| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * bcache setup/teardown code, and some metadata io - read a superblock and |
| * figure out what to do with it. |
| * |
| * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> |
| * Copyright 2012 Google, Inc. |
| */ |
| |
| #include "bcache.h" |
| #include "btree.h" |
| #include "debug.h" |
| #include "extents.h" |
| #include "request.h" |
| #include "writeback.h" |
| |
| #include <linux/blkdev.h> |
| #include <linux/debugfs.h> |
| #include <linux/genhd.h> |
| #include <linux/idr.h> |
| #include <linux/kthread.h> |
| #include <linux/workqueue.h> |
| #include <linux/module.h> |
| #include <linux/random.h> |
| #include <linux/reboot.h> |
| #include <linux/sysfs.h> |
| |
| unsigned int bch_cutoff_writeback; |
| unsigned int bch_cutoff_writeback_sync; |
| |
| static const char bcache_magic[] = { |
| 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, |
| 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 |
| }; |
| |
| static const char invalid_uuid[] = { |
| 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, |
| 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 |
| }; |
| |
| static struct kobject *bcache_kobj; |
| struct mutex bch_register_lock; |
| bool bcache_is_reboot; |
| LIST_HEAD(bch_cache_sets); |
| static LIST_HEAD(uncached_devices); |
| |
| static int bcache_major; |
| static DEFINE_IDA(bcache_device_idx); |
| static wait_queue_head_t unregister_wait; |
| struct workqueue_struct *bcache_wq; |
| struct workqueue_struct *bch_journal_wq; |
| |
| |
| #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) |
| /* limitation of partitions number on single bcache device */ |
| #define BCACHE_MINORS 128 |
| /* limitation of bcache devices number on single system */ |
| #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) |
| |
| /* Superblock */ |
| |
| static const char *read_super(struct cache_sb *sb, struct block_device *bdev, |
| struct cache_sb_disk **res) |
| { |
| const char *err; |
| struct cache_sb_disk *s; |
| struct page *page; |
| unsigned int i; |
| |
| page = read_cache_page_gfp(bdev->bd_inode->i_mapping, |
| SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); |
| if (IS_ERR(page)) |
| return "IO error"; |
| s = page_address(page) + offset_in_page(SB_OFFSET); |
| |
| sb->offset = le64_to_cpu(s->offset); |
| sb->version = le64_to_cpu(s->version); |
| |
| memcpy(sb->magic, s->magic, 16); |
| memcpy(sb->uuid, s->uuid, 16); |
| memcpy(sb->set_uuid, s->set_uuid, 16); |
| memcpy(sb->label, s->label, SB_LABEL_SIZE); |
| |
| sb->flags = le64_to_cpu(s->flags); |
| sb->seq = le64_to_cpu(s->seq); |
| sb->last_mount = le32_to_cpu(s->last_mount); |
| sb->first_bucket = le16_to_cpu(s->first_bucket); |
| sb->keys = le16_to_cpu(s->keys); |
| |
| for (i = 0; i < SB_JOURNAL_BUCKETS; i++) |
| sb->d[i] = le64_to_cpu(s->d[i]); |
| |
| pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", |
| sb->version, sb->flags, sb->seq, sb->keys); |
| |
| err = "Not a bcache superblock (bad offset)"; |
| if (sb->offset != SB_SECTOR) |
| goto err; |
| |
| err = "Not a bcache superblock (bad magic)"; |
| if (memcmp(sb->magic, bcache_magic, 16)) |
| goto err; |
| |
| err = "Too many journal buckets"; |
| if (sb->keys > SB_JOURNAL_BUCKETS) |
| goto err; |
| |
| err = "Bad checksum"; |
| if (s->csum != csum_set(s)) |
| goto err; |
| |
| err = "Bad UUID"; |
| if (bch_is_zero(sb->uuid, 16)) |
| goto err; |
| |
| sb->block_size = le16_to_cpu(s->block_size); |
| |
| err = "Superblock block size smaller than device block size"; |
| if (sb->block_size << 9 < bdev_logical_block_size(bdev)) |
| goto err; |
| |
| switch (sb->version) { |
| case BCACHE_SB_VERSION_BDEV: |
| sb->data_offset = BDEV_DATA_START_DEFAULT; |
| break; |
| case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: |
| sb->data_offset = le64_to_cpu(s->data_offset); |
| |
| err = "Bad data offset"; |
| if (sb->data_offset < BDEV_DATA_START_DEFAULT) |
| goto err; |
| |
| break; |
| case BCACHE_SB_VERSION_CDEV: |
| case BCACHE_SB_VERSION_CDEV_WITH_UUID: |
| sb->nbuckets = le64_to_cpu(s->nbuckets); |
| sb->bucket_size = le16_to_cpu(s->bucket_size); |
| |
| sb->nr_in_set = le16_to_cpu(s->nr_in_set); |
| sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); |
| |
| err = "Too many buckets"; |
| if (sb->nbuckets > LONG_MAX) |
| goto err; |
| |
| err = "Not enough buckets"; |
| if (sb->nbuckets < 1 << 7) |
| goto err; |
| |
| err = "Bad block/bucket size"; |
| if (!is_power_of_2(sb->block_size) || |
| sb->block_size > PAGE_SECTORS || |
| !is_power_of_2(sb->bucket_size) || |
| sb->bucket_size < PAGE_SECTORS) |
| goto err; |
| |
| err = "Invalid superblock: device too small"; |
| if (get_capacity(bdev->bd_disk) < |
| sb->bucket_size * sb->nbuckets) |
| goto err; |
| |
| err = "Bad UUID"; |
| if (bch_is_zero(sb->set_uuid, 16)) |
| goto err; |
| |
| err = "Bad cache device number in set"; |
| if (!sb->nr_in_set || |
| sb->nr_in_set <= sb->nr_this_dev || |
| sb->nr_in_set > MAX_CACHES_PER_SET) |
| goto err; |
| |
| err = "Journal buckets not sequential"; |
| for (i = 0; i < sb->keys; i++) |
| if (sb->d[i] != sb->first_bucket + i) |
| goto err; |
| |
| err = "Too many journal buckets"; |
| if (sb->first_bucket + sb->keys > sb->nbuckets) |
| goto err; |
| |
| err = "Invalid superblock: first bucket comes before end of super"; |
| if (sb->first_bucket * sb->bucket_size < 16) |
| goto err; |
| |
| break; |
| default: |
| err = "Unsupported superblock version"; |
| goto err; |
| } |
| |
| sb->last_mount = (u32)ktime_get_real_seconds(); |
| *res = s; |
| return NULL; |
| err: |
| put_page(page); |
| return err; |
| } |
| |
| static void write_bdev_super_endio(struct bio *bio) |
| { |
| struct cached_dev *dc = bio->bi_private; |
| |
| if (bio->bi_status) |
| bch_count_backing_io_errors(dc, bio); |
| |
| closure_put(&dc->sb_write); |
| } |
| |
| static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, |
| struct bio *bio) |
| { |
| unsigned int i; |
| |
| bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; |
| bio->bi_iter.bi_sector = SB_SECTOR; |
| __bio_add_page(bio, virt_to_page(out), SB_SIZE, |
| offset_in_page(out)); |
| |
| out->offset = cpu_to_le64(sb->offset); |
| out->version = cpu_to_le64(sb->version); |
| |
| memcpy(out->uuid, sb->uuid, 16); |
| memcpy(out->set_uuid, sb->set_uuid, 16); |
| memcpy(out->label, sb->label, SB_LABEL_SIZE); |
| |
| out->flags = cpu_to_le64(sb->flags); |
| out->seq = cpu_to_le64(sb->seq); |
| |
| out->last_mount = cpu_to_le32(sb->last_mount); |
| out->first_bucket = cpu_to_le16(sb->first_bucket); |
| out->keys = cpu_to_le16(sb->keys); |
| |
| for (i = 0; i < sb->keys; i++) |
| out->d[i] = cpu_to_le64(sb->d[i]); |
| |
| out->csum = csum_set(out); |
| |
| pr_debug("ver %llu, flags %llu, seq %llu\n", |
| sb->version, sb->flags, sb->seq); |
| |
| submit_bio(bio); |
| } |
| |
| static void bch_write_bdev_super_unlock(struct closure *cl) |
| { |
| struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); |
| |
| up(&dc->sb_write_mutex); |
| } |
| |
| void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) |
| { |
| struct closure *cl = &dc->sb_write; |
| struct bio *bio = &dc->sb_bio; |
| |
| down(&dc->sb_write_mutex); |
| closure_init(cl, parent); |
| |
| bio_init(bio, dc->sb_bv, 1); |
| bio_set_dev(bio, dc->bdev); |
| bio->bi_end_io = write_bdev_super_endio; |
| bio->bi_private = dc; |
| |
| closure_get(cl); |
| /* I/O request sent to backing device */ |
| __write_super(&dc->sb, dc->sb_disk, bio); |
| |
| closure_return_with_destructor(cl, bch_write_bdev_super_unlock); |
| } |
| |
| static void write_super_endio(struct bio *bio) |
| { |
| struct cache *ca = bio->bi_private; |
| |
| /* is_read = 0 */ |
| bch_count_io_errors(ca, bio->bi_status, 0, |
| "writing superblock"); |
| closure_put(&ca->set->sb_write); |
| } |
| |
| static void bcache_write_super_unlock(struct closure *cl) |
| { |
| struct cache_set *c = container_of(cl, struct cache_set, sb_write); |
| |
| up(&c->sb_write_mutex); |
| } |
| |
| void bcache_write_super(struct cache_set *c) |
| { |
| struct closure *cl = &c->sb_write; |
| struct cache *ca; |
| unsigned int i; |
| |
| down(&c->sb_write_mutex); |
| closure_init(cl, &c->cl); |
| |
| c->sb.seq++; |
| |
| for_each_cache(ca, c, i) { |
| struct bio *bio = &ca->sb_bio; |
| |
| ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID; |
| ca->sb.seq = c->sb.seq; |
| ca->sb.last_mount = c->sb.last_mount; |
| |
| SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb)); |
| |
| bio_init(bio, ca->sb_bv, 1); |
| bio_set_dev(bio, ca->bdev); |
| bio->bi_end_io = write_super_endio; |
| bio->bi_private = ca; |
| |
| closure_get(cl); |
| __write_super(&ca->sb, ca->sb_disk, bio); |
| } |
| |
| closure_return_with_destructor(cl, bcache_write_super_unlock); |
| } |
| |
| /* UUID io */ |
| |
| static void uuid_endio(struct bio *bio) |
| { |
| struct closure *cl = bio->bi_private; |
| struct cache_set *c = container_of(cl, struct cache_set, uuid_write); |
| |
| cache_set_err_on(bio->bi_status, c, "accessing uuids"); |
| bch_bbio_free(bio, c); |
| closure_put(cl); |
| } |
| |
| static void uuid_io_unlock(struct closure *cl) |
| { |
| struct cache_set *c = container_of(cl, struct cache_set, uuid_write); |
| |
| up(&c->uuid_write_mutex); |
| } |
| |
| static void uuid_io(struct cache_set *c, int op, unsigned long op_flags, |
| struct bkey *k, struct closure *parent) |
| { |
| struct closure *cl = &c->uuid_write; |
| struct uuid_entry *u; |
| unsigned int i; |
| char buf[80]; |
| |
| BUG_ON(!parent); |
| down(&c->uuid_write_mutex); |
| closure_init(cl, parent); |
| |
| for (i = 0; i < KEY_PTRS(k); i++) { |
| struct bio *bio = bch_bbio_alloc(c); |
| |
| bio->bi_opf = REQ_SYNC | REQ_META | op_flags; |
