 0xc1c, 0xc44, 0xc54, 0xc64 }, |
| { 0xc20, 0xc24, 0xc28, 0xc2c, 0xc48, 0xc58, 0xc68 }, |
| { 0xc30, 0xc34, 0xc38, 0xc3c, 0xc4c, 0xc5c, 0xc6c }, |
| }; |
| |
| static inline u32 iproc_msi_read_reg(struct iproc_msi *msi, |
| enum iproc_msi_reg reg, |
| unsigned int eq) |
| { |
| struct iproc_pcie *pcie = msi->pcie; |
| |
| return readl_relaxed(pcie->base + msi->reg_offsets[eq][reg]); |
| } |
| |
| static inline void iproc_msi_write_reg(struct iproc_msi *msi, |
| enum iproc_msi_reg reg, |
| int eq, u32 val) |
| { |
| struct iproc_pcie *pcie = msi->pcie; |
| |
| writel_relaxed(val, pcie->base + msi->reg_offsets[eq][reg]); |
| } |
| |
| static inline u32 hwirq_to_group(struct iproc_msi *msi, unsigned long hwirq) |
| { |
| return (hwirq % msi->nr_irqs); |
| } |
| |
| static inline unsigned int iproc_msi_addr_offset(struct iproc_msi *msi, |
| unsigned long hwirq) |
| { |
| if (msi->nr_msi_region > 1) |
| return hwirq_to_group(msi, hwirq) * MSI_MEM_REGION_SIZE; |
| else |
| return hwirq_to_group(msi, hwirq) * sizeof(u32); |
| } |
| |
| static inline unsigned int iproc_msi_eq_offset(struct iproc_msi *msi, u32 eq) |
| { |
| if (msi->nr_eq_region > 1) |
| return eq * EQ_MEM_REGION_SIZE; |
| else |
| return eq * EQ_LEN * sizeof(u32); |
| } |
| |
| static struct irq_chip iproc_msi_irq_chip = { |
| .name = "iProc-MSI", |
| }; |
| |
| static struct msi_domain_info iproc_msi_domain_info = { |
| .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | |
| MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX, |
| .chip = &iproc_msi_irq_chip, |
| }; |
| |
| /* |
| * In iProc PCIe core, each MSI group is serviced by a GIC interrupt and a |
| * dedicated event queue. Each MSI group can support up to 64 MSI vectors. |
| * |
| * The number of MSI groups varies between different iProc SoCs. The total |
| * number of CPU cores also varies. To support MSI IRQ affinity, we |
| * distribute GIC interrupts across all available CPUs. MSI vector is moved |
| * from one GIC interrupt to another to steer to the target CPU. |
| * |
| * Assuming: |
| * - the number of MSI groups is M |
| * - the number of CPU cores is N |
| * - M is always a multiple of N |
| * |
| * Total number of raw MSI vectors = M * 64 |
| * Total number of supported MSI vectors = (M * 64) / N |
| */ |
| static inline int hwirq_to_cpu(struct iproc_msi *msi, unsigned long hwirq) |
| { |
| return (hwirq % msi->nr_cpus); |
| } |
| |
| static inline unsigned long hwirq_to_canonical_hwirq(struct iproc_msi *msi, |
| unsigned long hwirq) |
| { |
| return (hwirq - hwirq_to_cpu(msi, hwirq)); |
| } |
| |
| static int iproc_msi_irq_set_affinity(struct irq_data *data, |
| const struct cpumask *mask, bool force) |
| { |
| struct iproc_msi *msi = irq_data_get_irq_chip_data(data); |
| int target_cpu = cpumask_first(mask); |
| int curr_cpu; |
| |
| curr_cpu = hwirq_to_cpu(msi, data->hwirq); |
| if (curr_cpu == target_cpu) |
| return IRQ_SET_MASK_OK_DONE; |
| |
| /* steer MSI to the target CPU */ |
| data->hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq) + target_cpu; |
| |
| return IRQ_SET_MASK_OK; |