| bio->bi_iter.bi_size = KEY_SIZE(k) << 9; |
| |
| bio->bi_end_io = uuid_endio; |
| bio->bi_private = cl; |
| bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); |
| bch_bio_map(bio, c->uuids); |
| |
| bch_submit_bbio(bio, c, k, i); |
| |
| if (op != REQ_OP_WRITE) |
| break; |
| } |
| |
| bch_extent_to_text(buf, sizeof(buf), k); |
| pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf); |
| |
| for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) |
| if (!bch_is_zero(u->uuid, 16)) |
| pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", |
| u - c->uuids, u->uuid, u->label, |
| u->first_reg, u->last_reg, u->invalidated); |
| |
| closure_return_with_destructor(cl, uuid_io_unlock); |
| } |
| |
| static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) |
| { |
| struct bkey *k = &j->uuid_bucket; |
| |
| if (__bch_btree_ptr_invalid(c, k)) |
| return "bad uuid pointer"; |
| |
| bkey_copy(&c->uuid_bucket, k); |
| uuid_io(c, REQ_OP_READ, 0, k, cl); |
| |
| if (j->version < BCACHE_JSET_VERSION_UUIDv1) { |
| struct uuid_entry_v0 *u0 = (void *) c->uuids; |
| struct uuid_entry *u1 = (void *) c->uuids; |
| int i; |
| |
| closure_sync(cl); |
| |
| /* |
| * Since the new uuid entry is bigger than the old, we have to |
| * convert starting at the highest memory address and work down |
| * in order to do it in place |
| */ |
| |
| for (i = c->nr_uuids - 1; |
| i >= 0; |
| --i) { |
| memcpy(u1[i].uuid, u0[i].uuid, 16); |
| memcpy(u1[i].label, u0[i].label, 32); |
| |
| u1[i].first_reg = u0[i].first_reg; |
| u1[i].last_reg = u0[i].last_reg; |
| u1[i].invalidated = u0[i].invalidated; |
| |
| u1[i].flags = 0; |
| u1[i].sectors = 0; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static int __uuid_write(struct cache_set *c) |
| { |
| BKEY_PADDED(key) k; |
| struct closure cl; |
| struct cache *ca; |
| |
| closure_init_stack(&cl); |
| lockdep_assert_held(&bch_register_lock); |
| |
| if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true)) |
| return 1; |
| |
| SET_KEY_SIZE(&k.key, c->sb.bucket_size); |
| uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl); |
| closure_sync(&cl); |
| |
| /* Only one bucket used for uuid write */ |
| ca = PTR_CACHE(c, &k.key, 0); |
| atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); |
| |
| bkey_copy(&c->uuid_bucket, &k.key); |
| bkey_put(c, &k.key); |
| return 0; |
| } |
| |
| int bch_uuid_write(struct cache_set *c) |
| { |
| int ret = __uuid_write(c); |
| |
| if (!ret) |
| bch_journal_meta(c, NULL); |
| |
| return ret; |
| } |
| |
| static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) |
| { |
| struct uuid_entry *u; |
| |
| for (u = c->uuids; |
| u < c->uuids + c->nr_uuids; u++) |
| if (!memcmp(u->uuid, uuid, 16)) |
| return u; |
| |
| return NULL; |
| } |
| |
| static struct uuid_entry *uuid_find_empty(struct cache_set *c) |
| { |
| static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; |
| |
| return uuid_find(c, zero_uuid); |
| } |
| |
| /* |
| * Bucket priorities/gens: |
| * |
| * For each bucket, we store on disk its |
| * 8 bit gen |
| * 16 bit priority |
| * |
| * See alloc.c for an explanation of the gen. The priority is used to implement |
| * lru (and in the future other) cache replacement policies; for most purposes |
| * it's just an opaque integer. |
| * |
| * The gens and the priorities don't have a whole lot to do with each other, and |
| * it's actually the gens that must be written out at specific times - it's no |
| * big deal if the priorities don't get written, if we lose them we just reuse |
| * buckets in suboptimal order. |
| * |
| * On disk they're stored in a packed array, and in as many buckets are required |
| * to fit them all. The buckets we use to store them form a list; the journal |
| * header points to the first bucket, the first bucket points to the second |
| * bucket, et cetera. |
| * |
| * This code is used by the allocation code; periodically (whenever it runs out |
| * of buckets to allocate from) the allocation code will invalidate some |
| * buckets, but it can't use those buckets until their new gens are safely on |
| * disk. |
| */ |
| |
| static void prio_endio(struct bio *bio) |
| { |
| struct cache *ca = bio->bi_private; |
| |
| cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); |
| bch_bbio_free(bio, ca->set); |
| closure_put(&ca->prio); |
| } |
| |
| static void prio_io(struct cache *ca, uint64_t bucket, int op, |
| unsigned long op_flags) |
| { |
| struct closure *cl = &ca->prio; |
| struct bio *bio = bch_bbio_alloc(ca->set); |
| |
| closure_init_stack(cl); |
| |
| bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; |
| bio_set_dev(bio, ca->bdev); |
| bio->bi_iter.bi_size = bucket_bytes(ca); |
| |
| bio->bi_end_io = prio_endio; |
| bio->bi_private = ca; |
| bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); |
| bch_bio_map(bio, ca->disk_buckets); |
| |
| closure_bio_submit(ca->set, bio, &ca->prio); |
| closure_sync(cl); |
| } |
| |
| int bch_prio_write(struct cache *ca, bool wait) |
| { |
| int i; |
| struct bucket *b; |
| struct closure cl; |
| |
| pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", |
| fifo_used(&ca->free[RESERVE_PRIO]), |
| fifo_used(&ca->free[RESERVE_NONE]), |
| fifo_used(&ca->free_inc)); |
| |
| /* |
| * Pre-check if there are enough free buckets. In the non-blocking |
| * scenario it's better to fail early rather than starting to allocate |
| * buckets and do a cleanup later in case of failure. |
| */ |
| if (!wait) { |
| size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + |
| fifo_used(&ca->free[RESERVE_NONE]); |
| if (prio_buckets(ca) > avail) |
| return -ENOMEM; |
| } |
| |
| closure_init_stack(&cl); |
| |
| lockdep_assert_held(&ca->set->bucket_lock); |
| |
| ca->disk_buckets->seq++; |
| |
| atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), |
| &ca->meta_sectors_written); |
| |
| for (i = prio_buckets(ca) - 1; i >= 0; --i) { |
| long bucket; |
| struct prio_set *p = ca->disk_buckets; |
| struct bucket_disk *d = p->data; |
| struct bucket_disk *end = d + prios_per_bucket(ca); |
| |
| for (b = ca->buckets + i * prios_per_bucket(ca); |
| b < ca->buckets + ca->sb.nbuckets && d < end; |
| b++, d++) { |
| d->prio = cpu_to_le16(b->prio); |
| d->gen = b->gen; |
| } |
| |
| p->next_bucket = ca->prio_buckets[i + 1]; |
| p->magic = pset_magic(&ca->sb); |
| p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8); |
| |
| bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); |
| BUG_ON(bucket == -1); |
| |
| mutex_unlock(&ca->set->bucket_lock); |
| prio_io(ca, bucket, REQ_OP_WRITE, 0); |
| mutex_lock(&ca->set->bucket_lock); |
| |
| ca->prio_buckets[i] = bucket; |
| atomic_dec_bug(&ca->buckets[bucket].pin); |
| } |
| |
| mutex_unlock(&ca->set->bucket_lock); |
| |
| bch_journal_meta(ca->set, &cl); |
| closure_sync(&cl); |
| |
| mutex_lock(&ca->set->bucket_lock); |
| |
| /* |
| * Don't want the old priorities to get garbage collected until after we |
| * finish writing the new ones, and they're journalled |
| */ |
| for (i = 0; i < prio_buckets(ca); i++) { |
| if (ca->prio_last_buckets[i]) |
| __bch_bucket_free(ca, |
| &ca->buckets[ca->prio_last_buckets[i]]); |
| |
| ca->prio_last_buckets[i] = ca->prio_buckets[i]; |
| } |
| return 0; |
| } |
| |
| static int prio_read(struct cache *ca, uint64_t bucket) |
| { |
| struct prio_set *p = ca->disk_buckets; |
| struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; |
| struct bucket *b; |
| unsigned int bucket_nr = 0; |
| int ret = -EIO; |
| |
| for (b = ca->buckets; |
| b < ca->buckets + ca->sb.nbuckets; |
| b++, d++) { |
| if (d == end) { |
| ca->prio_buckets[bucket_nr] = bucket; |
| ca->prio_last_buckets[bucket_nr] = bucket; |
| bucket_nr++; |
| |
| prio_io(ca, bucket, REQ_OP_READ, 0); |
| |
| if (p->csum != |
| bch_crc64(&p->magic, bucket_bytes(ca) - 8)) { |
| pr_warn("bad csum reading priorities\n"); |
| goto out; |
| } |
| |
| if (p->magic != pset_magic(&ca->sb)) { |
| pr_warn("bad magic reading priorities\n"); |
| goto out; |
| } |
| |
| bucket = p->next_bucket; |
| d = p->data; |
| } |
| |
| b->prio = le16_to_cpu(d->prio); |
| b->gen = b->last_gc = d->gen; |
| } |
| |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| /* Bcache device */ |
| |
| static int open_dev(struct block_device *b, fmode_t mode) |
| { |
| struct bcache_device *d = b->bd_disk->private_data; |
| |
| if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) |
| return -ENXIO; |
| |
| closure_get(&d->cl); |
| return 0; |
| } |
| |
| static void release_dev(struct gendisk *b, fmode_t mode) |
| { |
| struct bcache_device *d = b->private_data; |
| |
| closure_put(&d->cl); |
| } |
| |
| static int ioctl_dev(struct block_device *b, fmode_t mode, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct bcache_device *d = b->bd_disk->private_data; |
| |
| return d->ioctl(d, mode, cmd, arg); |
| } |
| |
| static const struct block_device_operations bcache_cached_ops = { |
| .submit_bio = cached_dev_submit_bio, |
| .open = open_dev, |
| .release = release_dev, |
| .ioctl = ioctl_dev, |
| .owner = THIS_MODULE, |
| }; |
| |
| static const struct block_device_operations bcache_flash_ops = { |
| .submit_bio = flash_dev_submit_bio, |
| .open = open_dev, |
| .release = release_dev, |
| .ioctl = ioctl_dev, |
| .owner = THIS_MODULE, |
| }; |
| |
| void bcache_device_stop(struct bcache_device *d) |
| { |
| if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) |
| /* |
| * closure_fn set to |
| * - cached device: cached_dev_flush() |
| * - flash dev: flash_dev_flush() |
| */ |
| closure_queue(&d->cl); |
| } |
| |
| static void bcache_device_unlink(struct bcache_device *d) |
| { |
| lockdep_assert_held(&bch_register_lock); |
| |
| if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { |
| unsigned int i; |
| struct cache *ca; |
| |
| sysfs_remove_link(&d->c->kobj, d->name); |
| sysfs_remove_link(&d->kobj, "cache"); |
| |
| for_each_cache(ca, d->c, i) |
| bd_unlink_disk_holder(ca->bdev, d->disk); |
| } |
| } |
| |
| static void bcache_device_link(struct bcache_device *d, struct cache_set *c, |
| const char *name) |
| { |
| unsigned int i; |
| struct cache *ca; |
| int ret; |
| |
| for_each_cache(ca, d->c, i) |
| bd_link_disk_holder(ca->bdev, d->disk); |
| |
| snprintf(d->name, BCACHEDEVNAME_SIZE, |
| "%s%u", name, d->id); |
| |
| ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); |
| if (ret < 0) |
| pr_err("Couldn't create device -> cache set symlink\n"); |
| |
| ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); |
| if (ret < 0) |
| pr_err("Couldn't create cache set -> device symlink\n"); |
| |
| clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); |
| } |
| |
| static void bcache_device_detach(struct bcache_device *d) |
| { |
| lockdep_assert_held(&bch_register_lock); |
| |
| atomic_dec(&d->c->attached_dev_nr); |
| |
| if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { |
| struct uuid_entry *u = d->c->uuids + d->id; |
| |
| SET_UUID_FLASH_ONLY(u, 0); |
| memcpy(u->uuid, invalid_uuid, 16); |
| u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); |
| bch_uuid_write(d->c); |
| } |
| |
| bcache_device_unlink(d); |
| |
| d->c->devices[d->id] = NULL; |
| closure_put(&d->c->caching); |
| d->c = NULL; |
| } |
| |
| static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, |
| unsigned int id) |
| { |
| d->id = id; |
| d->c = c; |
| c->devices[id] = d; |
| |
| if (id >= c->devices_max_used) |
| c->devices_max_used = id + 1; |
| |
| closure_get(&c->caching); |
| } |
| |
| static inline int first_minor_to_idx(int first_minor) |
| { |
| return (first_minor/BCACHE_MINORS); |
| } |
| |
| static inline int idx_to_first_minor(int idx) |
| { |
| return (idx * BCACHE_MINORS); |
| } |
| |
| static void bcache_device_free(struct bcache_device *d) |
| { |
| struct gendisk *disk = d->disk; |
| |
| lockdep_assert_held(&bch_register_lock); |
| |
| if (disk) |
| pr_info("%s stopped\n", disk->disk_name); |
| else |
| pr_err("bcache device (NULL gendisk) stopped\n"); |
| |
| if (d->c) |
| bcache_device_detach(d); |
| |
| if (disk) { |
| bool disk_added = (disk->flags & GENHD_FL_UP) != 0; |
| |
| if (disk_added) |
| del_gendisk(disk); |
| |
| if (disk->queue) |
| blk_cleanup_queue(disk->queue); |
| |
| ida_simple_remove(&bcache_device_idx, |
| first_minor_to_idx(disk->first_minor)); |
| if (disk_added) |
| put_disk(disk); |
| } |
| |
| bioset_exit(&d->bio_split); |
| kvfree(d->full_dirty_stripes); |
| kvfree(d->stripe_sectors_dirty); |
| |
| closure_debug_destroy(&d->cl); |
| } |
| |
| static int bcache_device_init(struct bcache_device *d, unsigned int block_size, |
| sector_t sectors, struct block_device *cached_bdev, |
| const struct block_device_operations *ops) |
| { |
| struct request_queue *q; |
| const size_t max_stripes = min_t(size_t, INT_MAX, |
| SIZE_MAX / sizeof(atomic_t)); |
| size_t n; |
| int idx; |
| |
| if (!d->stripe_size) |
| d->stripe_size = 1 << 31; |
| |
| d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size); |
| |
| if (!d->nr_stripes || d->nr_stripes > max_stripes) { |
| pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)\n", |
| (unsigned int)d->nr_stripes); |
| return -ENOMEM; |
| } |
| |
| n = d->nr_stripes * sizeof(atomic_t); |
| d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); |
| if (!d->stripe_sectors_dirty) |
| return -ENOMEM; |
| |
| n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); |
| d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); |
| if (!d->full_dirty_stripes) |
| return -ENOMEM; |
| |
| idx = ida_simple_get(&bcache_device_idx, 0, |
| BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); |
| if (idx < 0) |
| return idx; |
| |
| if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), |
| BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) |
| goto err; |
| |
| d->disk = alloc_disk(BCACHE_MINORS); |
| if (!d->disk) |
| goto err; |
| |
| set_capacity(d->disk, sectors); |
| snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); |
| |
| d->disk->major = bcache_major; |
| d->disk->first_minor = idx_to_first_minor(idx); |
| d->disk->fops = ops; |
| d->disk->private_data = d; |
| |
| q = blk_alloc_queue(NUMA_NO_NODE); |
| if (!q) |
| return -ENOMEM; |
| |
| d->disk->queue = q; |
| q->limits.max_hw_sectors = UINT_MAX; |
| q->limits.max_sectors = UINT_MAX; |
| q->limits.max_segment_size = UINT_MAX; |
| q->limits.max_segments = BIO_MAX_PAGES; |
| blk_queue_max_discard_sectors(q, UINT_MAX); |
| q->limits.discard_granularity = 512; |
| q->limits.io_min = block_size; |
| q->limits.logical_block_size = block_size; |
| q->limits.physical_block_size = block_size; |
| |
| if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) { |
| /* |
| * This should only happen with BCACHE_SB_VERSION_BDEV. |
| * Block/page size is checked for BCACHE_SB_VERSION_CDEV. |
| */ |
| pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", |
| d->disk->disk_name, q->limits.logical_block_size, |
| PAGE_SIZE, bdev_logical_block_size(cached_bdev)); |
| |
| /* This also adjusts physical block size/min io size if needed */ |
| blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev)); |
| } |
| |
| blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); |
| blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue); |
| blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue); |
| |
| blk_queue_write_cache(q, true, true); |
| |
| return 0; |
| |
| err: |
| ida_simple_remove(&bcache_device_idx, idx); |
| return -ENOMEM; |
| |
| } |
| |
| /* Cached device */ |
| |
| static void calc_cached_dev_sectors(struct cache_set *c) |
| { |
| uint64_t sectors = 0; |
| struct cached_dev *dc; |
| |
| list_for_each_entry(dc, &c->cached_devs, list) |
| sectors += bdev_sectors(dc->bdev); |
| |
| c->cached_dev_sectors = sectors; |
| } |
| |
| #define BACKING_DEV_OFFLINE_TIMEOUT 5 |
| static int cached_dev_status_update(void *arg) |
| { |
| struct cached_dev *dc = arg; |
| struct request_queue *q; |
| |
| /* |
| * If this delayed worker is stopping outside, directly quit here. |
| * dc->io_disable might be set via sysfs interface, so check it |
| * here too. |
| */ |
| while (!kthread_should_stop() && !dc->io_disable) { |
| q = bdev_get_queue(dc->bdev); |
| if (blk_queue_dying(q)) |
| dc->offline_seconds++; |
| else |
| dc->offline_seconds = 0; |
| |
| if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { |
| pr_err("%s: device offline for %d seconds\n", |
| dc->backing_dev_name, |
| BACKING_DEV_OFFLINE_TIMEOUT); |
| pr_err("%s: disable I/O request due to backing device offline\n", |
| dc->disk.name); |
| dc->io_disable = true; |
| /* let others know earlier that io_disable is true */ |
| smp_mb(); |
| bcache_device_stop(&dc->disk); |
| break; |
| } |
| schedule_timeout_interruptible(HZ); |
| } |
| |
| wait_for_kthread_stop(); |
| return 0; |
| } |
| |
| |
| int bch_cached_dev_run(struct cached_dev *dc) |
| { |
| struct bcache_device *d = &dc->disk; |
| char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); |
| char *env[] = { |
| "DRIVER=bcache", |
| kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), |
| kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), |
| NULL, |
| }; |
| |
| if (dc->io_disable) { |
| pr_err("I/O disabled on cached dev %s\n", |
| dc->backing_dev_name); |
| kfree(env[1]); |
| kfree(env[2]); |
| kfree(buf); |
| return -EIO; |
| } |
| |
| if (atomic_xchg(&dc->running, 1)) { |
| kfree(env[1]); |
| kfree(env[2]); |
| kfree(buf); |
| pr_info("cached dev %s is running already\n", |
| dc->backing_dev_name); |
| return -EBUSY; |
| } |
| |
| if (!d->c && |
| BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { |
| struct closure cl; |
| |
| closure_init_stack(&cl); |
| |
| SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); |
| bch_write_bdev_super(dc, &cl); |
| closure_sync(&cl); |
| } |
| |
| add_disk(d->disk); |
| bd_link_disk_holder(dc->bdev, dc->disk.disk); |
| /* |
| * won't show up in the uevent file, use udevadm monitor -e instead |
| * only class / kset properties are persistent |
| */ |
| kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); |
| kfree(env[1]); |
| kfree(env[2]); |
| kfree(buf); |
| |
| if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || |
| sysfs_create_link(&disk_to_dev(d->disk)->kobj, |
| &d->kobj, "bcache")) { |
| pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); |
| return -ENOMEM; |
| } |
| |
| dc->status_update_thread = kthread_run(cached_dev_status_update, |
| dc, "bcache_status_update"); |
| if (IS_ERR(dc->status_update_thread)) { |
| pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed |
| * work dc->writeback_rate_update is running. Wait until the routine |
| * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to |
| * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out |
| * seconds, give up waiting here and continue to cancel it too. |
| */ |
| static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) |
| { |
| int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; |
| |
| do { |
| if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, |
| &dc->disk.flags)) |
| break; |
| time_out--; |
| schedule_timeout_interruptible(1); |
| } while (time_out > 0); |
| |
| if (time_out == 0) |
| pr_warn("give up waiting for dc->writeback_write_update to quit\n"); |
| |
| cancel_delayed_work_sync(&dc->writeback_rate_update); |
| } |
| |
| static void cached_dev_detach_finish(struct work_struct *w) |
| { |
| struct cached_dev *dc = container_of(w, struct cached_dev, detach); |