| } |
| |
| static void iproc_msi_irq_compose_msi_msg(struct irq_data *data, |
| struct msi_msg *msg) |
| { |
| struct iproc_msi *msi = irq_data_get_irq_chip_data(data); |
| dma_addr_t addr; |
| |
| addr = msi->msi_addr + iproc_msi_addr_offset(msi, data->hwirq); |
| msg->address_lo = lower_32_bits(addr); |
| msg->address_hi = upper_32_bits(addr); |
| msg->data = data->hwirq << 5; |
| } |
| |
| static struct irq_chip iproc_msi_bottom_irq_chip = { |
| .name = "MSI", |
| .irq_set_affinity = iproc_msi_irq_set_affinity, |
| .irq_compose_msi_msg = iproc_msi_irq_compose_msi_msg, |
| }; |
| |
| static int iproc_msi_irq_domain_alloc(struct irq_domain *domain, |
| unsigned int virq, unsigned int nr_irqs, |
| void *args) |
| { |
| struct iproc_msi *msi = domain->host_data; |
| int hwirq, i; |
| |
| mutex_lock(&msi->bitmap_lock); |
| |
| /* Allocate 'nr_cpus' number of MSI vectors each time */ |
| hwirq = bitmap_find_next_zero_area(msi->bitmap, msi->nr_msi_vecs, 0, |
| msi->nr_cpus, 0); |
| if (hwirq < msi->nr_msi_vecs) { |
| bitmap_set(msi->bitmap, hwirq, msi->nr_cpus); |
| } else { |
| mutex_unlock(&msi->bitmap_lock); |
| return -ENOSPC; |
| } |
| |
| mutex_unlock(&msi->bitmap_lock); |
| |
| for (i = 0; i < nr_irqs; i++) { |
| irq_domain_set_info(domain, virq + i, hwirq + i, |
| &iproc_msi_bottom_irq_chip, |
| domain->host_data, handle_simple_irq, |
| NULL, NULL); |
| } |
| |
| return hwirq; |
| } |
| |
| static void iproc_msi_irq_domain_free(struct irq_domain *domain, |
| unsigned int virq, unsigned int nr_irqs) |
| { |
| struct irq_data *data = irq_domain_get_irq_data(domain, virq); |
| struct iproc_msi *msi = irq_data_get_irq_chip_data(data); |
| unsigned int hwirq; |
| |
| mutex_lock(&msi->bitmap_lock); |
| |
| hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq); |
| bitmap_clear(msi->bitmap, hwirq, msi->nr_cpus); |
| |
| mutex_unlock(&msi->bitmap_lock); |
| |
| irq_domain_free_irqs_parent(domain, virq, nr_irqs); |
| } |
| |
| static const struct irq_domain_ops msi_domain_ops = { |
| .alloc = iproc_msi_irq_domain_alloc, |
| .free = iproc_msi_irq_domain_free, |
| }; |
| |
| static inline u32 decode_msi_hwirq(struct iproc_msi *msi, u32 eq, u32 head) |
| { |
| u32 *msg, hwirq; |
| unsigned int offs; |
| |
| offs = iproc_msi_eq_offset(msi, eq) + head * sizeof(u32); |
| msg = (u32 *)(msi->eq_cpu + offs); |
| hwirq = readl(msg); |
| hwirq = (hwirq >> 5) + (hwirq & 0x1f); |
| |
| /* |
| * Since we have multiple hwirq mapped to a single MSI vector, |
| * now we need to derive the hwirq at CPU0. It can then be used to |
| * mapped back to virq. |
| */ |
| return hwirq_to_canonical_hwirq(msi, hwirq); |
| } |
| |
| static void iproc_msi_handler(struct irq_desc *desc) |
| { |
| struct irq_chip *chip = irq_desc_get_chip(desc); |
| struct iproc_msi_grp *grp; |
| struct iproc_msi *msi; |
| u32 eq, head, tail, nr_events; |
| unsigned long hwirq; |
| int virq; |
| |
| chained_irq_enter(chip, desc); |
| |
| grp = irq_desc_get_handler_data(desc); |
| msi = grp->msi; |
| eq = grp->eq; |
| |
| /* |
| * iProc MSI event queue is tracked by head and tail pointers. Head |
| * pointer indicates the next entry (MSI data) to be consumed by SW in |
| * the queue and needs to be updated by SW. iProc MSI core uses the |
| * tail pointer as the next data insertion point. |
| * |
| * Entries between head and tail pointers contain valid MSI data. MSI |
| * data is guaranteed to be in the event queue memory before the tail |
| * pointer is updated by the iProc MSI core. |
| */ |
| head = iproc_msi_read_reg(msi, IPROC_MSI_EQ_HEAD, |
| eq) & IPROC_MSI_EQ_MASK; |
| do { |
| tail = iproc_msi_read_reg(msi, IPROC_MSI_EQ_TAIL, |
| eq) & IPROC_MSI_EQ_MASK; |
| |
| /* |
| * Figure out total number of events (MSI data) to be |
| * processed. |
| */ |
| nr_events = (tail < head) ? |
| (EQ_LEN - (head - tail)) : (tail - head); |
| if (!nr_events) |
| break; |
| |
| /* process all outstanding events */ |
| while (nr_events--) { |
| hwirq = decode_msi_hwirq(msi, eq, head); |
| virq = irq_find_mapping(msi->inner_domain, hwirq); |
| generic_handle_irq(virq); |
| |
| head++; |
| head %= EQ_LEN; |
| } |
| |
| /* |
| * Now all outstanding events have been processed. Update the |
| * head pointer. |
| */ |
| iproc_msi_write_reg(msi, IPROC_MSI_EQ_HEAD, eq, head); |
| |
| /* |
| * Now go read the tail pointer again to see if there are new |
| * outstanding events that came in during the above window. |
| */ |
| } while (true); |
| |
| chained_irq_exit(chip, desc); |
| } |
| |
| static void iproc_msi_enable(struct iproc_msi *msi) |
| { |
| int i, eq; |
| u32 val; |
| |
| /* Program memory region for each event queue */ |
| for (i = 0; i < msi->nr_eq_region; i++) { |
| dma_addr_t addr = msi->eq_dma + (i * EQ_MEM_REGION_SIZE); |
| |
| iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE, i, |
| lower_32_bits(addr)); |
| iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE_UPPER, i, |
| upper_32_bits(addr)); |
| } |
| |
| /* Program address region for MSI posted writes */ |
| for (i = 0; i < msi->nr_msi_region; i++) { |
| phys_addr_t addr = msi->msi_addr + (i * MSI_MEM_REGION_SIZE); |
| |
| iproc_msi_write_reg(msi, IPROC_MSI_PAGE, i, |
| lower_32_bits(addr)); |
| iproc_msi_write_reg(msi, IPROC_MSI_PAGE_UPPER, i, |
| upper_32_bits(addr)); |
| } |
| |
| for (eq = 0; eq < msi->nr_irqs; eq++) { |
| /* Enable MSI event queue */ |
| val = IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT | |
| IPROC_MSI_EQ_EN; |
| iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val); |
| |
| /* |
| * Some legacy platforms require the MSI interrupt enable |
| * register to be set explicitly. |
| */ |
| if (msi->has_inten_reg) { |
| val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq); |
| val |= BIT(eq); |
| iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val); |
| } |
| } |
| } |
| |
| static void iproc_msi_disable(struct iproc_msi *msi) |
| { |
| u32 eq, val; |
| |
| for (eq = 0; eq < msi->nr_irqs; eq++) { |
| if (msi->has_inten_reg) { |
| val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq); |
| val &= ~BIT(eq); |
| iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val); |