| struct closure cl; |
| |
| closure_init_stack(&cl); |
| |
| BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); |
| BUG_ON(refcount_read(&dc->count)); |
| |
| |
| if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) |
| cancel_writeback_rate_update_dwork(dc); |
| |
| if (!IS_ERR_OR_NULL(dc->writeback_thread)) { |
| kthread_stop(dc->writeback_thread); |
| dc->writeback_thread = NULL; |
| } |
| |
| memset(&dc->sb.set_uuid, 0, 16); |
| SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE); |
| |
| bch_write_bdev_super(dc, &cl); |
| closure_sync(&cl); |
| |
| mutex_lock(&bch_register_lock); |
| |
| calc_cached_dev_sectors(dc->disk.c); |
| bcache_device_detach(&dc->disk); |
| list_move(&dc->list, &uncached_devices); |
| |
| clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); |
| clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); |
| |
| mutex_unlock(&bch_register_lock); |
| |
| pr_info("Caching disabled for %s\n", dc->backing_dev_name); |
| |
| /* Drop ref we took in cached_dev_detach() */ |
| closure_put(&dc->disk.cl); |
| } |
| |
| void bch_cached_dev_detach(struct cached_dev *dc) |
| { |
| lockdep_assert_held(&bch_register_lock); |
| |
| if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) |
| return; |
| |
| if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) |
| return; |
| |
| /* |
| * Block the device from being closed and freed until we're finished |
| * detaching |
| */ |
| closure_get(&dc->disk.cl); |
| |
| bch_writeback_queue(dc); |
| |
| cached_dev_put(dc); |
| } |
| |
| int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, |
| uint8_t *set_uuid) |
| { |
| uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); |
| struct uuid_entry *u; |
| struct cached_dev *exist_dc, *t; |
| int ret = 0; |
| |
| if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) || |
| (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))) |
| return -ENOENT; |
| |
| if (dc->disk.c) { |
| pr_err("Can't attach %s: already attached\n", |
| dc->backing_dev_name); |
| return -EINVAL; |
| } |
| |
| if (test_bit(CACHE_SET_STOPPING, &c->flags)) { |
| pr_err("Can't attach %s: shutting down\n", |
| dc->backing_dev_name); |
| return -EINVAL; |
| } |
| |
| if (dc->sb.block_size < c->sb.block_size) { |
| /* Will die */ |
| pr_err("Couldn't attach %s: block size less than set's block size\n", |
| dc->backing_dev_name); |
| return -EINVAL; |
| } |
| |
| /* Check whether already attached */ |
| list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { |
| if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { |
| pr_err("Tried to attach %s but duplicate UUID already attached\n", |
| dc->backing_dev_name); |
| |
| return -EINVAL; |
| } |
| } |
| |
| u = uuid_find(c, dc->sb.uuid); |
| |
| if (u && |
| (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || |
| BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { |
| memcpy(u->uuid, invalid_uuid, 16); |
| u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); |
| u = NULL; |
| } |
| |
| if (!u) { |
| if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { |
| pr_err("Couldn't find uuid for %s in set\n", |
| dc->backing_dev_name); |
| return -ENOENT; |
| } |
| |
| u = uuid_find_empty(c); |
| if (!u) { |
| pr_err("Not caching %s, no room for UUID\n", |
| dc->backing_dev_name); |
| return -EINVAL; |
| } |
| } |
| |
| /* |
| * Deadlocks since we're called via sysfs... |
| * sysfs_remove_file(&dc->kobj, &sysfs_attach); |
| */ |
| |
| if (bch_is_zero(u->uuid, 16)) { |
| struct closure cl; |
| |
| closure_init_stack(&cl); |
| |
| memcpy(u->uuid, dc->sb.uuid, 16); |
| memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); |
| u->first_reg = u->last_reg = rtime; |
| bch_uuid_write(c); |
| |
| memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16); |
| SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); |
| |
| bch_write_bdev_super(dc, &cl); |
| closure_sync(&cl); |
| } else { |
| u->last_reg = rtime; |
| bch_uuid_write(c); |
| } |
| |
| bcache_device_attach(&dc->disk, c, u - c->uuids); |
| list_move(&dc->list, &c->cached_devs); |
| calc_cached_dev_sectors(c); |
| |
| /* |
| * dc->c must be set before dc->count != 0 - paired with the mb in |
| * cached_dev_get() |
| */ |
| smp_wmb(); |
| refcount_set(&dc->count, 1); |
| |
| /* Block writeback thread, but spawn it */ |
| down_write(&dc->writeback_lock); |
| if (bch_cached_dev_writeback_start(dc)) { |
| up_write(&dc->writeback_lock); |
| pr_err("Couldn't start writeback facilities for %s\n", |
| dc->disk.disk->disk_name); |
| return -ENOMEM; |
| } |
| |
| if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { |
| atomic_set(&dc->has_dirty, 1); |
| bch_writeback_queue(dc); |
| } |
| |
| bch_sectors_dirty_init(&dc->disk); |
| |
| ret = bch_cached_dev_run(dc); |
| if (ret && (ret != -EBUSY)) { |
| up_write(&dc->writeback_lock); |
| /* |
| * bch_register_lock is held, bcache_device_stop() is not |
| * able to be directly called. The kthread and kworker |
| * created previously in bch_cached_dev_writeback_start() |
| * have to be stopped manually here. |
| */ |
| kthread_stop(dc->writeback_thread); |
| cancel_writeback_rate_update_dwork(dc); |
| pr_err("Couldn't run cached device %s\n", |
| dc->backing_dev_name); |
| return ret; |
| } |
| |
| bcache_device_link(&dc->disk, c, "bdev"); |
| atomic_inc(&c->attached_dev_nr); |
| |
| /* Allow the writeback thread to proceed */ |
| up_write(&dc->writeback_lock); |
| |
| pr_info("Caching %s as %s on set %pU\n", |
| dc->backing_dev_name, |
| dc->disk.disk->disk_name, |
| dc->disk.c->sb.set_uuid); |
| return 0; |
| } |
| |
| /* when dc->disk.kobj released */ |
| void bch_cached_dev_release(struct kobject *kobj) |
| { |
| struct cached_dev *dc = container_of(kobj, struct cached_dev, |
| disk.kobj); |
| kfree(dc); |
| module_put(THIS_MODULE); |
| } |
| |
| static void cached_dev_free(struct closure *cl) |
| { |
| struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); |
| |
| if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) |
| cancel_writeback_rate_update_dwork(dc); |
| |
| if (!IS_ERR_OR_NULL(dc->writeback_thread)) |
| kthread_stop(dc->writeback_thread); |
| if (!IS_ERR_OR_NULL(dc->status_update_thread)) |
| kthread_stop(dc->status_update_thread); |
| |
| mutex_lock(&bch_register_lock); |
| |
| if (atomic_read(&dc->running)) |
| bd_unlink_disk_holder(dc->bdev, dc->disk.disk); |
| bcache_device_free(&dc->disk); |
| list_del(&dc->list); |
| |
| mutex_unlock(&bch_register_lock); |
| |
| if (dc->sb_disk) |
| put_page(virt_to_page(dc->sb_disk)); |
| |
| if (!IS_ERR_OR_NULL(dc->bdev)) |
| blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); |
| |
| wake_up(&unregister_wait); |
| |
| kobject_put(&dc->disk.kobj); |
| } |
| |
| static void cached_dev_flush(struct closure *cl) |
| { |
| struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); |
| struct bcache_device *d = &dc->disk; |
| |
| mutex_lock(&bch_register_lock); |
| bcache_device_unlink(d); |
| mutex_unlock(&bch_register_lock); |
| |
| bch_cache_accounting_destroy(&dc->accounting); |
| kobject_del(&d->kobj); |
| |
| continue_at(cl, cached_dev_free, system_wq); |
| } |
| |
| static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) |
| { |
| int ret; |
| struct io *io; |
| struct request_queue *q = bdev_get_queue(dc->bdev); |
| |
| __module_get(THIS_MODULE); |
| INIT_LIST_HEAD(&dc->list); |
| closure_init(&dc->disk.cl, NULL); |
| set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); |
| kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); |
| INIT_WORK(&dc->detach, cached_dev_detach_finish); |
| sema_init(&dc->sb_write_mutex, 1); |
| INIT_LIST_HEAD(&dc->io_lru); |
| spin_lock_init(&dc->io_lock); |
| bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); |
| |
| dc->sequential_cutoff = 4 << 20; |
| |
| for (io = dc->io; io < dc->io + RECENT_IO; io++) { |
| list_add(&io->lru, &dc->io_lru); |
| hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); |
| } |
| |
| dc->disk.stripe_size = q->limits.io_opt >> 9; |
| |
| if (dc->disk.stripe_size) |
| dc->partial_stripes_expensive = |
| q->limits.raid_partial_stripes_expensive; |
| |
| ret = bcache_device_init(&dc->disk, block_size, |
| dc->bdev->bd_part->nr_sects - dc->sb.data_offset, |
| dc->bdev, &bcache_cached_ops); |
| if (ret) |
| return ret; |
| |
| dc->disk.disk->queue->backing_dev_info->ra_pages = |
| max(dc->disk.disk->queue->backing_dev_info->ra_pages, |
| q->backing_dev_info->ra_pages); |
| |
| atomic_set(&dc->io_errors, 0); |
| dc->io_disable = false; |
| dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; |
| /* default to auto */ |
| dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; |
| |
| bch_cached_dev_request_init(dc); |
| bch_cached_dev_writeback_init(dc); |
| return 0; |
| } |
| |
| /* Cached device - bcache superblock */ |
| |
| static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, |
| struct block_device *bdev, |
| struct cached_dev *dc) |
| { |
| const char *err = "cannot allocate memory"; |
| struct cache_set *c; |
| int ret = -ENOMEM; |
| |
| bdevname(bdev, dc->backing_dev_name); |
| memcpy(&dc->sb, sb, sizeof(struct cache_sb)); |
| dc->bdev = bdev; |
| dc->bdev->bd_holder = dc; |
| dc->sb_disk = sb_disk; |
| |
| if (cached_dev_init(dc, sb->block_size << 9)) |
| goto err; |
| |
| err = "error creating kobject"; |
| if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj, |
| "bcache")) |
| goto err; |
| if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) |
| goto err; |
| |
| pr_info("registered backing device %s\n", dc->backing_dev_name); |
| |
| list_add(&dc->list, &uncached_devices); |
| /* attach to a matched cache set if it exists */ |
| list_for_each_entry(c, &bch_cache_sets, list) |
| bch_cached_dev_attach(dc, c, NULL); |