| } |
| |
| val = iproc_msi_read_reg(msi, IPROC_MSI_CTRL, eq); |
| val &= ~(IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT | |
| IPROC_MSI_EQ_EN); |
| iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val); |
| } |
| } |
| |
| static int iproc_msi_alloc_domains(struct device_node *node, |
| struct iproc_msi *msi) |
| { |
| msi->inner_domain = irq_domain_add_linear(NULL, msi->nr_msi_vecs, |
| &msi_domain_ops, msi); |
| if (!msi->inner_domain) |
| return -ENOMEM; |
| |
| msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node), |
| &iproc_msi_domain_info, |
| msi->inner_domain); |
| if (!msi->msi_domain) { |
| irq_domain_remove(msi->inner_domain); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void iproc_msi_free_domains(struct iproc_msi *msi) |
| { |
| if (msi->msi_domain) |
| irq_domain_remove(msi->msi_domain); |
| |
| if (msi->inner_domain) |
| irq_domain_remove(msi->inner_domain); |
| } |
| |
| static void iproc_msi_irq_free(struct iproc_msi *msi, unsigned int cpu) |
| { |
| int i; |
| |
| for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) { |
| irq_set_chained_handler_and_data(msi->grps[i].gic_irq, |
| NULL, NULL); |
| } |
| } |
| |
| static int iproc_msi_irq_setup(struct iproc_msi *msi, unsigned int cpu) |
| { |
| int i, ret; |
| cpumask_var_t mask; |
| struct iproc_pcie *pcie = msi->pcie; |
| |
| for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) { |
| irq_set_chained_handler_and_data(msi->grps[i].gic_irq, |
| iproc_msi_handler, |
| &msi->grps[i]); |
| /* Dedicate GIC interrupt to each CPU core */ |
| if (alloc_cpumask_var(&mask, GFP_KERNEL)) { |
| cpumask_clear(mask); |
| cpumask_set_cpu(cpu, mask); |
| ret = irq_set_affinity(msi->grps[i].gic_irq, mask); |
| if (ret) |
| dev_err(pcie->dev, |
| "failed to set affinity for IRQ%d\n", |
| msi->grps[i].gic_irq); |
| free_cpumask_var(mask); |
| } else { |
| dev_err(pcie->dev, "failed to alloc CPU mask\n"); |
| ret = -EINVAL; |
| } |
| |
| if (ret) { |
| /* Free all configured/unconfigured IRQs */ |
| iproc_msi_irq_free(msi, cpu); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int iproc_msi_init(struct iproc_pcie *pcie, struct device_node *node) |
| { |
| struct iproc_msi *msi; |
| int i, ret; |
| unsigned int cpu; |
| |
| if (!of_device_is_compatible(node, "brcm,iproc-msi")) |
| return -ENODEV; |
| |
| if (!of_find_property(node, "msi-controller", NULL)) |
| return -ENODEV; |
| |
| if (pcie->msi) |
| return -EBUSY; |
| |
| msi = devm_kzalloc(pcie->dev, sizeof(*msi), GFP_KERNEL); |
| if (!msi) |
| return -ENOMEM; |
| |
| msi->pcie = pcie; |
| pcie->msi = msi; |
| msi->msi_addr = pcie->base_addr; |
| mutex_init(&msi->bitmap_lock); |
| msi->nr_cpus = num_possible_cpus(); |
| |
| msi->nr_irqs = of_irq_count(node); |
| if (!msi->nr_irqs) { |
| dev_err(pcie->dev, "found no MSI GIC interrupt\n"); |
| return -ENODEV; |
| } |
| |
| if (msi->nr_irqs > NR_HW_IRQS) { |
| dev_warn(pcie->dev, "too many MSI GIC interrupts defined %d\n", |
| msi->nr_irqs); |
| msi->nr_irqs = NR_HW_IRQS; |
| } |
| |
| if (msi->nr_irqs < msi->nr_cpus) { |