| |
| if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || |
| BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { |
| err = "failed to run cached device"; |
| ret = bch_cached_dev_run(dc); |
| if (ret) |
| goto err; |
| } |
| |
| return 0; |
| err: |
| pr_notice("error %s: %s\n", dc->backing_dev_name, err); |
| bcache_device_stop(&dc->disk); |
| return ret; |
| } |
| |
| /* Flash only volumes */ |
| |
| /* When d->kobj released */ |
| void bch_flash_dev_release(struct kobject *kobj) |
| { |
| struct bcache_device *d = container_of(kobj, struct bcache_device, |
| kobj); |
| kfree(d); |
| } |
| |
| static void flash_dev_free(struct closure *cl) |
| { |
| struct bcache_device *d = container_of(cl, struct bcache_device, cl); |
| |
| mutex_lock(&bch_register_lock); |
| atomic_long_sub(bcache_dev_sectors_dirty(d), |
| &d->c->flash_dev_dirty_sectors); |
| bcache_device_free(d); |
| mutex_unlock(&bch_register_lock); |
| kobject_put(&d->kobj); |
| } |
| |
| static void flash_dev_flush(struct closure *cl) |
| { |
| struct bcache_device *d = container_of(cl, struct bcache_device, cl); |
| |
| mutex_lock(&bch_register_lock); |
| bcache_device_unlink(d); |
| mutex_unlock(&bch_register_lock); |
| kobject_del(&d->kobj); |
| continue_at(cl, flash_dev_free, system_wq); |
| } |
| |
| static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) |
| { |
| struct bcache_device *d = kzalloc(sizeof(struct bcache_device), |
| GFP_KERNEL); |
| if (!d) |
| return -ENOMEM; |
| |
| closure_init(&d->cl, NULL); |
| set_closure_fn(&d->cl, flash_dev_flush, system_wq); |
| |
| kobject_init(&d->kobj, &bch_flash_dev_ktype); |
| |
| if (bcache_device_init(d, block_bytes(c), u->sectors, |
| NULL, &bcache_flash_ops)) |
| goto err; |
| |
| bcache_device_attach(d, c, u - c->uuids); |
| bch_sectors_dirty_init(d); |
| bch_flash_dev_request_init(d); |
| add_disk(d->disk); |
| |
| if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) |
| goto err; |
| |
| bcache_device_link(d, c, "volume"); |
| |
| return 0; |
| err: |
| kobject_put(&d->kobj); |
| return -ENOMEM; |
| } |
| |
| static int flash_devs_run(struct cache_set *c) |
| { |
| int ret = 0; |
| struct uuid_entry *u; |
| |
| for (u = c->uuids; |
| u < c->uuids + c->nr_uuids && !ret; |
| u++) |
| if (UUID_FLASH_ONLY(u)) |
| ret = flash_dev_run(c, u); |
| |
| return ret; |
| } |
| |
| int bch_flash_dev_create(struct cache_set *c, uint64_t size) |
| { |
| struct uuid_entry *u; |
| |
| if (test_bit(CACHE_SET_STOPPING, &c->flags)) |
| return -EINTR; |
| |
| if (!test_bit(CACHE_SET_RUNNING, &c->flags)) |
| return -EPERM; |
| |
| u = uuid_find_empty(c); |
| if (!u) { |
| pr_err("Can't create volume, no room for UUID\n"); |
| return -EINVAL; |
| } |
| |
| get_random_bytes(u->uuid, 16); |
| memset(u->label, 0, 32); |
| u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); |
| |
| SET_UUID_FLASH_ONLY(u, 1); |
| u->sectors = size >> 9; |
| |
| bch_uuid_write(c); |
| |
| return flash_dev_run(c, u); |
| } |
| |
| bool bch_cached_dev_error(struct cached_dev *dc) |
| { |
| if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) |
| return false; |
| |
| dc->io_disable = true; |
| /* make others know io_disable is true earlier */ |
| smp_mb(); |
| |
| pr_err("stop %s: too many IO errors on backing device %s\n", |
| dc->disk.disk->disk_name, dc->backing_dev_name); |
| |
| bcache_device_stop(&dc->disk); |
| return true; |
| } |
| |
| /* Cache set */ |
| |
| __printf(2, 3) |
| bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| |
| if (c->on_error != ON_ERROR_PANIC && |
| test_bit(CACHE_SET_STOPPING, &c->flags)) |
| return false; |
| |
| if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) |
| pr_info("CACHE_SET_IO_DISABLE already set\n"); |
| |
| /* |
| * XXX: we can be called from atomic context |
| * acquire_console_sem(); |
| */ |
| |
| va_start(args, fmt); |
| |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| |
| pr_err("error on %pU: %pV, disabling caching\n", |
| c->sb.set_uuid, &vaf); |
| |
| va_end(args); |
| |
| if (c->on_error == ON_ERROR_PANIC) |
| panic("panic forced after error\n"); |
| |
| bch_cache_set_unregister(c); |
| return true; |
| } |
| |
| /* When c->kobj released */ |
| void bch_cache_set_release(struct kobject *kobj) |
| { |
| struct cache_set *c = container_of(kobj, struct cache_set, kobj); |
| |
| kfree(c); |
| module_put(THIS_MODULE); |
| } |
| |
| static void cache_set_free(struct closure *cl) |
| { |
| struct cache_set *c = container_of(cl, struct cache_set, cl); |
| struct cache *ca; |
| unsigned int i; |
| |
| debugfs_remove(c->debug); |
| |
| bch_open_buckets_free(c); |
| bch_btree_cache_free(c); |
| bch_journal_free(c); |
| |
| mutex_lock(&bch_register_lock); |
| for_each_cache(ca, c, i) |
| if (ca) { |
| ca->set = NULL; |
| c->cache[ca->sb.nr_this_dev] = NULL; |
| kobject_put(&ca->kobj); |
| } |
| |
| bch_bset_sort_state_free(&c->sort); |
| free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c))); |
| |
| if (c->moving_gc_wq) |
| destroy_workqueue(c->moving_gc_wq); |
| bioset_exit(&c->bio_split); |
| mempool_exit(&c->fill_iter); |
| mempool_exit(&c->bio_meta); |
| mempool_exit(&c->search); |
| kfree(c->devices); |
| |
| list_del(&c->list); |
| mutex_unlock(&bch_register_lock); |
| |
| pr_info("Cache set %pU unregistered\n", c->sb.set_uuid); |
| wake_up(&unregister_wait); |
| |
| closure_debug_destroy(&c->cl); |
| kobject_put(&c->kobj); |
| } |
| |
| static void cache_set_flush(struct closure *cl) |
| { |
| struct cache_set *c = container_of(cl, struct cache_set, caching); |
| struct cache *ca; |
| struct btree *b; |
| unsigned int i; |
| |
| bch_cache_accounting_destroy(&c->accounting); |
| |
| kobject_put(&c->internal); |
| kobject_del(&c->kobj); |
| |
| if (!IS_ERR_OR_NULL(c->gc_thread)) |
| kthread_stop(c->gc_thread); |
| |
| if (!IS_ERR_OR_NULL(c->root)) |
| list_add(&c->root->list, &c->btree_cache); |
| |
| /* |
| * Avoid flushing cached nodes if cache set is retiring |
| * due to too many I/O errors detected. |
| */ |
| if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) |
| list_for_each_entry(b, &c->btree_cache, list) { |
| mutex_lock(&b->write_lock); |
| if (btree_node_dirty(b)) |
| __bch_btree_node_write(b, NULL); |
| mutex_unlock(&b->write_lock); |
| } |
| |
| for_each_cache(ca, c, i) |
| if (ca->alloc_thread) |
| kthread_stop(ca->alloc_thread); |
| |
| if (c->journal.cur) { |
| cancel_delayed_work_sync(&c->journal.work); |
| /* flush last journal entry if needed */ |
| c->journal.work.work.func(&c->journal.work.work); |
| } |
| |
| closure_return(cl); |
| } |
| |
| /* |
| * This function is only called when CACHE_SET_IO_DISABLE is set, which means |
| * cache set is unregistering due to too many I/O errors. In this condition, |
| * the bcache device might be stopped, it depends on stop_when_cache_set_failed |
| * value and whether the broken cache has dirty data: |
| * |
| * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device |
| * BCH_CACHED_STOP_AUTO 0 NO |
| * BCH_CACHED_STOP_AUTO 1 YES |
| * BCH_CACHED_DEV_STOP_ALWAYS 0 YES |
| * BCH_CACHED_DEV_STOP_ALWAYS 1 YES |
| * |
| * The expected behavior is, if stop_when_cache_set_failed is configured to |
| * "auto" via sysfs interface, the bcache device will not be stopped if the |
| * backing device is clean on the broken cache device. |
| */ |
| static void conditional_stop_bcache_device(struct cache_set *c, |
| struct bcache_device *d, |
| struct cached_dev *dc) |
| { |
| if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { |
| pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", |
| d->disk->disk_name, c->sb.set_uuid); |
| bcache_device_stop(d); |
| } else if (atomic_read(&dc->has_dirty)) { |
| /* |
| * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO |
| * and dc->has_dirty == 1 |
| */ |
| pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", |
| d->disk->disk_name); |
| /* |
| * There might be a small time gap that cache set is |
| * released but bcache device is not. Inside this time |
| * gap, regular I/O requests will directly go into |
| * backing device as no cache set attached to. This |
| * behavior may also introduce potential inconsistence |
| * data in writeback mode while cache is dirty. |
| * Therefore before calling bcache_device_stop() due |
| * to a broken cache device, dc->io_disable should be |
| * explicitly set to true. |
| */ |
| dc->io_disable = true; |
| /* make others know io_disable is true earlier */ |
| smp_mb(); |
| bcache_device_stop(d); |
| } else { |
| /* |
| * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO |
| * and dc->has_dirty == 0 |
| */ |
| pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", |
| d->disk->disk_name); |
| } |
| } |
| |
| static void __cache_set_unregister(struct closure *cl) |
| { |
| struct cache_set *c = container_of(cl, struct cache_set, caching); |
| struct cached_dev *dc; |
| struct bcache_device *d; |
| size_t i; |
| |
| mutex_lock(&bch_register_lock); |
| |
| for (i = 0; i < c->devices_max_used; i++) { |
| d = c->devices[i]; |
| if (!d) |
| continue; |
| |
| if (!UUID_FLASH_ONLY(&c->uuids[i]) && |
| test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { |
| dc = container_of(d, struct cached_dev, disk); |
| bch_cached_dev_detach(dc); |
| if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) |
| conditional_stop_bcache_device(c, d, dc); |
| } else { |
| bcache_device_stop(d); |
| } |
| } |
| |
| mutex_unlock(&bch_register_lock); |
| |
| continue_at(cl, cache_set_flush, system_wq); |
| } |
| |
| void bch_cache_set_stop(struct cache_set *c) |
| { |
| if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) |
| /* closure_fn set to __cache_set_unregister() */ |
| closure_queue(&c->caching); |
| } |
| |
| void bch_cache_set_unregister(struct cache_set *c) |
| { |
| set_bit(CACHE_SET_UNREGISTERING, &c->flags); |
| bch_cache_set_stop(c); |
| } |
| |
| #define alloc_bucket_pages(gfp, c) \ |
| ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c)))) |
| |
| struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) |
| { |
| int iter_size; |
| struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); |
| |
| if (!c) |
| return NULL; |
| |
| __module_get(THIS_MODULE); |
| closure_init(&c->cl, NULL); |
| set_closure_fn(&c->cl, cache_set_free, system_wq); |
| |
| closure_init(&c->caching, &c->cl); |
| set_closure_fn(&c->caching, __cache_set_unregister, system_wq); |
| |
| /* Maybe create continue_at_noreturn() and use it here? */ |
| closure_set_stopped(&c->cl); |
| closure_put(&c->cl); |
| |
| kobject_init(&c->kobj, &bch_cache_set_ktype); |
| kobject_init(&c->internal, &bch_cache_set_internal_ktype); |
| |
| bch_cache_accounting_init(&c->accounting, &c->cl); |
| |
| memcpy(c->sb.set_uuid, sb->set_uuid, 16); |
| c->sb.block_size = sb->block_size; |
| c->sb.bucket_size = sb->bucket_size; |
| c->sb.nr_in_set = sb->nr_in_set; |
| c->sb.last_mount = sb->last_mount; |
| c->bucket_bits = ilog2(sb->bucket_size); |
| c->block_bits = ilog2(sb->block_size); |
| c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry); |
| c->devices_max_used = 0; |
| atomic_set(&c->attached_dev_nr, 0); |
| c->btree_pages = bucket_pages(c); |
| if (c->btree_pages > BTREE_MAX_PAGES) |
| c->btree_pages = max_t(int, c->btree_pages / 4, |
| BTREE_MAX_PAGES); |
| |
| sema_init(&c->sb_write_mutex, 1); |
| mutex_init(&c->bucket_lock); |
| init_waitqueue_head(&c->btree_cache_wait); |
| spin_lock_init(&c->btree_cannibalize_lock); |
| init_waitqueue_head(&c->bucket_wait); |
| init_waitqueue_head(&c->gc_wait); |
| sema_init(&c->uuid_write_mutex, 1); |
| |
| spin_lock_init(&c->btree_gc_time.lock); |
| spin_lock_init(&c->btree_split_time.lock); |
| spin_lock_init(&c->btree_read_time.lock); |
| |
| bch_moving_init_cache_set(c); |
| |
| INIT_LIST_HEAD(&c->list); |
| INIT_LIST_HEAD(&c->cached_devs); |
| INIT_LIST_HEAD(&c->btree_cache); |
| INIT_LIST_HEAD(&c->btree_cache_freeable); |
| INIT_LIST_HEAD(&c->btree_cache_freed); |
| INIT_LIST_HEAD(&c->data_buckets); |
| |
| iter_size = (sb->bucket_size / sb->block_size + 1) * |
| sizeof(struct btree_iter_set); |
| |
| if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) || |
| mempool_init_slab_pool(&c->search, 32, bch_search_cache) || |
| mempool_init_kmalloc_pool(&c->bio_meta, 2, |
| sizeof(struct bbio) + sizeof(struct bio_vec) * |
| bucket_pages(c)) || |
| mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || |
| bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), |
| BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) || |
| !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) || |
| !(c->moving_gc_wq = alloc_workqueue("bcache_gc", |
| WQ_MEM_RECLAIM, 0)) || |
| bch_journal_alloc(c) || |
| bch_btree_cache_alloc(c) || |
| bch_open_buckets_alloc(c) || |
| bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) |
| goto err; |
| |
| c->congested_read_threshold_us = 2000; |
| c->congested_write_threshold_us = 20000; |
| c->error_limit = DEFAULT_IO_ERROR_LIMIT; |
| c->idle_max_writeback_rate_enabled = 1; |
| WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); |
| |
| return c; |
| err: |
| bch_cache_set_unregister(c); |
| return NULL; |
| } |
| |
| static int run_cache_set(struct cache_set *c) |
| { |
| const char *err = "cannot allocate memory"; |
| struct cached_dev *dc, *t; |
| struct cache *ca; |
| struct closure cl; |
| unsigned int i; |
| LIST_HEAD(journal); |
| struct journal_replay *l; |
| |
| closure_init_stack(&cl); |
| |
| for_each_cache(ca, c, i) |
| c->nbuckets += ca->sb.nbuckets; |
| set_gc_sectors(c); |
| |
| if (CACHE_SYNC(&c->sb)) { |
| struct bkey *k; |
| struct jset *j; |
| |
| err = "cannot allocate memory for journal"; |
| if (bch_journal_read(c, &journal)) |
| goto err; |
| |
| pr_debug("btree_journal_read() done\n"); |
| |
| err = "no journal entries found"; |
| if (list_empty(&journal)) |
| goto err; |
| |
| j = &list_entry(journal.prev, struct journal_replay, list)->j; |
| |
| err = "IO error reading priorities"; |
| for_each_cache(ca, c, i) { |
| if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) |
| goto err; |
| } |
| |
| /* |
| * If prio_read() fails it'll call cache_set_error and we'll |
| * tear everything down right away, but if we perhaps checked |
| * sooner we could avoid journal replay. |
| */ |
| |
| k = &j->btree_root; |
| |
| err = "bad btree root"; |
| if (__bch_btree_ptr_invalid(c, k)) |
| goto err; |
| |
| err = "error reading btree root"; |
| c->root = bch_btree_node_get(c, NULL, k, |
| j->btree_level, |
| true, NULL); |
| if (IS_ERR_OR_NULL(c->root)) |
| goto err; |
| |
| list_del_init(&c->root->list); |
| rw_unlock(true, c->root); |
| |
| err = uuid_read(c, j, &cl); |
| if (err) |
| goto err; |
| |
| err = "error in recovery"; |
| if (bch_btree_check(c)) |
| goto err; |
| |
| bch_journal_mark(c, &journal); |
| bch_initial_gc_finish(c); |
| pr_debug("btree_check() done\n"); |
| |
| /* |
| * bcache_journal_next() can't happen sooner, or |
| * btree_gc_finish() will give spurious errors about last_gc > |
| * gc_gen - this is a hack but oh well. |
| */ |
| bch_journal_next(&c->journal); |
| |
| err = "error starting allocator thread"; |
| for_each_cache(ca, c, i) |
| if (bch_cache_allocator_start(ca)) |
| goto err; |
| |
| /* |
| * First place it's safe to allocate: btree_check() and |
| * btree_gc_finish() have to run before we have buckets to |
| * allocate, and bch_bucket_alloc_set() might cause a journal |
| * entry to be written so bcache_journal_next() has to be called |
| * first. |
| * |
| * If the uuids were in the old format we have to rewrite them |
| * before the next journal entry is written: |
| */ |
| if (j->version < BCACHE_JSET_VERSION_UUID) |
| __uuid_write(c); |
| |
| err = "bcache: replay journal failed"; |
| if (bch_journal_replay(c, &journal)) |
| goto err; |
| } else { |
| pr_notice("invalidating existing data\n"); |
| |
| for_each_cache(ca, c, i) { |
| unsigned int j; |
| |
| ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, |
| 2, SB_JOURNAL_BUCKETS); |
| |
| for (j = 0; j < ca->sb.keys; j++) |
| ca->sb.d[j] = ca->sb.first_bucket + j; |
| } |
| |
| bch_initial_gc_finish(c); |
| |
| err = "error starting allocator thread"; |
| for_each_cache(ca, c, i) |
| if (bch_cache_allocator_start(ca)) |
| goto err; |
| |
| mutex_lock(&c->bucket_lock); |
| for_each_cache(ca, c, i) |
| bch_prio_write(ca, true); |
| mutex_unlock(&c->bucket_lock); |
| |
| err = "cannot allocate new UUID bucket"; |
| if (__uuid_write(c)) |
| goto err; |
| |
| err = "cannot allocate new btree root"; |
| c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); |
| if (IS_ERR_OR_NULL(c->root)) |
| goto err; |
| |
| mutex_lock(&c->root->write_lock); |
| bkey_copy_key(&c->root->key, &MAX_KEY); |
| bch_btree_node_write(c->root, &cl); |
| mutex_unlock(&c->root->write_lock); |
| |
| bch_btree_set_root(c->root); |
| rw_unlock(true, c->root); |
| |
| /* |
| * We don't want to write the first journal entry until |
| * everything is set up - fortunately journal entries won't be |
| * written until the SET_CACHE_SYNC() here: |
| */ |
| SET_CACHE_SYNC(&c->sb, true); |
| |
| bch_journal_next(&c->journal); |
| bch_journal_meta(c, &cl); |
| } |
| |
| err = "error starting gc thread"; |
| if (bch_gc_thread_start(c)) |
| goto err; |
| |
| closure_sync(&cl); |
| c->sb.last_mount = (u32)ktime_get_real_seconds(); |
| bcache_write_super(c); |
| |
| list_for_each_entry_safe(dc, t, &uncached_devices, list) |
| bch_cached_dev_attach(dc, c, NULL); |
| |
| flash_devs_run(c); |
| |
| set_bit(CACHE_SET_RUNNING, &c->flags); |
| return 0; |
| err: |
| while (!list_empty(&journal)) { |
| l = list_first_entry(&journal, struct journal_replay, list); |
| list_del(&l->list); |
| kfree(l); |
| } |
| |
| closure_sync(&cl); |
| |
| bch_cache_set_error(c, "%s", err); |
| |
| return -EIO; |
| } |
| |
| static bool can_attach_cache(struct cache *ca, struct cache_set *c) |
| { |
| return ca->sb.block_size == c->sb.block_size && |
| ca->sb.bucket_size == c->sb.bucket_size && |
| ca->sb.nr_in_set == c->sb.nr_in_set; |
| } |
| |
| static const char *register_cache_set(struct cache *ca) |
| { |
| char buf[12]; |
| const char *err = "cannot allocate memory"; |
| struct cache_set *c; |
| |
| list_for_each_entry(c, &bch_cache_sets, list) |
| if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) { |
| if (c->cache[ca->sb.nr_this_dev]) |
| return "duplicate cache set member"; |
| |
| if (!can_attach_cache(ca, c)) |
| return "cache sb does not match set"; |
| |
| if (!CACHE_SYNC(&ca->sb)) |
| SET_CACHE_SYNC(&c->sb, false); |
| |
| goto found; |
| } |
| |
| c = bch_cache_set_alloc(&ca->sb); |
| if (!c) |
| return err; |
| |
| err = "error creating kobject"; |
| if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) || |
| kobject_add(&c->internal, &c->kobj, "internal")) |
| goto err; |
| |
| if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) |
| goto err; |
| |
| bch_debug_init_cache_set(c); |
| |
| list_add(&c->list, &bch_cache_sets); |
| found: |
| sprintf(buf, "cache%i", ca->sb.nr_this_dev); |
| if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || |
| sysfs_create_link(&c->kobj, &ca->kobj, buf)) |
| goto err; |
| |
| if (ca->sb.seq > c->sb.seq) { |
| c->sb.version = ca->sb.version; |
| memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16); |
| c->sb.flags = ca->sb.flags; |
| c->sb.seq = ca->sb.seq; |
| pr_debug("set version = %llu\n", c->sb.version); |
| } |
| |
| kobject_get(&ca->kobj); |
| ca->set = c; |