| dev_err(pcie->dev, |
| "not enough GIC interrupts for MSI affinity\n"); |
| return -EINVAL; |
| } |
| |
| if (msi->nr_irqs % msi->nr_cpus != 0) { |
| msi->nr_irqs -= msi->nr_irqs % msi->nr_cpus; |
| dev_warn(pcie->dev, "Reducing number of interrupts to %d\n", |
| msi->nr_irqs); |
| } |
| |
| switch (pcie->type) { |
| case IPROC_PCIE_PAXB_BCMA: |
| case IPROC_PCIE_PAXB: |
| msi->reg_offsets = iproc_msi_reg_paxb; |
| msi->nr_eq_region = 1; |
| msi->nr_msi_region = 1; |
| break; |
| case IPROC_PCIE_PAXC: |
| msi->reg_offsets = iproc_msi_reg_paxc; |
| msi->nr_eq_region = msi->nr_irqs; |
| msi->nr_msi_region = msi->nr_irqs; |
| break; |
| default: |
| dev_err(pcie->dev, "incompatible iProc PCIe interface\n"); |
| return -EINVAL; |
| } |
| |
| if (of_find_property(node, "brcm,pcie-msi-inten", NULL)) |
| msi->has_inten_reg = true; |
| |
| msi->nr_msi_vecs = msi->nr_irqs * EQ_LEN; |
| msi->bitmap = devm_kcalloc(pcie->dev, BITS_TO_LONGS(msi->nr_msi_vecs), |
| sizeof(*msi->bitmap), GFP_KERNEL); |
| if (!msi->bitmap) |
| return -ENOMEM; |
| |
| msi->grps = devm_kcalloc(pcie->dev, msi->nr_irqs, sizeof(*msi->grps), |
| GFP_KERNEL); |
| if (!msi->grps) |
| return -ENOMEM; |
| |
| for (i = 0; i < msi->nr_irqs; i++) { |
| unsigned int irq = irq_of_parse_and_map(node, i); |
| |
| if (!irq) { |
| dev_err(pcie->dev, "unable to parse/map interrupt\n"); |
| ret = -ENODEV; |
| goto free_irqs; |
| } |
| msi->grps[i].gic_irq = irq; |
| msi->grps[i].msi = msi; |
| msi->grps[i].eq = i; |
| } |
| |
| /* Reserve memory for event queue and make sure memories are zeroed */ |
| msi->eq_cpu = dma_alloc_coherent(pcie->dev, |
| msi->nr_eq_region * EQ_MEM_REGION_SIZE, |
| &msi->eq_dma, GFP_KERNEL); |
| if (!msi->eq_cpu) { |
| ret = -ENOMEM; |
| goto free_irqs; |
| } |
| |
| ret = iproc_msi_alloc_domains(node, msi); |
| if (ret) { |
| dev_err(pcie->dev, "failed to create MSI domains\n"); |
| goto free_eq_dma; |
| } |
| |
| for_each_online_cpu(cpu) { |
| ret = iproc_msi_irq_setup(msi, cpu); |
| if (ret) |
| goto free_msi_irq; |
| } |
| |
| iproc_msi_enable(msi); |
| |
| return 0; |
| |
| free_msi_irq: |
| for_each_online_cpu(cpu) |
| iproc_msi_irq_free(msi, cpu); |
| iproc_msi_free_domains(msi); |
| |
| free_eq_dma: |
| dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE, |
| msi->eq_cpu, msi->eq_dma); |
| |
| free_irqs: |
| for (i = 0; i < msi->nr_irqs; i++) { |
| if (msi->grps[i].gic_irq) |
| irq_dispose_mapping(msi->grps[i].gic_irq); |
| } |
| pcie->msi = NULL; |
| return ret; |
| } |
| EXPORT_SYMBOL(iproc_msi_init); |
| |
| void iproc_msi_exit(struct iproc_pcie *pcie) |
| { |
| struct iproc_msi *msi = pcie->msi; |
| unsigned int i, cpu; |
| |
| if (!msi) |
| return; |
| |
| iproc_msi_disable(msi); |
| |
| for_each_online_cpu(cpu) |
| iproc_msi_irq_free(msi, cpu); |
| |
| iproc_msi_free_domains(msi); |
| |
| dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE, |
| msi->eq_cpu, msi->eq_dma); |
| |
| for (i = 0; i < msi->nr_irqs; i++) { |
| if (msi->grps[i].gic_irq) |
| irq_dispose_mapping(msi->grps[i].gic_irq); |
| } |
| } |
| EXPORT_SYMBOL(iproc_msi_exit); |