| ca->set->cache[ca->sb.nr_this_dev] = ca; |
| c->cache_by_alloc[c->caches_loaded++] = ca; |
| |
| if (c->caches_loaded == c->sb.nr_in_set) { |
| err = "failed to run cache set"; |
| if (run_cache_set(c) < 0) |
| goto err; |
| } |
| |
| return NULL; |
| err: |
| bch_cache_set_unregister(c); |
| return err; |
| } |
| |
| /* Cache device */ |
| |
| /* When ca->kobj released */ |
| void bch_cache_release(struct kobject *kobj) |
| { |
| struct cache *ca = container_of(kobj, struct cache, kobj); |
| unsigned int i; |
| |
| if (ca->set) { |
| BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca); |
| ca->set->cache[ca->sb.nr_this_dev] = NULL; |
| } |
| |
| free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca))); |
| kfree(ca->prio_buckets); |
| vfree(ca->buckets); |
| |
| free_heap(&ca->heap); |
| free_fifo(&ca->free_inc); |
| |
| for (i = 0; i < RESERVE_NR; i++) |
| free_fifo(&ca->free[i]); |
| |
| if (ca->sb_disk) |
| put_page(virt_to_page(ca->sb_disk)); |
| |
| if (!IS_ERR_OR_NULL(ca->bdev)) |
| blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); |
| |
| kfree(ca); |
| module_put(THIS_MODULE); |
| } |
| |
| static int cache_alloc(struct cache *ca) |
| { |
| size_t free; |
| size_t btree_buckets; |
| struct bucket *b; |
| int ret = -ENOMEM; |
| const char *err = NULL; |
| |
| __module_get(THIS_MODULE); |
| kobject_init(&ca->kobj, &bch_cache_ktype); |
| |
| bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8); |
| |
| /* |
| * when ca->sb.njournal_buckets is not zero, journal exists, |
| * and in bch_journal_replay(), tree node may split, |
| * so bucket of RESERVE_BTREE type is needed, |
| * the worst situation is all journal buckets are valid journal, |
| * and all the keys need to replay, |
| * so the number of RESERVE_BTREE type buckets should be as much |
| * as journal buckets |
| */ |
| btree_buckets = ca->sb.njournal_buckets ?: 8; |
| free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; |
| if (!free) { |
| ret = -EPERM; |
| err = "ca->sb.nbuckets is too small"; |
| goto err_free; |
| } |
| |
| if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, |
| GFP_KERNEL)) { |
| err = "ca->free[RESERVE_BTREE] alloc failed"; |
| goto err_btree_alloc; |
| } |
| |
| if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), |
| GFP_KERNEL)) { |
| err = "ca->free[RESERVE_PRIO] alloc failed"; |
| goto err_prio_alloc; |
| } |
| |
| if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { |
| err = "ca->free[RESERVE_MOVINGGC] alloc failed"; |
| goto err_movinggc_alloc; |
| } |
| |
| if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { |
| err = "ca->free[RESERVE_NONE] alloc failed"; |
| goto err_none_alloc; |
| } |
| |
| if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { |
| err = "ca->free_inc alloc failed"; |
| goto err_free_inc_alloc; |
| } |
| |
| if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { |
| err = "ca->heap alloc failed"; |
| goto err_heap_alloc; |
| } |
| |
| ca->buckets = vzalloc(array_size(sizeof(struct bucket), |
| ca->sb.nbuckets)); |
| if (!ca->buckets) { |
| err = "ca->buckets alloc failed"; |
| goto err_buckets_alloc; |
| } |
| |
| ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), |
| prio_buckets(ca), 2), |
| GFP_KERNEL); |
| if (!ca->prio_buckets) { |
| err = "ca->prio_buckets alloc failed"; |
| goto err_prio_buckets_alloc; |
| } |
| |
| ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca); |
| if (!ca->disk_buckets) { |
| err = "ca->disk_buckets alloc failed"; |
| goto err_disk_buckets_alloc; |
| } |
| |
| ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); |
| |
| for_each_bucket(b, ca) |
| atomic_set(&b->pin, 0); |
| return 0; |
| |
| err_disk_buckets_alloc: |
| kfree(ca->prio_buckets); |
| err_prio_buckets_alloc: |
| vfree(ca->buckets); |
| err_buckets_alloc: |
| free_heap(&ca->heap); |
| err_heap_alloc: |
| free_fifo(&ca->free_inc); |
| err_free_inc_alloc: |
| free_fifo(&ca->free[RESERVE_NONE]); |
| err_none_alloc: |
| free_fifo(&ca->free[RESERVE_MOVINGGC]); |
| err_movinggc_alloc: |
| free_fifo(&ca->free[RESERVE_PRIO]); |
| err_prio_alloc: |
| free_fifo(&ca->free[RESERVE_BTREE]); |
| err_btree_alloc: |
| err_free: |
| module_put(THIS_MODULE); |
| if (err) |
| pr_notice("error %s: %s\n", ca->cache_dev_name, err); |
| return ret; |
| } |
| |
| static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, |
| struct block_device *bdev, struct cache *ca) |
| { |
| const char *err = NULL; /* must be set for any error case */ |
| int ret = 0; |
| |
| bdevname(bdev, ca->cache_dev_name); |
| memcpy(&ca->sb, sb, sizeof(struct cache_sb)); |
| ca->bdev = bdev; |
| ca->bdev->bd_holder = ca; |
| ca->sb_disk = sb_disk; |
| |
| if (blk_queue_discard(bdev_get_queue(bdev))) |
| ca->discard = CACHE_DISCARD(&ca->sb); |
| |
| ret = cache_alloc(ca); |
| if (ret != 0) { |
| /* |
| * If we failed here, it means ca->kobj is not initialized yet, |
| * kobject_put() won't be called and there is no chance to |
| * call blkdev_put() to bdev in bch_cache_release(). So we |
| * explicitly call blkdev_put() here. |
| */ |
| blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); |
| if (ret == -ENOMEM) |
| err = "cache_alloc(): -ENOMEM"; |
| else if (ret == -EPERM) |
| err = "cache_alloc(): cache device is too small"; |
| else |
| err = "cache_alloc(): unknown error"; |
| goto err; |
| } |
| |
| if (kobject_add(&ca->kobj, |
| &part_to_dev(bdev->bd_part)->kobj, |
| "bcache")) { |
| err = "error calling kobject_add"; |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| mutex_lock(&bch_register_lock); |
| err = register_cache_set(ca); |
| mutex_unlock(&bch_register_lock); |
| |
| if (err) { |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| pr_info("registered cache device %s\n", ca->cache_dev_name); |
| |
| out: |
| kobject_put(&ca->kobj); |
| |
| err: |
| if (err) |
| pr_notice("error %s: %s\n", ca->cache_dev_name, err); |
| |
| return ret; |
| } |
| |
| /* Global interfaces/init */ |
| |
| static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, |
| const char *buffer, size_t size); |
| static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, |
| struct kobj_attribute *attr, |
| const char *buffer, size_t size); |
| |
| kobj_attribute_write(register, register_bcache); |
| kobj_attribute_write(register_quiet, register_bcache); |
| kobj_attribute_write(register_async, register_bcache); |
| kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); |
| |
| static bool bch_is_open_backing(struct block_device *bdev) |
| { |
| struct cache_set *c, *tc; |
| struct cached_dev *dc, *t; |
| |
| list_for_each_entry_safe(c, tc, &bch_cache_sets, list) |
| list_for_each_entry_safe(dc, t, &c->cached_devs, list) |
| if (dc->bdev == bdev) |
| return true; |
| list_for_each_entry_safe(dc, t, &uncached_devices, list) |
| if (dc->bdev == bdev) |
| return true; |
| return false; |
| } |
| |
| static bool bch_is_open_cache(struct block_device *bdev) |
| { |
| struct cache_set *c, *tc; |
| struct cache *ca; |
| unsigned int i; |
| |
| list_for_each_entry_safe(c, tc, &bch_cache_sets, list) |
| for_each_cache(ca, c, i) |
| if (ca->bdev == bdev) |
| return true; |
| return false; |
| } |
| |
| static bool bch_is_open(struct block_device *bdev) |
| { |
| return bch_is_open_cache(bdev) || bch_is_open_backing(bdev); |
| } |
| |
| struct async_reg_args { |
| struct delayed_work reg_work; |
| char *path; |
| struct cache_sb *sb; |
| struct cache_sb_disk *sb_disk; |
| struct block_device *bdev; |
| }; |
| |
| static void register_bdev_worker(struct work_struct *work) |
| { |
| int fail = false; |
| struct async_reg_args *args = |
| container_of(work, struct async_reg_args, reg_work.work); |
| struct cached_dev *dc; |
| |
| dc = kzalloc(sizeof(*dc), GFP_KERNEL); |
| if (!dc) { |
| fail = true; |
| put_page(virt_to_page(args->sb_disk)); |
| blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); |
| goto out; |
| } |
| |
| mutex_lock(&bch_register_lock); |
| if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0) |
| fail = true; |
| mutex_unlock(&bch_register_lock); |
| |
| out: |
| if (fail) |
| pr_info("error %s: fail to register backing device\n", |
| args->path); |
| kfree(args->sb); |
| kfree(args->path); |
| kfree(args); |
| module_put(THIS_MODULE); |
| } |
| |
| static void register_cache_worker(struct work_struct *work) |
| { |
| int fail = false; |
| struct async_reg_args *args = |
| container_of(work, struct async_reg_args, reg_work.work); |
| struct cache *ca; |
| |
| ca = kzalloc(sizeof(*ca), GFP_KERNEL); |
| if (!ca) { |
| fail = true; |
| put_page(virt_to_page(args->sb_disk)); |
| blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); |
| goto out; |
| } |
| |
| /* blkdev_put() will be called in bch_cache_release() */ |
| if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0) |
| fail = true; |
| |
| out: |
| if (fail) |
| pr_info("error %s: fail to register cache device\n", |
| args->path); |
| kfree(args->sb); |
| kfree(args->path); |
| kfree(args); |
| module_put(THIS_MODULE); |
| } |
| |
| static void register_device_aync(struct async_reg_args *args) |
| { |
| if (SB_IS_BDEV(args->sb)) |
| INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); |
| else |
| INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); |
| |
| /* 10 jiffies is enough for a delay */ |
| queue_delayed_work(system_wq, &args->reg_work, 10); |
| } |
| |
| static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, |
| const char *buffer, size_t size) |
| { |
| const char *err; |
| char *path = NULL; |
| struct cache_sb *sb; |
| struct cache_sb_disk *sb_disk; |
| struct block_device *bdev; |
| ssize_t ret; |
| |
| ret = -EBUSY; |
| err = "failed to reference bcache module"; |
| if (!try_module_get(THIS_MODULE)) |
| goto out; |
| |
| /* For latest state of bcache_is_reboot */ |
| smp_mb(); |
| err = "bcache is in reboot"; |
| if (bcache_is_reboot) |
| goto out_module_put; |
| |
| ret = -ENOMEM; |
| err = "cannot allocate memory"; |
| path = kstrndup(buffer, size, GFP_KERNEL); |
| if (!path) |
| goto out_module_put; |
| |
| sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); |
| if (!sb) |
| goto out_free_path; |
| |
| ret = -EINVAL; |
| err = "failed to open device"; |
| bdev = blkdev_get_by_path(strim(path), |
| FMODE_READ|FMODE_WRITE|FMODE_EXCL, |
| sb); |
| if (IS_ERR(bdev)) { |
| if (bdev == ERR_PTR(-EBUSY)) { |
| bdev = lookup_bdev(strim(path)); |
| mutex_lock(&bch_register_lock); |
| if (!IS_ERR(bdev) && bch_is_open(bdev)) |
| err = "device already registered"; |
| else |
| err = "device busy"; |
| mutex_unlock(&bch_register_lock); |
| if (!IS_ERR(bdev)) |
| bdput(bdev); |
| if (attr == &ksysfs_register_quiet) |
| goto done; |
| } |
| goto out_free_sb; |
| } |
| |
| err = "failed to set blocksize"; |
| if (set_blocksize(bdev, 4096)) |
| goto out_blkdev_put; |
| |
| err = read_super(sb, bdev, &sb_disk); |
| if (err) |
| goto out_blkdev_put; |
| |
| err = "failed to register device"; |
| if (attr == &ksysfs_register_async) { |
| /* register in asynchronous way */ |
| struct async_reg_args *args = |
| kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); |
| |
| if (!args) { |
| ret = -ENOMEM; |
| err = "cannot allocate memory"; |
| goto out_put_sb_page; |
| } |
| |
| args->path = path; |
| args->sb = sb; |
| args->sb_disk = sb_disk; |
| args->bdev = bdev; |
| register_device_aync(args); |
| /* No wait and returns to user space */ |
| goto async_done; |
| } |
| |
| if (SB_IS_BDEV(sb)) { |
| struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); |
| |
| if (!dc) |
| goto out_put_sb_page; |
| |
| mutex_lock(&bch_register_lock); |
| ret = register_bdev(sb, sb_disk, bdev, dc); |
| mutex_unlock(&bch_register_lock); |
| /* blkdev_put() will be called in cached_dev_free() */ |
| if (ret < 0) |
| goto out_free_sb; |
| } else { |
| struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); |
| |
| if (!ca) |
| goto out_put_sb_page; |
| |
| /* blkdev_put() will be called in bch_cache_release() */ |
| if (register_cache(sb, sb_disk, bdev, ca) != 0) |
| goto out_free_sb; |
| } |
| |
| done: |
| kfree(sb); |
| kfree(path); |
| module_put(THIS_MODULE); |
| async_done: |
| return size; |
| |
| out_put_sb_page: |
| put_page(virt_to_page(sb_disk)); |
| out_blkdev_put: |
| blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); |
| out_free_sb: |
| kfree(sb); |
| out_free_path: |
| kfree(path); |
| path = NULL; |
| out_module_put: |
| module_put(THIS_MODULE); |
| out: |
| pr_info("error %s: %s\n", path?path:"", err); |
| return ret; |
| } |
| |
| |
| struct pdev { |
| struct list_head list; |
| struct cached_dev *dc; |
| }; |
| |
| static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, |
| struct kobj_attribute *attr, |
| const char *buffer, |
| size_t size) |
| { |
| LIST_HEAD(pending_devs); |
| ssize_t ret = size; |
| struct cached_dev *dc, *tdc; |
| struct pdev *pdev, *tpdev; |
| struct cache_set *c, *tc; |
| |
| mutex_lock(&bch_register_lock); |
| list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { |
| pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); |
| if (!pdev) |
| break; |
| pdev->dc = dc; |
| list_add(&pdev->list, &pending_devs); |
| } |
| |
| list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { |
| list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { |
| char *pdev_set_uuid = pdev->dc->sb.set_uuid; |
| char *set_uuid = c->sb.uuid; |
| |
| if (!memcmp(pdev_set_uuid, set_uuid, 16)) { |
| list_del(&pdev->list); |
| kfree(pdev); |
| break; |
| } |
| } |
| } |
| mutex_unlock(&bch_register_lock); |
| |
| list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { |
| pr_info("delete pdev %p\n", pdev); |
| list_del(&pdev->list); |
| bcache_device_stop(&pdev->dc->disk); |
| kfree(pdev); |
| } |
| |
| return ret; |
| } |
| |
| static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) |
| { |
| if (bcache_is_reboot) |
| return NOTIFY_DONE; |
| |
| if (code == SYS_DOWN || |
| code == SYS_HALT || |
| code == SYS_POWER_OFF) { |
| DEFINE_WAIT(wait); |
| unsigned long start = jiffies; |
| bool stopped = false; |
| |
| struct cache_set *c, *tc; |
| struct cached_dev *dc, *tdc; |
| |
| mutex_lock(&bch_register_lock); |
| |
| if (bcache_is_reboot) |
| goto out; |
| |
| /* New registration is rejected since now */ |
| bcache_is_reboot = true; |
| /* |
| * Make registering caller (if there is) on other CPU |
| * core know bcache_is_reboot set to true earlier |
| */ |
| smp_mb(); |
| |
| if (list_empty(&bch_cache_sets) && |
| list_empty(&uncached_devices)) |
| goto out; |
| |
| mutex_unlock(&bch_register_lock); |
| |
| pr_info("Stopping all devices:\n"); |
| |
| /* |
| * The reason bch_register_lock is not held to call |
| * bch_cache_set_stop() and bcache_device_stop() is to |
| * avoid potential deadlock during reboot, because cache |
| * set or bcache device stopping process will acqurie |
| * bch_register_lock too. |
| * |
| * We are safe here because bcache_is_reboot sets to |
| * true already, register_bcache() will reject new |
| * registration now. bcache_is_reboot also makes sure |
| * bcache_reboot() won't be re-entered on by other thread, |
| * so there is no race in following list iteration by |
| * list_for_each_entry_safe(). |
| */ |
| list_for_each_entry_safe(c, tc, &bch_cache_sets, list) |
| bch_cache_set_stop(c); |
| |
| list_for_each_entry_safe(dc, tdc, &uncached_devices, list) |
| bcache_device_stop(&dc->disk); |
| |
| |
| /* |
| * Give an early chance for other kthreads and |
| * kworkers to stop themselves |
| */ |
| schedule(); |
| |
| /* What's a condition variable? */ |
| while (1) { |
| long timeout = start + 10 * HZ - jiffies; |
| |
| mutex_lock(&bch_register_lock); |
| stopped = list_empty(&bch_cache_sets) && |
| list_empty(&uncached_devices); |
| |
| if (timeout < 0 || stopped) |
| break; |
| |
| prepare_to_wait(&unregister_wait, &wait, |
| TASK_UNINTERRUPTIBLE); |
| |
| mutex_unlock(&bch_register_lock); |
| schedule_timeout(timeout); |
| } |
| |
| finish_wait(&unregister_wait, &wait); |
| |
| if (stopped) |
| pr_info("All devices stopped\n"); |
| else |
| pr_notice("Timeout waiting for devices to be closed\n"); |
| out: |
| mutex_unlock(&bch_register_lock); |
| } |
| |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block reboot = { |
| .notifier_call = bcache_reboot, |
| .priority = INT_MAX, /* before any real devices */ |
| }; |
| |
| static void bcache_exit(void) |
| { |
| bch_debug_exit(); |
| bch_request_exit(); |
| if (bcache_kobj) |
| kobject_put(bcache_kobj); |
| if (bcache_wq) |
| destroy_workqueue(bcache_wq); |
| if (bch_journal_wq) |
| destroy_workqueue(bch_journal_wq); |
| |
| if (bcache_major) |
| unregister_blkdev(bcache_major, "bcache"); |
| unregister_reboot_notifier(&reboot); |
| mutex_destroy(&bch_register_lock); |
| } |
| |
| /* Check and fixup module parameters */ |
| static void check_module_parameters(void) |
| { |
| if (bch_cutoff_writeback_sync == 0) |
| bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; |
| else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { |
| pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", |
| bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); |
| bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; |
| } |
| |
| if (bch_cutoff_writeback == 0) |
| bch_cutoff_writeback = CUTOFF_WRITEBACK; |
| else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { |
| pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", |
| bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); |
| bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; |
| } |
| |
| if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { |
| pr_warn("set bch_cutoff_writeback (%u) to %u\n", |
| bch_cutoff_writeback, bch_cutoff_writeback_sync); |
| bch_cutoff_writeback = bch_cutoff_writeback_sync; |
| } |
| } |
| |
| static int __init bcache_init(void) |
| { |
| static const struct attribute *files[] = { |
| &ksysfs_register.attr, |
| &ksysfs_register_quiet.attr, |
| #ifdef CONFIG_BCACHE_ASYNC_REGISTRAION |
| &ksysfs_register_async.attr, |
| #endif |
| &ksysfs_pendings_cleanup.attr, |
| NULL |
| }; |
| |
| check_module_parameters(); |
| |
| mutex_init(&bch_register_lock); |
| init_waitqueue_head(&unregister_wait); |
| register_reboot_notifier(&reboot); |
| |
| bcache_major = register_blkdev(0, "bcache"); |
| if (bcache_major < 0) { |
| unregister_reboot_notifier(&reboot); |
| mutex_destroy(&bch_register_lock); |
| return bcache_major; |
| } |
| |
| bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); |
| if (!bcache_wq) |
| goto err; |
| |
| bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); |
| if (!bch_journal_wq) |
| goto err; |
| |
| bcache_kobj = kobject_create_and_add("bcache", fs_kobj); |
| if (!bcache_kobj) |
| goto err; |
| |
| if (bch_request_init() || |
| sysfs_create_files(bcache_kobj, files)) |
| goto err; |
| |
| bch_debug_init(); |
| closure_debug_init(); |
| |
| bcache_is_reboot = false; |
| |
| return 0; |
| err: |
| bcache_exit(); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Module hooks |
| */ |
| module_exit(bcache_exit); |
| module_init(bcache_init); |
| |
| module_param(bch_cutoff_writeback, uint, 0); |
| MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); |
| |
| module_param(bch_cutoff_writeback_sync, uint, 0); |
| MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); |
| |
| MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); |
| MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); |
| MODULE_LICENSE("GPL"); |